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The fixed-fixed beam in Figure 1 is subject to base excitation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 

 

 

The following equations are taken from References 1 and 2. 
 

The governing differential equation is  
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where 

 

  E    is the modulus of elasticity 

  I     is the area moment of inertia 

L    is the length 

    is the mass density (mass/length) 
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The mass-normalized mode shapes are 
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The eigenvalues are 

 
 

n Ln  

1 4.73004 

2 7.85321 

3 10.9956 

4 14.13717 

5 17.27876 

 

 

For n> 5 
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The natural frequencies are  

 

 /EI2
nn

                                                                                          (5) 



 

3 

 

 

 

The relative displacement response Y(x, ) to base acceleration is 
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The participation factors for constant mass density are 
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The participation factors from a numerical calculation are 

 

L0.83091                                                                                                 (9) 
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L0.23155                                                                                               (13) 

 

 

The participation factors are non-dimensional 
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Effective Modal Mass 
 

The effective modal mass is 
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The eigenvectors are already normalized such that 
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Example 
 

Consider a beam with the following properties: 

 

Cross-Section Circular 

Boundary Conditions Fixed-Fixed 

Material Aluminum 

 
 

Diameter D = 0.5 inch 

Cross-Section Area A = 0.1963 in^2 

Length L = 32 inch 

Area Moment of Inertia I = 0.003068 in^4 

Elastic Modulus E = 1.0e+07 lbf/in^2 

Stiffness EI = 30680 lbf in^2 

Mass per Volume v  = 0.1 lbm / in^3 ( 0.000259 lbf sec^2/in^4 ) 
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Mass per Length   = 0.01963 lbm/in (5.08e-05 lbf sec^2/in^2) 

Mass L =   0.628 lbm ( 0.00163 lbf sec^2/in) 

Viscous Damping Ratio   = 0.05 

 
 

The normal modes and frequency response function analysis are performed via Matlab script: 

ss_beam_stress.m.   The normal modes results are: 
 

 

Table 1.   

Natural Frequency Results, Fixed-Fixed Beam 

 

 

Mode 

 

fn (Hz) 

Participation 

Factor 

Effective 

Modal Mass 

( lbf sec^2/in ) 

Effective 

Modal Mass 

(lbm) 

1 85.4 0.0335 0.001124 0.4337 

2 235.4 0 0 0 

3 461.5 0.015 0.000215 0.083 

4 762.9 0 0 0 

5 1140 0.0093 8.72E-05 0.0337 

 

Note that the mode shape and participation factors are considered as dimensionless, but they 

must be consistent with respect to one another. 
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Figure 2.     
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Figure 3.     
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Figure 4.     

 

 

Table 2.  PSD, Base Input, 14.1 GRMS 

Freq (Hz) Accel (G^2/Hz) 

10 0.1 

2000 0.1 

 

 

The fixed-fixed beam is subjected to the base input PSD in Table 2.  The resulting response PSD 

curves are shown in Figures 5 & 6 for the midpoint. 
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Figure 5.    
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