STEADY-STATE VIBRATION RESPONSE OF A SIMPLY-SUPPORTED BEAM SUBJECTED TO BASE EXCITATION Revision A

By Tom Irvine February 14, 2012

Email: tomirvine@aol.com

The simply-supported beam in Figure 1 is subject to base excitation.

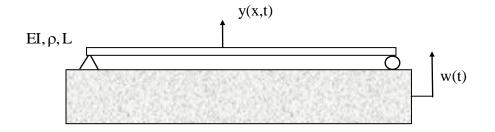


Figure 1.

The following equations are taken from References 1 and 2.

The governing differential equation is

$$\mathrm{EI}\frac{\partial^4 y}{\partial x^4} + \rho \frac{\partial^2 y}{\partial t^2} = -\rho \frac{\partial^2 w}{\partial t^2} \tag{1}$$

where

- E is the modulus of elasticity
- I is the area moment of inertia
- L is the length
- ρ is the mass density (mass/length)

The mass-normalized mode shapes are

$$Y_{n}(x) = \sqrt{\frac{2}{\rho L}} \sin(\beta_{n} x)$$
(2)

$$\frac{d^2}{dx^2} Y_n(x) = -\beta_n^2 \sqrt{\frac{2}{\rho L}} \sin(\beta_n x)$$
(3)

The eigenvalues are

$$\beta_n = \frac{n\pi}{L}, \quad n = 1, 2, 3, \dots$$
 (4)

The natural frequencies are

$$\omega_{n} = \beta_{n}^{2} \sqrt{EI/\rho}$$
(5)

The relative displacement response $Y(x, \omega)$ to base acceleration is

$$Y(x,\omega) = \ddot{W}(\omega) \sum_{n=1}^{m} \left\{ \frac{-\Gamma_n Y_n(x)}{\left(\omega_n^2 - \omega^2\right) + j2\xi_n \omega \omega_n} \right\}$$
(6)

The participation factors for constant mass density are

$$\Gamma_n = \rho \int_0^L Y_n(x) \, dx \tag{7}$$

$$\Gamma_{n} = \rho \int_{0}^{L} \sqrt{\frac{2}{\rho L}} \sin(n\pi x/L) dx$$
(8)

$$\Gamma_{n} = -\sqrt{2\rho L} \left[\frac{1}{n\pi} \right] \left[\cos(n\pi) - 1 \right] , n=1, 2, 3, \dots$$
(9)

Effective Modal Mass

The effective modal mass is

$$m_{eff,n} = \frac{\left[\int_{0}^{L} m(x) Y_{n}(x) dx\right]^{2}}{\int_{0}^{L} m(x) [Y_{n}(x)]^{2} dx}$$
(10)

The eigenvectors are already normalized such that

$$\int_{0}^{L} m(x) [Y_{n}(x)]^{2} dx = 1$$
(11)

Thus,

$$m_{\text{eff},n} = \left[\Gamma_n\right]^2 = \left[\int_0^L m(x) Y_n(x) dx\right]^2$$
(12)

$$m_{\text{eff, n}} = \left[-\sqrt{2\rho L} \left[\frac{1}{n\pi} \right] \left[\cos(n\pi) - 1 \right] \right]^2$$
(13)

$$m_{eff, n} = 2\rho L \frac{1}{(n\pi)^2} [\cos(n\pi) - 1]^2$$
, n=1, 2, 3, (14)

Example

Consider a beam with the following properties:

Cross-Section	Circular
Boundary Conditions	Simply-Supported at Each End
Material	Aluminum

Diameter	D	=	0.5 inch
Cross-Section Area	А	=	0.1963 in^2
Length	L	=	24 inch
Area Moment of Inertia	Ι	=	0.003068 in^4
Elastic Modulus	Е	=	1.0e+07 lbf/in^2
Stiffness	EI	=	30680 lbf in^2
Mass per Volume	ρ_{v}	=	0.1 lbm / in^3 (0.000259 lbf sec^2/in^4)
Mass per Length	ρ	=	0.01963 lbm/in (5.08e-05 lbf sec^2/in^2)
Mass	ρL	=	0.471 lbm (1.22E-03 lbf sec^2/in)
Viscous Damping Ratio	۳	=	0.05

The normal modes and frequency response function analysis are performed via Matlab script: ss_beam_stress.m. The normal modes results are:

Table 1. Natural Frequency Results, Beam Simply-Supported at Each End							
Mode	fn (Hz)	Participation Factor	Effective Modal Mass (lbf sec^2/in)	Effective Modal Mass (lbm)			
1	66.97	0.0315	0.9896e-03	0.3820			
2	267.9	0	0	0			
3	603.8	0.0105	0.1100e-03	0.0424			
4	1072	0	0	0			

Note that the mode shape and participation factors are considered as dimensionless, but they must be consistent with respect to one another.

