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Vibration fatigue calculations are “ballpark” calculations given uncertainties in S-N curves, 
stress concentration factors and other variables.  Perhaps the best that can be expected is to 
calculate the accumulated fatigue to the correct “order-of-magnitude.” 
 
 
Introduction 
 

This example is an innovation upon a similar problem in References 1 and 2.  It uses a more 
conservative method than that in Reference 2. 
 

Consider a power supply mounted on a bracket as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 
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The model parameters are 

Power Supply Mass M = 0.44 lbm= 0.00114 lbf sec^2/in 

Bracket Material Aluminum alloy 6061-T6 

Mass Density ρ=0.1 lbm/in^3 

Elastic Modulus E= 1.0e+07 lbf/in^2 

Viscous Damping Ratio 0.05 

 

The area moment of inertia of the beam cross-section I is 
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1
I                                                                                                                                 (1) 

  3in25.0in0.2
12

1
I                                                                                                   (2) 

4in0026.0I                                                                                                                (3) 

 

The stiffness EI is 

 

  4in0026.02^in/lbf 07+1.0eEI                                                                              (4)                                                                                               

2inlbf04e60.2EI                                                                                                          (5) 

 

The mass per length of the beam, excluding the power supply, is 

 

     in25.0in0.2in/lbm1.0 3                                                                               (6)                                                                                                                

 

in/lbm05.0                                                                                                        (7) 
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The beam mass is 

 

  in5.53^in/lbm05.0L                                                                                             (8) 

sec^2/in lbf 0.000712lbm275.0L                                                                               (9)                                                                                                                

 

Model the system as a single-degree-of-freedom system subjected to base input as shown in 
Figure 2. 
 

 

 

 

 

 

 

 

 

 

 

                        Figure 2. 
 
 
 
The natural frequency of the beam, from Reference 3, is given by 
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2inlbf04e60.23
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Hz6.95nf                                                                                                                        (12) 
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                        Figure 3. 

 

Table 1.  Base Input PSD, 6.1 GRMS 

Frequency (Hz) Accel (G^2/Hz) 

20 0.0053 

150 0.04 

600 0.04 

2000 0.0036 

 

Now consider that the bracket assembly is subjected to the random vibration base input level 
shown in Figure 3 and in Table 1. The duration is 3 minutes. 
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Synthesized Time History 

 
 

 
 
Figure 4. 
 
 
An acceleration time history is synthesized to satisfy the PSD specification from Figure 3.  The 
resulting time history is shown in Figure 4.  The synthesis method is given in Reference 4. 
 
The corresponding histogram has a normal distribution, but the plot is omitted for brevity. 
 
Note that the synthesized time history is not unique.  For rigor, the analysis in this paper could 
be repeated using a number of suitable time histories. 
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Figure 5. 
 
 
Verification that the synthesized time history meets the specification is given in Figure 5. 
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Acceleration Response 
 

 

 
 
Figure 6. 
 
 
 
The response acceleration in Figure 6 was calculated via the method in Reference 5.  The 
response is narrowband.  The oscillation frequency tends to be near the natural frequency of 
95.6 Hz.  The histogram has a normal distribution due to the randomly-varying amplitude 
modulation. 
 

The overall response level is 6.1 GRMS.  This is also the standard deviation given that the mean 

is zero.  The response and input levels have the same overall GRMS value, but this only a 

conicidence. 
 

The absolute peak is 27.8 G, which respresents a 4.52-sigma peak.   
 

Note that some fatigue methods assume that the peak response is 3-sigma and may thus 

underpredict fatigue damage. 
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Stress and Moment Calculation 

 

 

 

 

 

 

           Figure 7. 

 

The following approach is a simplification.  A rigorous method would calculate the stress from 

the strain at the fixed end. 

 

A free-body diagram of the beam is shown in Figure 7.   

