
 1 

EFFECTIVE MODAL MASS & MODAL PARTICIPATION FACTORS    
Revision I 

 

By Tom Irvine 
Email:  tom@vibrationdata.com 
 
December 11, 2015 
 

_______________________________________________________________________ 
 

 
Introduction 
 
The effective modal mass provides a method for judging the “significance” of a vibration 

mode.   
 
Modes with relatively high effective masses can be readily excited by base excitation.  
On the other hand, modes with low effective masses cannot be readily excited in this 

manner.    
 
Consider a modal transient or frequency response function analysis via the finite element 
method.  Also consider that the system is a multi-degree-of-freedom system.  For brevity, 

only a limited number of modes should be included in the analysis. 
  
How many modes should be included in the analysis?  Perhaps the number should be 
enough so that the total effective modal mass of the model is at least 90% of the actual 

mass.   
 

 
Definitions 
 

The equation definitions in this section are taken from Reference 1. 
 

Consider a discrete dynamic system governed by the following equation 
 

 

FxKxM                                                                                            (1) 
 

where  
 

M is the mass matrix 

K is the stiffness matrix 

x  is the acceleration vector 

x  is the displacement vector 

F  is the forcing function or base excitation function 
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A solution to the homogeneous form of equation (1) can be found in terms of eigenvalues 
and eigenvectors.  The eigenvectors represent vibration modes.  
 

Let   be the eigenvector matrix. 
 

 

The system’s generalized mass matrix m̂ is given by  
 

 MTm̂                                                                                               (2) 

 
Let r  be the influence vector which represents the displacements of the masses resulting 
from static application of a unit ground displacement.  The influence vector induces a 

rigid body motion in all modes. 
 
Define a coefficient vector L  as 

 

rMTL                                                                                        (3)  

 

The modal participation factor matrix i  for mode i is 

 

iim̂

iL
i                                                                                        (4) 

 

The effective modal mass i,effm  for mode i is  

                                                                                                                              

ii

2
i

i,eff
m̂

L
m                                                                           (5) 

 

 

Note that iim̂ = 1 for each index if the eigenvectors have been normalized with respect 

to the mass matrix.   
 

Furthermore, the off-diagonal modal mass ( ji,m̂ ji   ) terms are zero regardless of the 

normalization and even if the physical mass matrix M has distributed mass. This is due to 
the orthogonality of the eigenvectors.  The off-diagonal modal mass terms do not appear 

in equation (5), however.  An example for a system with distributed mass is shown in 
Appendix F.  
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Example 
 

Consider the two-degree-of-freedom system shown in Figure 1, with the parameters 
shown in Table 1. 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

Figure 1. 

 
 

 

 
 
The homogeneous equation of motion is  
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The mass matrix is  
 

kg
10

02
M 








                                                                                                (7) 

Table 1.  Parameters 

Variable Value 

1m  2.0 kg 

2m  1.0 kg 

1k  1000 N/m 

2k  2000 N/m 

3k  3000 N/m 

  m1  

 k1 

m2 

k2 

k3 

x1 

x2 

y 
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The stiffness matrix is  
 

m/N
50003000

30004000
K 












                                                                         (8) 

 
 

The eigenvalues and eigenvectors can be found using the method in Reference 2.  
 
The eigenvalues are the roots of the following equation. 

 

0M2Kdet 




                                                                                   (9) 

 
 
The eigenvalues are 

 

 2sec/rad9.9012
1                                                                                           (10) 

 

sec/rad03.301                                                                                             (11) 

 

Hz78.41f                                                                                                      (12) 

 
 

 2sec/rad60982
2                                                                                         (13) 

 

sec/rad09.782                                                                                             (14) 

 

Hz4.122f                                                                                                      (15) 

  
 
The eigenvector matrix is  
 








 


8881.04597.0

3251.06280.0
                                                                           (16) 
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The eigenvectors were previously normalized so that the generalized mass is the identity 

matrix. 
 

