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Normal Modes 

 

The fixed-fixed beam in Figure 1 is subjected to a uniform, distributed applied force. 
 

 

 

 

 

 

 

 

 

 

 

  Figure 1. 

 

 

The following equations are taken from References 1 and 2. 
 

The governing differential equation is  
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where 

E is the modulus of elasticity 

I is the area moment of inertia 

L is the length 

  is the mass density (mass/length) 

P is the applied force per length 
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Now assume that the distributed force is uniform such that 
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The differential equation becomes 
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The eigenvalues are 

 
 

N Ln  

1 4.73004 

2 7.85321 

3 10.9956 

4 14.13717 

5 17.27876 

 

 

For n> 5 
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The natural frequencies are 

 

 /EI2
nn                                                                                             (5)

 

 

 

  



 

3 

 

The mass-normalized mode shapes are 
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The derivatives are 
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Participation Factors 
 

The participation factors for constant mass density are 
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The participation factors from a numerical calculation are 

 

L0.83091                                                                                           (10) 
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The participation factors are non-dimensional. 

 

 

Displacement Response 

The displacement response Y(x, ) to the applied force is 
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The displacement transfer function is 
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The bending moment transfer function is 

 

 
 

 
 

 



 





















 















1n nn
22

n

nn

2j

x"YEI

W

,xYEI

W

,xM
                                         (17)                                                               

 

 

The bending stress transfer function is 
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where  c is the distance from the neutral axis 
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The shear force  ,xV  is 
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The average shear stress ave   is 
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where A is the cross-section area   

 

The maximum shear stress max   occurs at the neutral axis and is 

 

avemax                                                                                                                (22) 

 
where 

 

Cross-section  

Solid Rectangle 3/2 

Solid Cylinder 4/3 

Pipe 2 

I-beam A / Aweb 
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APPENDIX A 

 

                                                                                                                                  

Example 
 

Consider a beam with the following properties: 

 

Cross-Section Rectangular 

Boundary Conditions Fixed at Each End 

Material Aluminum 

 

 

Thickness T = 0.125 inch 

Width W = 1.0 inch 

Length L = 27.5 inch 

Cross-Section Area A = 0.125 in^2 

Area Moment of Inertia I = 0.000163 in^4 

Elastic Modulus E = 10E+06 lbf/in^2 

Stiffness EI = 1628 lbf in^2 

Mass per Volume v  = 0.1 lbm / in^3 ( 0.000259 lbf sec^2/in^4 ) 

Mass per Length   = 0.0125 lbm / in (  0.00003237 lbf sec^2/in^4 ) 

Mass L = 0.3438 lbm (  0.0008906 lbf sec^2/in) 

Viscous Damping Ratio   = 0.05 

 

 

 

The normal modes and frequency response function analysis are performed via a Matlab script.  
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The normal modes results are: 
 

 
 

Table 1.  Natural Frequency Results, Beam Fixed 

at Each End 

Mode fn (Hz) Participation Factor 

1 33.38 0.02479 

2 92.02 0 

3 180.4 0.01086 

4 298.2 0 

5 445.4 0.006908 

 

 

Note that the mode shape and participation factors are considered as dimensionless, but they 

must be consistent with respect to one another. 

 

The resulting displacement and stress transfer function magnitudes are shown in Figures A-1 

and A-2, respectively. 
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Figure A-1. 

 

 

The maximum displacement response is   9.251 [in/(lbf/in)] at    33.4 Hz 
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Figure A-2. 

 

 

The maximum bending stress response is  2.078e+05 [(lbf/in^2) /(lbf/in)] at     34.4 Hz 
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