The reaction moment MR at the fixed-boundary is 

LFMR                                                                                                            (13) 

 

The force F is equal to the effect mass of the bracket system multiplied by the acceleration 

level. The effective mass me is 
 

 mL2235.0me                                                                                                            (14) 

  )sec^2/in lbf 0.00114(sec^2/in lbf 0.0007122235.0me                                            (15)                                                                                                                                                                                   

sec^2/in lbf0013.0me                                                                                                         (16) 

The bending moment M̂ at a given distance L̂  from the force application point is 

L̂AmM̂ e                                                                                                            (17) 

MR 

R F 

L 
x 
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where A is the acceleration at the force point.  

The bending stress Sb is given by 

I/CM̂KSb                                                                                                         (18) 

 

The variable K is the stress concentration factor. Assume that the stress concentration factor is 
3.0 for the solder lug mounting hole. 
 
The variable C is the distance from the neutral axis to the outer fiber of the beam. The cross-
section is uniform in the sample problem. Thus C is equal to one-half the thickness, or 0.125 in. 
 

A(t) I)/CL̂mK()t(S eb                                                                                                   (19) 

   4
e in0026.0/)in125.0(in5.5sec^2/in) lbf0013.0)((3.0 I)/CmK(                                  (20)                                                                                                                                                                                                                                                               

sec^2/in^3 lbf029.1 I)/CmK( e                                                                                       (21)       

Apply a unit conversion factor.                                                                                                                                                                                                                                                                              

    Gin/sec^2)/(386sec^2/in^3 lbf029.1 Gin/sec^2)/(386I)/CmK( e                               (22)                                                                                                                                                                                                                                                                                                                                                                                                                           

  Glbf/in^2)/(397 Gin/sec^2)/(386I)/CmK( e                                                                  (23)                                                                                                                                                                                                                                                                                                                                                                    

  ksi/G397.0 Gin/sec^2)/(386I)/CmK( e                                                                        (24)                                                                                                                                                                                                                                                                                                                                                                    
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Figure 8. 
 
 
The standard deviation is 2.4 ksi.  The highest absolute peak is 11.0 ksi, which is 4.52-sigma.  
The 4.52 multiplier is also referred to as the “crest factor.” 
 
Next, a rainflow cycle count was performed on the stress time history using the method in 
Reference 6.  The binned results are shown in Table 2. 
 
The binned results are shown mainly for reference, given that this is a common presentation 
format in the aerospace industry.   The binned results could be inserted into a Miner’s 
cumulative fatigue calculation. 
 
The method in this analysis, however, will use the raw rainflow results consisting of cycle-by-
cycle amplitude levels, including half-cycles.  This brute-force method is more precise than 
using binned data. 
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Table 2.  Stress Results from Rainflow Cycle Counting, Bin Format,  Stress Unit:  ksi, Base Input Overall 
Level = 6.1 GRMS 
 