 MTm̂                                                                                                   (17) 
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
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10

02

8881.03251.0

4597.06280.0
m̂                                   (18) 

 
 








 











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









10

01
m̂                                                                                                   (20) 

 
 

 
Again, r  is the influence vector which represents the displacements of the masses 
resulting from static application of a unit ground displacement.  For this example, each 
mass simply has the same static displacement as the ground displacement.  

 
 











1

1
r                                                                                                        (21) 

 
 

 

The coefficient vector L  is 
 

rMTL                                                                                           (22)  
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



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
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

1
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kg
2379.0

7157.1
L 










                                                                               (25)         

 
 

 

The modal participation factor  i  for mode i is  

 

iim̂

iL
i                                                                                        (26) 

 
 

The modal participation vector is thus  
 
 













2379.0

7157.1
                                                                                 (27) 

 
 

The coefficient vector L  and the modal participation vector   are identical in this 
example because the generalized mass matrix is the identity matrix.  
 

The effective modal mass i,effm  for mode i is  

                                                                                                                              

iim̂

2
iL

i,effm                                                                           (28) 

                                                                                                                                                           
For mode 1, 

 

 
kg1

2kg7157.1
1,effm                                                                     (29) 

 

 

kg944.21,effm                                                                         (30) 
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For mode 2, 
 

 
kg1

2kg2379.0
2,effm


                                                               (31) 

 

 

kg056.02,effm                                                                         (32) 

 
 

Note that 
 

 

kg056.0kg944.22,effm1,effm                                            (33) 

 
 

kg32,effm1,effm                                                                    (34) 

 

 
Thus, the sum of the effective masses equals the total system mass. 
 

Also, note that the first mode has a much higher effective mass than the second mode.   
 

Thus, the first mode can be readily excited by base excitation.  On the other hand, the 
second mode is negligible in this sense. 
 

From another viewpoint, the center of gravity of the first mode experiences a significant 
translation when the first mode is excited.   
 

On the other hand, the center of gravity of the second mode remains nearly stationary 
when the second mode is excited.   
 

Each degree-of-freedom in the previous example was a translation in the X-axis.  This 
characteristic simplified the effective modal mass calculation.     
 

In general, a system will have at least one translation degree-of-freedom in each of three 
orthogonal axes.  Likewise, it will have at least one rotational degree-of-freedom about 
each of three orthogonal axes.  The effective modal mass calculation for a general system 
is shown by the example in Appendix A.  The example is from a real-world problem.  
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Aside 
 

An alternate definition of the participation factor is given in Appendix B. 
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APPENDIX A 
 

 

Equation of Motion, Isolated Avionics Component 
 
 

 
 
 

 
 
 
  
 
 

 

 
  
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
  
 

 
 
 
  

 
 
Figure A-1.  Isolated Avionics Component Model 
 

The mass and inertia are represented at a point with the circle symbol. Each isolator is 
modeled by three orthogonal DOF springs. The spr ings are mounted at each corner.  The 
springs are shown with an offset from the corners for clarity.  The triangles indicate fixed 

constraints.  “0” indicates the origin.   
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Figure A-2.  Isolated Avionics Component Model with Dimensions 

 
All dimensions are positive as long as the C.G. is “inside the box.”  At least one 
dimension will be negative otherwise. 
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The mass and stiffness matrices are shown in upper triangular form due to symmetry. 
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The equation of motion is  
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The variables , β and  represent rotations about the X, Y, and Z axes, respectively.  

 
Example 
 

A mass is mounted to a surface with four isolators.  The system has the following properties.  
 
 

M = 4.28 lbm 

Jx = 44.9 lbm in^2 

Jy = 39.9 lbm in^2 

Jz = 18.8 lbm in^2 

kx = 80 lbf/in 

ky = 80 lbf/in 

kz = 80 lbf/in 

a1 = 6.18 in 

a2 = -2.68 in 

b = 3.85 in 

c1 = 3. in 

c2 = 3. in 
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Let r  be the influence matrix which represents the displacements of the masses resulting from 
static application of unit ground displacements and rotations.  The influence matrix for this 
example is the identity matrix provided that the C.G is the reference point. 

