STEADY-STATE VIBRATION RESPONSE OF A FIXED-FIXED BEAM SUBJECTED TO BASE EXCITATION

By Tom Irvine May 4, 2012

Email: tomirvine@aol.com

The fixed-fixed beam in Figure 1 is subject to base excitation.

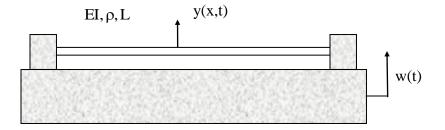


Figure 1.

The following equations are taken from References 1 and 2.

The governing differential equation is

$$\operatorname{EI}\frac{\partial^4 y}{\partial x^4} + \rho \frac{\partial^2 y}{\partial t^2} = -\rho \frac{\partial^2 w}{\partial t^2} \tag{1}$$

where

- E is the modulus of elasticity
- I is the area moment of inertia
- L is the length
- ρ is the mass density (mass/length)

The mass-normalized mode shapes are

$$Y_{n}(x) = \frac{1}{\sqrt{\rho L}} \left\{ \left[\cosh(\beta_{n} x) - \cos(\beta_{n} x) \right] - \sigma_{n} \left[\sinh(\beta_{n} x) - \sin(\beta_{n} x) \right] \right\}$$
(2)

where

$$\sigma_{n} = \left[\frac{\sinh(\beta L) + \sin(\beta L)}{\cosh(\beta L) - \cos(\beta L)}\right]$$

$$\frac{d^2}{dx^2} Y_n(x) = \frac{\beta_n^2}{\sqrt{\rho L}} \left\{ \left[\cosh(\beta_n x) + \cos(\beta_n x) \right] - \sigma_n \left[\sinh(\beta_n x) + \sin(\beta_n x) \right] \right\}$$
(3)

The eigenvalues are

n	$\beta_n L$
1	4.73004
2	7.85321
3	10.9956
4	14.13717
5	17.27876

For n > 5

$$\beta_{n} L \approx \pi \left[\frac{1}{2} + n \right]$$
(4)

The natural frequencies are

$$\omega_{\rm n} = \beta_{\rm n}^2 \sqrt{{\rm EI}/\rho} \tag{5}$$

2

The relative displacement response $Y(x, \omega)$ to base acceleration is

$$Y(x,\omega) = \ddot{W}(\omega) \sum_{n=1}^{m} \left\{ \frac{-\Gamma_n Y_n(x)}{\left(\omega_n^2 - \omega^2\right) + j2\xi_n \omega \omega_n} \right\}$$
(6)

The participation factors for constant mass density are

$$\Gamma_{n} = \rho \int_{0}^{L} Y_{n}(x) dx \tag{7}$$

$$\Gamma_{n} = \frac{1}{\beta_{n}} \sqrt{\frac{\rho}{L}} \left\{ \left[\sinh(\beta_{n}L) - \sin(\beta_{n}L) \right] + \sigma_{n} \left[2 - \cosh(\beta_{n}L) - \cos(\beta_{n}L) \right] \right\}$$
(8)

The participation factors from a numerical calculation are

$$\Gamma_1 = 0.8309 \sqrt{\rho L} \tag{9}$$

$$\Gamma_2 = 0 \tag{10}$$

$$\Gamma_3 = 0.3638 \sqrt{\rho L} \tag{11}$$

$$\Gamma_4 = 0 \tag{12}$$

$$\Gamma_5 = 0.2315 \sqrt{\rho L} \tag{13}$$

The participation factors are non-dimensional

Effective Modal Mass

The effective modal mass is

$$m_{eff,n} = \frac{\left[\int_{0}^{L} m(x) Y_{n}(x) dx\right]^{2}}{\int_{0}^{L} m(x) [Y_{n}(x)]^{2} dx}$$
(14)

The eigenvectors are already normalized such that

$$\int_{0}^{L} m(x) [Y_{n}(x)]^{2} dx = 1$$
(15)

Thus,

$$m_{\text{eff},n} = \left[\Gamma_n\right]^2 = \left[\int_0^L m(x) Y_n(x) dx\right]^2$$
(16)

<u>Example</u>

Consider a beam with the following properties:

Cross-Section	Circular
Boundary Conditions	Fixed-Fixed
Material	Aluminum

Diameter	D	=	0.5 inch
Cross-Section Area	А	=	0.1963 in^2
Length	L	=	32 inch
Area Moment of Inertia	Ι	=	0.003068 in^4
Elastic Modulus	E	=	1.0e+07 lbf/in^2
Stiffness	EI	=	30680 lbf in^2
Mass per Volume	ρ_{v}	=	0.1 lbm / in^3 (0.000259 lbf sec^2/in^4)

Mass per Length	ρ	=	0.01963 lbm/in (5.08e-05 lbf sec^2/in^2)
Mass	ρL	=	0.628 lbm (0.00163 lbf sec^2/in)
Viscous Damping Ratio	λ	=	0.05