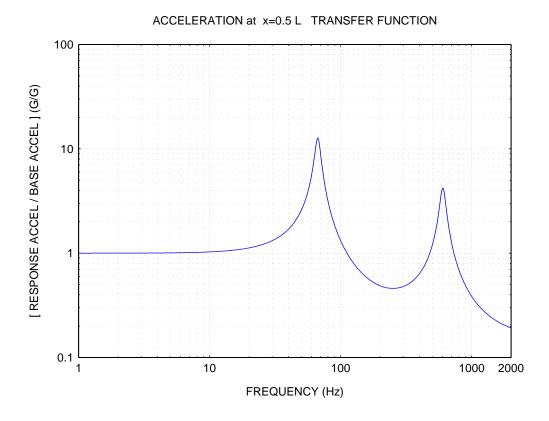


Figure 2.

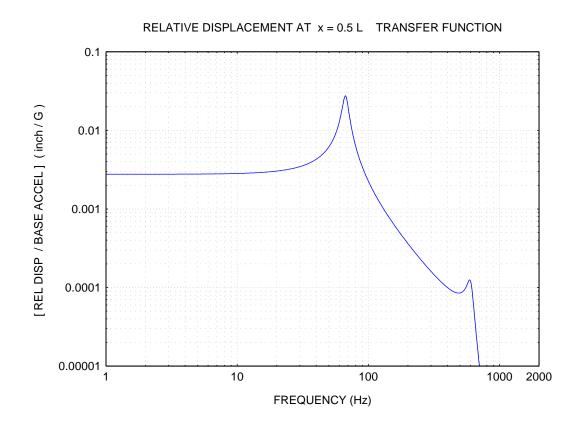


Figure 3.

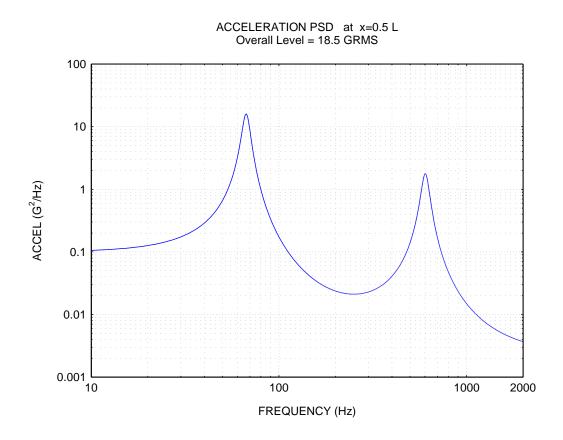


Figure 4.

Table 2. PSD, Base Input, 14.1 GRMS				
Freq (Hz)	Accel (G^2/Hz)			
10	0.1			
2000	0.1			

The simply-supported beam is subjected to the base input PSD in Table 2. The resulting response PSD curves are shown in Figures 5 & 6 for the midpoint.

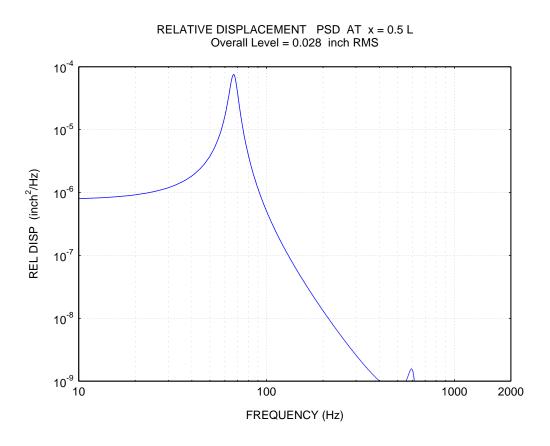


Figure 5.

References

- 1. T. Irvine, Bending Frequencies of Beams, Rod, and Pipes, Revision M, Vibrationdata, 2010.
- 2. T. Irvine, Steady-State Vibration Response of a Cantilever Beam Subjected to Base Excitation, Rev A, Vibrationdata, 2009.