 
 





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
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(A-4) 
 
The coefficient matrix L  is 

 

rMTL                                                                                      (A-5)  

 
 

The modal participation factor matrix i  for mode i at dof j is 

 

ii

ji
ji

m̂

L
                                                                                       (A-6) 

 

Each iim̂  coefficient is 1 if the eigenvectors have been normalized with respect to the mass 

matrix.  
 

The effective modal mass i,effm  vector for mode i and dof j is  

                                                                                                                              

 
iim̂

2
jiL

ji,effm                                                                               (A-7) 

 

 

 

The natural frequency results for the sample problem are calculated using the program:   
six_dof_iso.m. 
 
The results are given in the next pages. 
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six_dof_iso.m   ver 1.2  March 31, 2005  

  

 by Tom Irvine   Email: tomirvine@aol.com  

  

 This program finds the eigenvalues and eigenvectors for a  

 six-degree-of-freedom system. 

  

 Refer to six_dof_isolated.pdf for a diagram.  

  

 The equation of motion is:   M (d^2x/dt^2) + K x = 0  

  

 Enter m (lbm) 

 4.28 

 Enter Jx (lbm in^2) 

 44.9 

 Enter Jy (lbm in^2) 

 39.9 

 Enter Jz (lbm in^2) 

 18.8 

  

 Note that the stiffness values are for individual springs  

  

 Enter kx (lbf/in) 

 80 

  

 Enter ky (lbf/in) 

 80 

  

 Enter kz (lbf/in) 

 80 

  

 Enter a1 (in) 

 6.18 

  

 Enter a2 (in) 

 -2.68 

  

 Enter b (in) 

 3.85 

  

 Enter c1 (in) 

 3 
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Enter c2 (in) 

3 

  

  

 The mass matrix is 

 

m = 

 

    0.0111         0         0         0         0         0 

         0    0.0111         0         0         0         0 

         0         0    0.0111         0         0         0 

         0         0         0    0.1163         0         0 

         0         0         0         0    0.1034         0 

         0         0         0         0         0    0.0487 

 

  

 The stiffness matrix is 

 

k = 

 

  1.0e+004 * 

 

    0.0320         0         0         0         0    0.1232 

         0    0.0320         0         0         0   -0.1418 

         0         0    0.0320   -0.1232    0.1418         0 

         0         0   -0.1232    0.7623   -0.5458         0 

         0         0    0.1418   -0.5458    1.0140         0 

    0.1232   -0.1418         0         0         0    1.2003 

 

  

 Eigenvalues  

 

lambda = 

 

  1.0e+005 * 

 

    0.0213    0.0570    0.2886    0.2980    1.5699    2.7318 
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  Natural Frequencies =  

 1.      7.338 Hz 

 2.      12.02 Hz 

 3.      27.04 Hz 

 4.      27.47 Hz 

 5.      63.06 Hz 

 6.      83.19 Hz 

  

  Modes Shapes (rows represent modes)  

  

            x           y           z         alpha       beta       theta    

 1.      5.91     -6.81         0         0         0     -1.42  

 2.         0         0      8.69     0.954    -0.744         0  

 3.      7.17      6.23         0         0         0         0  

 4.         0         0      1.04     -2.26     -1.95         0  

 5.         0         0     -3.69      1.61      -2.3         0  

 6.      1.96     -2.25         0         0         0       4.3  

  

  Participation Factors (rows represent modes)  

  

            x           y           z         alpha       beta       theta    

 1.    0.0656   -0.0755         0         0         0   -0.0693  

 2.         0         0    0.0963     0.111   -0.0769         0  

 3.    0.0795    0.0691         0         0         0         0  

 4.         0         0    0.0115    -0.263    -0.202         0  

 5.         0         0   -0.0409     0.187    -0.238         0  

 6.    0.0217    -0.025         0         0         0      0.21  

  