Range         
Upper 
Limit 

Lower 
Limit 

Cycle 
Counts 

Average 
Amplitude 

Max  
Amp 

Min 
Mean 

Average 
Mean 

Max 
Mean 

Min 
Valley 

Max 
Peak 

19.66 21.84 3.5 10.43 10.92 -0.29 0.073 0.54 -11.02 10.82 

17.47 19.66 21.0 9.11 9.80 -0.35 0.152 0.58 -9.82 10.11 

15.29 17.47 108.0 8.07 8.70 -1.36 0.002 0.67 -9.53 9.09 

13.10 15.29 372.0 6.98 7.63 -1.07 -0.026 0.71 -8.51 8.34 

10.92 13.10 943.0 5.94 6.55 -1.02 0.006 1.00 -7.16 7.20 

8.74 10.92 2057.5 4.86 5.46 -1.23 -0.010 0.98 -6.54 6.15 

6.55 8.74 3657.0 3.79 4.37 -1.19 -0.002 1.15 -5.30 5.20 

4.37 6.55 4809.5 2.72 3.28 -1.02 0.002 1.06 -4.22 4.13 

3.28 4.37 2273.5 1.92 2.18 -0.93 0.005 0.94 -3.06 2.94 

2.18 3.28 1741.5 1.39 1.64 -0.89 0.002 0.92 -2.36 2.56 

1.09 2.18 1140.0 0.83 1.09 -1.04 0.020 1.24 -2.03 1.98 

0.55 1.09 670.0 0.40 0.55 -1.63 -0.003 1.86 -1.92 2.40 

0.00 0.55 9743.0 0.04 0.27 -6.00 -0.024 5.83 -6.01 5.84 

 
The Range in Table 2 is peak-to-valley. 
 
The Average and Maximum Amplitudes are each equal to (peak-valley)/2 
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Miner’s Cumulative Fatigue 
 
Let n be the number of stress cycles accumulated during the vibration testing at a given level 
stress level represented by index i. 
 
Let N be the number of cycles to produce a fatigue failure at the stress level limit for the 
corresponding index. 
 
Miner’s cumulative damage index R is given by 
 

                           



m

1i i

i

N

n
R                                                                                                                     (25) 

 
where m is the total number of cycles or bins depending on the analysis type. 
 
In theory, the part should fail when 
 

Rn (theory) = 1.0                                                                                            (26) 
 
For aerospace electronic structures, however, a more conservative limit is used 
 

Rn(aero) = 0.7                                                                                                (27) 
 
 
The number of allowable cycles for a given stress level is determined from an S-N fatigue curve 
in Appendix A, Figure A-4 for the 6061-T6 aluminum bracket in the sample problem. 
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Input Level Study 
 
 

Table 4.  SDOF System,  Solder Terminal Location, Fatigue 
Damage Results for Various Input Levels, 180 second Duration, 
Crest Factor = 4.52 

 

Input Overall 
Level  

(GRMS) 

Input Margin 
(dB) 

Response 
Stress Std Dev 

(ksi) 
R 

6.1 0 2.4 7.4e-08 

8.7 3 3.4 2.0e-06 

12.3 6 4.9 5.3e-05 

17.3 9 6.9 0.00142 

24.5 12 9.7 0.038 

27.4 13 10.89 
Ultimate 
Failure 

 
 
The accumulated fatigue damage was calculated for a family of cases as shown in Table 4.   
Each case used the base input PSD from Figure 4 with the indicated added margin.  
Furthermore, each used a scaled version of the same synthesized time history. 
 
Each full and half-cycle from the rainflow results was accounted for.  An allowable N value was 
calculated for each stress amplitude S using equation (28) for each cycle or half-cycle. 
 
A running summation was made using equation (25). 
 
Again, the success criterion was R < 0.7.   The fatigue failure threshold is somewhere between 
the 12 and 13 dB margin. 
 
The data shows that the fatigue damage is highly sensitive to the base input and resulting stress 
levels. 
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Duration Study 
 

A new, 720-second signal was synthesized for the 6 dB margin case.   The time history plot is 
omitted for brevity. 
 

A fatigue analysis was then performed using the SDOF system in Figure 1.  The analysis was 
then repeated using the 0 to 360 sec and 0 to 180 sec segments of the new synthesized time 
history.  The R values for these three cases are shown in Table 5. 
 
 
 

Table 5.  SDOF System,  Solder Terminal Location,   Fatigue Damage Results for 
Various Durations, 12.2 GRMS Input 

 

Duration (sec) Stress RMS (ksi) Crest Factor R 

180 4.82 4.65 5.37e-05 

360 4.89 4.91 0.000123 

720 4.89 4.97 0.000234 

 
 
The R value is approximately directly proportional to the duration, such that a doubling of 
duration nearly yields a doubling of R. 
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Time History Synthesis Variation Study 
 
A set of time histories was synthesized to meet the base input PSD + 6 dB.  The response of the 
SDOF system in Figure 1 was calculated.  The results are given in Tables 6 and 7. 
 