The normal modes and frequency response function analysis are performed via Matlab script: ss_beam_stress.m. The normal modes results are:

Table 1. Natural Frequency Results, Fixed-Fixed Beam					
Mode	fn (Hz)	Participation Factor	Effective Modal Mass (lbf sec^2/in)	Effective Modal Mass (lbm)	
1	85.4	0.0335	0.001124	0.4337	
2	235.4	0	0	0	
3	461.5	0.015	0.000215	0.083	
4	762.9	0	0	0	
5	1140	0.0093	8.72E-05	0.0337	

Note that the mode shape and participation factors are considered as dimensionless, but they must be consistent with respect to one another.

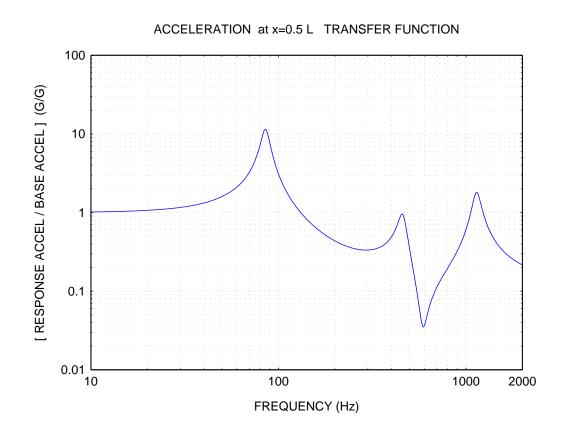


Figure 2.

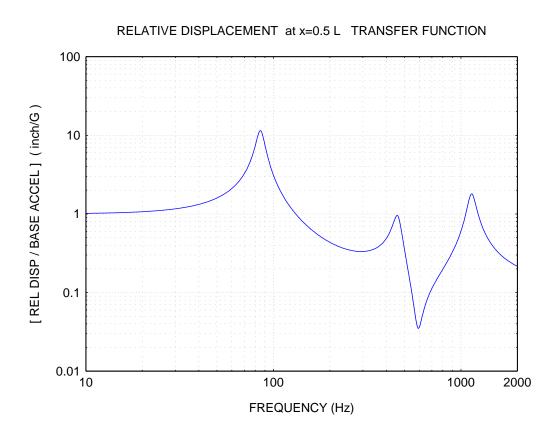


Figure 3.

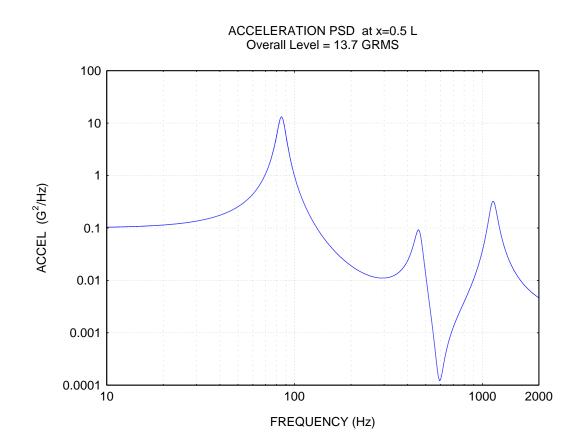


Figure 4.

Table 2. PSD, Base Input, 14.1 GRMS		
Freq (Hz)	Accel (G^2/Hz)	
10	0.1	
2000	0.1	

The fixed-fixed beam is subjected to the base input PSD in Table 2. The resulting response PSD curves are shown in Figures 5 & 6 for the midpoint.

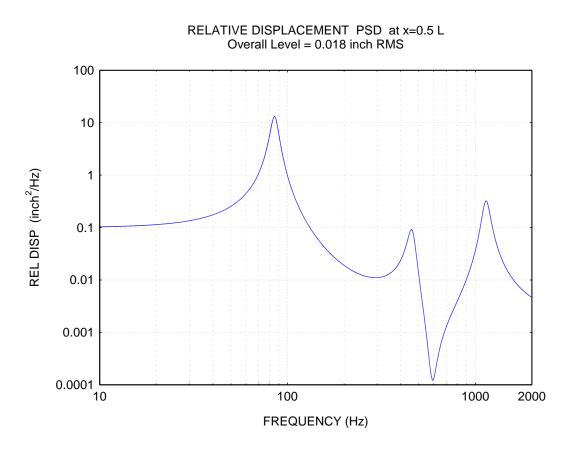


Figure 5.

References

- 1. T. Irvine, Bending Frequencies of Beams, Rod, and Pipes, Revision M, Vibrationdata, 2010.
- 2. T. Irvine, Steady-State Vibration Response of a Cantilever Beam Subjected to Base Excitation, Rev A, Vibrationdata, 2009.