   

Effective Modal Mass (rows represent modes)  

  

            x           y           z         alpha       beta       theta    

 1.    0.0043   0.00569         0         0         0    0.0048  

 2.         0         0   0.00928    0.0123   0.00592         0  

 3.   0.00632   0.00477         0         0         0         0  

 4.         0         0  0.000133     0.069    0.0408         0  

 5.         0         0   0.00168     0.035    0.0566         0  

 6.  0.000471  0.000623         0         0         0    0.0439  

  

 Total Modal Mass  

  

     0.0111    0.0111    0.0111     0.116     0.103    0.0487  
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                                                          APPENDIX B 

 
 
Modal Participation Factor for Applied Force 
 

The following definition is taken from Reference 3.  Note that the mode shape functions are 
unscaled.  Hence, the participation factor is unscaled. 
 
Consider a beam of length L loaded by a distributed force p(x,t).  
 

Consider that the loading per unit length is separable in the form 
 

)t(f)x(p
L

oP
)t,x(p                                                                           (B-1) 

 

The modal participation factor i  for mode i is defined as  

 

 
L

0
dx)x(i)x(p

L

1
i                                                                          (B-2) 

 
where 
 

)x(i  is the normal mode shape for mode i 
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APPENDIX C 
 
 

 
Modal Participation Factor for a Beam 
 
Let 

 

)x(nY  = mass-normalized eigenvectors  

m(x) = mass per length 

 
 
The participation factor is 

 
 

  
L

0
dx)x(nY)x(mn                                                                                          (C-1) 

 
 

The effective modal mass is  
 

 

 









L

0
dx2)x(nY)x(m

2
L

0
dx)x(nY)x(m

n,effm                                                                       (C-2)                                                                                        

 
 
The eigenvectors should be normalized such that  
 

 

  1
L

0
dx2)x(nY)x(m                                                                            (C-3) 

 
 
Thus, 

 
2

L

0
dx)x(nY)x(m2

nn,effm 







                                                        (C-4)        
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APPENDIX D 
 
 

Effective Modal Mass Values for Bernoulli-Euler Beams 
 

The results are calculated using formulas from Reference 4.  The variables are 
 

E = is the modulus of elasticity 

I = is the area moment of inertia 

L = is the length 

  = is (mass/length) 

 
 

Table D-1. Bending Vibration, Beam Simply-Supported at Both Ends 

Mode 
Natural 

Frequency n  

Participation 

Factor Effective Modal Mass 

1 


 EI

L2

2

 L2
2




 L
2

8




 

2 


 EI

L
4

2

2

 0 0 

3 


 EI

L
9

2

2

 L2
3

2



 L

29

8




 

4 


 EI

L
16

2

2

 0 0 

5 


 EI

L
25

2

2

 L2
5

2



 L

225

8




 

6 


 EI

L
36

2

2

 0 0 

7 


 EI

L
49

2

2

 L2
7

2



 L

249

8




 

 
95% of the total mass is accounted for using the first seven modes. 
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Table D-2.  Bending Vibration, Fixed-Free Beam 

Mode 
Natural 

Frequency n  

Participation 
Factor 

Effective Modal 
Mass 

1 

 








 EI

L

87510.1
2

 

 

7830.0 L  6131.0 L  

2 

 








 EI

L

69409.4
2

 

 

4339.0 L  0.1883 L  

3 

 








  EI

L2

5
2

 

 

2544.0 L  0.06474 L  

4 

 








  EI

L2

7
2

 

 

1818.0 L  0.03306 L  

 

 
90% of the total mass is accounted for using the first four modes. 
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APPENDIX E 
 
 

Rod, Longitudinal Vibration, Classical Solution 
 
The results are taken from Reference 5.   
 