 

Table 6.  SDOF System,  Solder Terminal Location, Fatigue Damage Results for 
Various Time History Cases, 180-second Duration, 12.2 GRMS Input 

Stress RMS (ksi) Crest Factor Kurtosis R 

4.86 5.44 3.1 6.99E-05 

4.89 4.40 3.0 5.18E-05 

4.80 4.43 3.0 4.93E-05 

4.90 4.46 3.1 7.06E-05 

4.89 5.79 3.0 7.60E-05 

4.88 4.95 3.0 6.02E-05 

4.84 4.64 3.0 4.76E-05 

4.82 4.65 3.1 5.37E-05 

4.81 4.37 3.0 4.38E-05 

4.86 4.57 3.0 5.30E-05 

4.84 4.60 3.0 5.11E-05 

4.86 4.27 3.0 4.67E-05 

 
 

Table 7.  Limits for Stress Response Parameters 

Parameter Min Max 

Stress (ksi) 4.80 4.90 

Crest Factor 4.27 5.79 

Kurtosis 2.99 3.12 

R 4.38E-05 7.60E-05 
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Note that the crest factor is the ratio of the peak-to-standard deviation, or peak-to-rms 
assuming zero mean. 
 
Note that Rayleigh distribution predicts a 4.55 crest factor for a 95.6 Hz oscillator over a 180-
second duration.  The formula is given in Appendix B.  
 
The crest value varies such that the maximum value is 36% higher than the minimum. 
 
The overall stress level and kurtosis remain nearly constant across the set of time histories.   
Kurtosis is defined in Appendix C. 
 
The R value varies with the maximum being 73% higher than the minimum. 
 
The R value is sensitive to the overall stress RMS level, crest factor and kurtosis, tending to 
increase with even small positive changes in each of these parameters.  See Figures 9 through 
11, which include a linear curve-fit. 
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Figure 9. 
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Figure 10. 
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Figure 11. 
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The data in Figures 9 through 11 are a snapshot for a particular SDOF system and base input 
PSD. 
 
This “Time History Variation” study should be repeated with varying natural frequencies, 
damping ratios, input levels, durations, etc.  
 
 
 
Conclusion 
 

This is a “work-in-progress.” 
 

Fatigue analysis already carries uncertainty given that S-N curves and stress concentration 
factors are both tenuous. 
 

The crest factor and kurtosis are very important.  Response peaks above 3-sigma make a 
significant contribution to fatigue damage.  Even minor changes in the response stress can have 
significant effect on the fatigue damage R. 
 
The results in Figure 6 show variation in the fatigue damage R with a set of independent base 
input time histories each of which satisfies the same base input PSD specification.   The 
difference is due variation in underlying response statistical parameters.   A conservative 
approach for a given design problem would thus be to take the maximum R for ten or more 
independent synthesis cases. 
 
Note that the stress response variation would also occur for a shaker table test, even if the base 
input is peak-limited. 
 

There are addition concerns arising from modeling simplifications.   
 

The analysis used pure bending stress.  A better approach would have been to use the 
maximum principal stress or von Mises stress which would have included the shear stress.   The 
stress contributions of higher modes should also be considered.   
 
There are additional material concerns as given in Appendix D. 
 
Idealizing a system as a single-degree-of-freedom system may yield to an under-prediction of 
the fatigue damage as shown in Appendix E.   The inclusion of higher modes may not increase 
the stress level much but will increase the fatigue damage, because higher modes add relatively 
high-frequency stress reversal cycles. 
 
 
Additional Applications 
 

The fatigue method is applied to a continuous beam model in Appendix E.  
 