 

Table E-1.  Longitudinal Vibration of a Rod, Fixed-Free 

Mode Natural Frequency n  
Participation 

Factor 
Effective Modal 

Mass 

1 0.5  c / L L2
2




 L
8

2




 

2 1.5  c / L L2
3

2



 L

9

8

2



 

3 2.5  c / L L2
5

2



 L

25

8

2



 

 
 

 
The longitudinal wave speed c is  
 




E
c                                                                                                                 (E-1) 

 
 

93% of the total mass is accounted for by using the first three modes. 
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APPENDIX F 
 

 

This example shows a system with distributed or consistent mass matrix. 
 
 
Rod, Longitudinal Vibration, Finite Element Method 

 
Consider an aluminum rod with 1 inch diameter and 48 inch length.  The rod has fixed-free 
boundary conditions.  
 

A finite element model of the rod is shown in Figure F-1.  It consists of four elements and five 
nodes.  Each element has an equal length. 

 

 
 
 

 

 
 
 
 

 
 

Figure F-1. 
 

 
 
The boundary conditions are 
 

 
U(0) = 0                            (Fixed end)                                            (F-1) 

 
 

0
Lxdx

dU



                  (Free end)                                              (F-2) 

 

 
The natural frequencies and modes are determined using the finite element method in 
Reference 6. 
 

  

N1 N2 N3 

E1 E2 

N4 

E3 

N5 

E4 
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The resulting eigenvalue problem for the constrained system has the following mass and 
stiffness matrices as calculated via Matlab script:  rod_FEA.m.           
 

 
Mass = 
 
    0.0016    0.0004         0         0 

    0.0004    0.0016    0.0004         0 

         0    0.0004    0.0016    0.0004 

         0         0    0.0004    0.0008             

 
 
Stiffness = 

 
 
  1.0e+006 * 

 

    1.3090   -0.6545         0         0 

   -0.6545    1.3090   -0.6545         0 

         0   -0.6545    1.3090   -0.6545 

         0         0   -0.6545    0.6545 

 

 
The natural frequencies are 
 
n        fn(Hz) 

1        1029.9  

2        3248.8  

3        5901.6  

4        8534.3 

 

 

The mass-normalized eigenvectors in column format are 
 

    5.5471   14.8349   18.0062   -9.1435 

   10.2496   11.3542  -13.7813   16.8950 

   13.3918   -6.1448   -7.4584  -22.0744 

   14.4952  -16.0572   19.4897   23.8931 
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Let r  be the influence vector which represents the displacements of the masses resulting from 
static application of a unit ground displacement.  
 

The influence vector for the sample problem is  
 

r = 
     1 

     1 

     1 

     1 

 
 

The coefficient vector L  is 
 

rMTL                                                                                                                        (F-3)  

 

   where  
 

 

T  = transposed eigenvector matrix 

M = mass matrix 

 

 
 
The coefficient vector for the sample problem is 
 

 

L  = 
 
    0.0867 

    0.0233 

    0.0086 

   -0.0021 

 
 

The modal participation factor matrix i  for mode i is 

 

ii

i
i

m̂

L
                                                                                       (F-4) 

 

Note that iim̂ = 1 for each index since the eigenvectors have been previously normalized 

with respect to the mass matrix.   
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Thus, for the sample problem, 
 
 

ii L                                                                                          (F-5) 

 
 

 

The effective modal mass i,effm  for mode i is  

 

ii

2
i

i,eff
m̂

L
m                                                                                                 (F-6) 

 
 
Again, the eigenvectors are mass normalized.   
 

Thus 
                                                                                                                                                                                                       

2
ii,eff Lm                                                                                                    (F-7) 

 
 
The effective modal mass for the sample problem is  

 

effm = 

 
    0.0075 

    0.0005 

    0.0001 

    0.0000 

 

 

The model’s total modal mass is 0.0081 lbf sec^2/in.   This is equivalent to 3.14 lbm.  
 
The true mass or the rod is 3.77 lbm.  