 

19 
 

 
References 
 

1. Dave Steinberg, Vibration Analysis for Electronic Equipment, Second Edition, Wiley, New 
York, 1988. 
 

2. T. Irvine, Random Vibration Fatigue, Revision B, Vibrationdata, 2003. 
 

3. T. Irvine, Bending Frequencies of Beams, Rods, and Pipes, Revision S, Vibrationdata, 
2012. 
 

4. T. Irvine, A Method for Power Spectral Density Synthesis, Rev B, Vibrationdata, 2000. 
 

5. David O. Smallwood, An Improved Recursive Formula for Calculating Shock Response 
Spectra, Shock and Vibration Bulletin, No. 51, May 1981. 
 

6. ASTM E 1049-85 (2005) Rainflow Counting Method, 1987. 
 

7. http://en.wikipedia.org/wiki/Fatigue_(material) 
 

8. MIL-HDDK-5J, Department of Defense Handbook:  Metallic Materials and Elements for 
Aerospace Vehicle Structures, 31 Jan 2003.  
  

9. Kathleen S. Dragolich, Nikki D. DiMatteo, Fatigue Data Book: Light Structural Alloys, ASM 
International. 
 

10.  http://scholar.lib.vt.edu/theses/available/etd-07192001-
124624/unrestricted/ComeauChapter3doc.pdf 
 

11. K. Ahlin, Comparison of Test Specifications and Measured Field Data, Sound & 
Vibration, September 2006. 
 

12.  V. Adams and A. Askenazi, Building Better Products with Finite Element Analysis,  
OnWord Press, Santa Fe, N.M., 1999.   
 

13. T. Irvine, Modal Transient Vibration Response of a Cantilever Beam Subjected to Base 
Excitation, Vibrationdata, 2013. 
 
 
 
 

 



 

20 
 

APPENDIX A 

Fatigue S-N Curves 
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Figure A-1. 

 

 

The curve in Figure A-1 is taken from Reference 7.   
 

It may be unsuitable for engineering calculation because the alloy and other details are 

unidentified.  But it is very useful as a qualitative example of aluminum fatigue.   
 

The curve can be roughly divided into two segments.  The first is the low-cycle fatigue portion 

from 1 to 1000 cycles.  This curve is concave as viewed from the origin.  The second portion is 

the high-cycle curve beginning at 1000, which is convex as view from the origin. 
 

Furthermore, the stress level for one cycle is the ultimate stress limit.   
 

There is no endurance limit.  
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Figure A-2. 
 

The fatigue curve for aluminum 6061-T6 is shown in Figure A-2, from Reference 8, Figure 
3.6.2.2.8.    
 

The stress ratio in the legend is the (peak/valley) for a given cycle.  The KT value indicates the 
stress concentration factor of 1.0. 
 

The ultimate stress for Al 6061-T6 is 45 ksi per Reference 8.  The yield stress is 40 ksi.   
 
These stress limits are for the tested samples in Figure A-2.   The actual values also depend on 
the form.  Sheet, plate, bars, rods, extrusions, forgings and castings all have their own set of 
limits. 
 
The advantage of the curve in Figure A-2 is that it is authoritative and well-documented.  The 
disadvantage is that is does not cover low-cycle fatigue below 1000 cycles.  
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Figure A-3. 

The data in Figure A-3 is taken from Reference 9. 

The test data for aluminum 6061-T6 appears to begin at 2(104) cycles.  A plateau at the ultimate 
stress limit of 45 ksi is assumed from 10 to (104) cycles.   
 

The plateau has a physical explanation.  Hysteresis loops form in the stress-strain curves for 
materials undergoing cyclical loading where the maximum stress extends into the plastic 
deformation regime.   In particular, aluminum undergoes strain-hardening.  Its hysteresis loops 
stabilize after repeated cycling so that the stress amplitude remains relatively constant over a 
large portion of fatigue life.   Further information is given in Reference 10. 
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Figure A-4. 

 

The maximum stress is zero-to-peak for the stress ratio = -1. 
 

The purpose of this section is not to give the definitive S-N curve for aluminum 6061-T6, but is 

rather to give a working curve for the examples in this paper. 
 

The -1 curve will be used for the examples.  Note that the -1 ratio roughly meets the expected 

rainflow cycle behavior.   

An extrapolation is made for the low-cycle fatigue region from point (1 cycle, 45 ksi) to (15384 

cycles, 39.73 ksi) using a simple linear curve.  This is a documented assumption.  A thorough 

consideration of low-cycle fatigue is beyond the scope of this paper. 

The curve-fit equations are given as follows. 

Let N be the number of cycles.  Let S be the corresponding maximum stress amplitude.   
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The following equation pair applies to the case where N<1538 and S > 39.73 ksi. 

        S = -0.00343 N + 45                                                                                                       (A-1) 

 N = -291.727 S + 13128.7                                                                                              (A-2)                                                                             

 

Note that the indicated significant digits are required in equation (A-2) for numerical accuracy. 

The following equation pair applies to the case where N>1538 and S < 39.7 ksi. 

log10 (S) = -0.108 log10 (N) +1.95                                                                                 (A-3) 

log10 (N) = -9.25 log10 (S) + 17.99                                                                                (A-4) 
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APPENDIX B 

 

Rayleigh Distribution Crest Factor for an SDOF System Response 
 
The formula is for the maximum predicated crest factor C is 
 

 
 Tfnln2

5772.0
Tfnln2C                                                                                    (B-1)                                                                                                                                             

 

where 

fn is the natural frequency 

T is the duration 

ln is the natural logarithm function 

 

Equation (B-1) is taken from Reference 11. 
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APPENDIX C 

Kurtosis 

Kurtosis is a parameter that describes the shape of a random variable’s histogram or its 
equivalent probability density function (PDF). 

The kurtosis for a time series iY is 

 

Kurtosis = 

 

4

n

1i

4
i

n

Y






                                                                           (C-1)

 

where 

  = Mean 

  = standard deviation 

n = number of samples 

 

The term in the numerator is the “fourth moment about the mean.” 

A pure sine time history has a kurtosis of 1.5. 

A time history with a normal distribution has a kurtosis of 3.   

Some alternate definitions of kurtosis subtract a value of 3 so that a normal distribution will 
have a kurtosis of zero. 

A kurtosis larger than 3 indicates that the distribution is more peaked and has heavier tails than 
a normal distribution with the same standard deviation. 
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APPENDIX D 
 
Fatigue Cracks 
 
A ductile material subjected to fatigue loading experiences basic structural changes. The 
changes occur in the following order: 
 

1. Crack Initiation. A crack begins to form within the material. 
 

2. Localized crack growth. Local extrusions and intrusions occur at the surface of 
the part because plastic deformations are not completely reversible. 

 
3. Crack growth on planes of high tensile stress. The crack propagates across the 

section at those points of greatest tensile stress. 
 

4. Ultimate ductile failure. The sample ruptures by ductile failure when the crack 
reduces the effective cross section to a size that cannot sustain the applied 
loads. 
 

 
Design and Environmental Variables affecting Fatigue Life 
 
The following factors decrease fatigue life. 
 

1. Stress concentrators. Holes, notches, fillets, steps, grooves, and other irregular 
features will cause highly localized regions of concentrated stress, and thus 
reduce fatigue life. 
 

2. Surface roughness. Smooth surfaces are more crack resistant because 
roughness creates stress concentrators. 
 

3. Surface conditioning. Hardening processes tend to increase fatigue strength, 
while plating and corrosion protection tend to diminish fatigue strength. 
 

4. Environment. A corrosive environment greatly reduces fatigue strength. A 
combination of corrosion and cyclical stresses is called corrosion fatigue. 
 

 

Temperature may also be a factor. 
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APPENDIX E 
 

Continuous Beam Subjected to Base Excitation 
 
 

 
 
 
 
 
 
 
 
Figure E-1. 
 