 
Thus, the four-element model accounts for 83% of the true mass.  This percentage can be 
increased by using a larger number of elements with corresponding shorter lengths.  
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APPENDIX G 

 

 
 
Two-degree-of-freedom System, Static Coupling 
 

 
 
 
 

 
 
 
 

 
 
 
 

Figure G-1. 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
Figure G-2.  
 
The free-body diagram is given in Figure G-2. 

 
 
 

 

 k 1 k 2 

L1 

y  

L2 

 

 

x 



k 1 ( y - x - L1 ) 
) 

 k 2 ( y - x + L2 ) 
) 
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The system has a CG offset if   21 LL  .  
 

The system is statically coupled if   2211 Lk Lk  . 
 

The rotation is positive in the clockwise direction.  
 

The variables are 
 

y is the base displacement 

x is the translation of the CG 

  is the rotation about the CG 

m is the mass 

J is the polar mass moment of inertia  

k i is the stiffness for spring i 

z i is the relative displacement for spring i 
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Sign Convention: 
 

Translation: upward in vertical axis is positive. 
Rotation: clockwise is positive. 

 
Sum the forces in the vertical direction 

 

  xmF                                                                                                                  (G-1) 

 

)Lxy(k)Lxy(kxm 2211                                                                  (G-2) 

 

0)Lxy(k)Lxy(kxm 2211                                                        (G-3) 

 

0LkxkykLkxkykxm 22221111                                                  (G-4) 

 

  y)kk()LkLk(xkkxm 21221121                                                    (G-5) 

 
 

Sum the moments about the center of mass. 
 

 

  JM                                                                                                            (G-6) 

 
 

)Lxy(Lk)Lxy(LkJ 222111                                                    (G-7) 

 

0)Lxy(Lk)Lxy(LkJ 222111                                               (G-8) 

 

0LkxLkyLkLkxLkykJ 2
222222

2
11111                              (G-9) 

 

     yLk Lk LkLkxLkLkJ 2211
2

22
2

112211                         (G-10)                                                 

 
 
The equations of motion are 

 
 

y
Lk Lk 

k k x

Lk Lk Lk Lk 

Lk Lk k k x

J0

0m

2211

21
2

22
2

112211

221121


























































 

 
(G-11) 
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The pseudo-static problem is  
 
 

y
Lk Lk 

k k x

Lk Lk Lk Lk 

Lk Lk k k 

2211

21
2

22
2

112211

221121












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




















                        (G-12) 

 

 
 
Solve for the influence vector r by applying a unit displacement.  
 



































2211

21

2

1
2

22
2

112211

221121

Lk Lk 

k k 

r

r

Lk Lk Lk Lk 

Lk Lk k k 
                     (G-13) 

 

 
 









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







0

1

r

r

2

1
                                                                                                     (G-14) 

 
Define a relative displacement z.  
 

z = x – y                                                                                                          (G-15) 
 

x = z + y                                                                                                          (G-16) 
 

 

 y
Lk Lk 

k k 

0

y

Lk Lk Lk Lk 

Lk Lk k k z

Lk Lk Lk Lk 

Lk Lk k k 

0

ymz

J0

0m
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2
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(G-17) 
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       (G-18) 
 
The equation is more formally 

 

      y
r

r

J0

0mz

Lk Lk Lk Lk 

Lk Lk k k z

J0

0m
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1
2

22
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112211
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       (G-19) 

 

Solve for the eigenvalues and mass-normalized eigenvectors matrix   using the 

homogeneous problem form of equation (G-9). 
 
Define modal coordinates 
 

                           

















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

 2

1z
                                                                            (G-20) 
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(G-21) 

 

 

Then premultiply by the transpose of the eigenvector matrix 
T . 
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       (G-22) 
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The participation factor vector is 
 
 

           

















2

1T

r

r

J0

0m
                                                                                        (G-24) 
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Example 
 

Consider the system in Figure G-1.  Assign the following values.  The values are based on a 
slender rod, aluminum, diameter =1 inch, total length=24 inch.  
 

 

Table G-1.  Parameters 

Variable  Value 

m  18.9 lbm 

J 907 lbm in^2 

1k  20,000 lbf/in 

2k  20,000 lbf/in 

1L  8 in 

2L  16 in 

 
 

The following parameters were calculated for the sample system via a Matlab script. 

 
 

The mass matrix is 
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m = 
 

    0.0490         0 

         0    2.3497 
 

  

 The stiffness matrix is 
 

k = 
 

       40000      160000 

      160000     6400000 
 

  

  Natural Frequencies =  
 

     133.8 Hz 

     267.9 Hz 
  

  Modes Shapes (column format) = 
  

         -4.4           1.029  

       0.1486          0.6352  
  

 Participation Factors =  
  

    0.2156    

    0.0504    

 

 Effective Modal Mass 
 

     0.0465 

    0.0025 

 

The total modal mass is 0.0490 lbf sec^2/in, equivalent to18.9 lbm. 
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APPENDIX H 

 
 

Two-degree-of-freedom System, Static & Dynamic Coupling 
 

Repeat the example in Appendix G, but use the left end as the coordinate reference point.  
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

Figure H-1. 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
Figure H-2. 
 
The free-body diagram is given in Figure H-2.  Again, the displacement and rotation are 

referenced to the left end.  

 k 1 k 2 

L1 

y  

L2 

 

L 

 

x1 



k 1 ( y - x1 )  k 2 ( y – x1 + L) 

x 
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Sign Convention: 

 
Translation: upward in vertical axis is positive. 
Rotation: clockwise is positive. 

 

Sum the forces in the vertical direction 
 

  xmF                                                                                                                  (H-1) 

 

)Lxy(k)xy(kxm 1211                                                                           (H-2) 
 

0)Lxy(k)xy(kxm 1211                                                                 (H-3) 
 

0Lkxkykxkykxm 2122111                                                               (H-4) 

 

               y)kk(Lkxkkxm 212121                                                                   (H-

5) 
 

 11 Lxx                                                                                                             (H-6) 

 
 

    y)kk(LkxkkLxm 21212111                                                      (H-7)                                                                  

 
 

  y)kk(LkxkkLmxm 21212111                                                   (H-8) 

 
 
Sum the moments about the left end. 

 
 

  
11 JM                                                                                                             (H-9) 

 

 

 11121 x-xmL) L +  x-y  ( Lk J                                                                 (H-10)   

 

  0) L +  x-y  ( Lk x-xmLJ 12111                                                             (H-11) 

 

       0Lk Lxk -Lyk x-xmLJ 2
2122111                                                   (H-12) 

 

         Lyk Lk Lxk -x-xmLJ 2
2

212111                                                     (H-13)     
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 11 Lxx                                                                                                           (H-14) 

 

  Lyk Lk Lxk -x-LxmLJ 2
2

21211111                                            (H-15)     

         

Lyk Lk Lxk -xmLJ 2
2

212111                                                              (H-16)     

 
 
The equations of motion are 
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                           (H-17) 

 
 

Note that  
 

2
11 mLJJ                                                                                             (H-18) 
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The pseudo-static problem is  
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                                                         (H-20) 

 
 

 

Solve for the influence vector r by applying a unit displacement.  
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The influence coefficient vector is the same as that in Appendix G.   
 
The natural frequencies are obtained via a Matlab script.  The results are: 

 
 
Natural Frequencies  

 No.      f(Hz) 

1.        133.79  

2.        267.93  

  

  Modes Shapes (column format) 

 

ModeShapes = 

 

    5.5889    4.0527 

    0.1486    0.6352 

 

  

 Participation Factors =  

  

    0.2155    

  -0.05039    

  

 Effective Modal Mass = 

  

   0.04642    

  0.002539    

 
The total modal mass is 0.0490 lbf sec^2/in, equivalent to18.9 lbm. 

 
 

 