The response of a continuous beam to an arbitrary base input can be calculated via 
Reference 13.  This allows the bending stress to be calculated from the strain. 

 

Consider the beam in Figure E-1 with the following properties: 

Cross-Section Rectangular 

Boundary Conditions Fixed-Free 

Material Aluminum 

 

Width w = 2.0 in 

Thickness t = 0.25 in 

Length L = 12 in 

Elastic Modulus E = 1.0e+07 lbf/in^2 

Area Moment of Inertia I = 0.0026 in^4 

Mass per Volume v  = 0.1 lbm/in^3 

Mass per Length   = 0.05 lbm/in 

Viscous Damping Ratio   = 0.05 for all modes 

 

EI,  

L 
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Calculate the bending stress at the fixed boundary.  Omit the stress concentration factor.  The 

base input time history is the same as that in Figure 4 with 21 dB margin. 

 

 

 

 

Figure E-2.   

 

The response analysis is performed using Matlab script: continuous_beam_base_accel.m.  The 

normal modes results are given in Table E-1.   A typical response is shown in Figure E-2. 

 

Table E-1.  Natural Frequency Results, Fixed-Free Beam 

 
Mode 

 
fn (Hz) 

Participation 
Factor 

Effective Modal 
Mass (lbm) 

1 55 0.031 0.368 

2 345 0.017 0.113 
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3 967 0.010 0.039 

4 1895 0.007 0.020 

5 3132 0.006 0.012 

 

Again, both the mode shape and participation factor are considered as dimensionless, but they 

must be consistent with respect to one another.   

 

Table E-2.   Continuous Beam, Stress at Fixed Boundary, Fatigue Damage Results, 180-
second Duration,  68.9 GRMS Input 

 

Modes 
Included 

Stress RMS 
(ksi)  

Crest Factor Kurtosis R 

1 6.07 5.78 3.09 0.0004426 

2 6.41 5.33 3.08 0.001138 

3 6.42 5.37 3.08 0.001243 

4 6.42 5.40 3.08 0.001260 

 

 

The fatigue damage results in Table E-2 would have been higher if a stress 

concentration factor was included.  The purpose of this investigation was rather to 

determine the effect of including higher modes for a sample continuous system. 

 

The results show that the stress RMS can be accurately calculated using only two 
modes.   
 
The fatigue damage R reaches at plateau at three modes. 
 
Note that fifth modal frequency is well above the maximum frequency of the base 
input, so it was neglected. 
 
A more thorough investigation would involve repeating this analysis for a family of time 
history inputs, either with the same or varying overall levels. 
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APPENDIX F 

 
Time Scaling for Equivalent Testing 
 
The following applies to structures consisting only of aluminum 6061-T6 material. 
 
It is based on the segment of the S-N curve in Figure A-4 for stress levels below 39.73 ksi. 
 
Rewrite equation (A-3) as 
 

             (N) log10 0.108-  (S) log10                                                                    (F-1) 

 

             ) (N log10  (S) log10 0.108-                                                                   (F-2) 

 

             N  S 0.108-                                                                                          (F-3) 

 

            
N

1
  S

1/9.26









                                                                                          (F-4) 

 

            
N

1
  S9.26









                                                                                            (F-5) 

 

 

 

 SN 9.26  constant                                                                                                (F-6) 

 

 
Now consider a reference test using index 1 and an equivalent test using index 2. 
 

 SN SN 9.26
22

9.26
11                                                                                                 (F-7) 

 

 

 
S

S

N

N
9.26

2

1

1

2








                                                                                                           (F-8) 

 

 

Assume linear behavior.  A doubling of the stress value requires 1/613 times the number of 
reference cycles.  Thus, if the acceleration GRMS level is doubled, then an equivalent test can 
be performed in 1/613 th of the reference duration, in terms of potential fatigue damage.  This 
is also shown by considering the numerical experiment results of Tables 4 and 5. 

 


