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PREFACE 
 
 

 
 

Engineers collect accelerometer data in a variety of settings.  Examples include: 
 

1. Aerospace vehicle flight data 
2. Automotive proving grounds 
3. Machinery condition monitoring 
4. Building and bridge response to seismic and wind excitation 
5. Modal testing of structures 

 
In addition, engineers acquire dynamic data from microphones, pressure transducers, geophones, 
strain gages and other sensors. 
 
The sensors measure the time history data in analog form.  The analog signal is sent through a 
signal conditioner.  The signal conditioner should have an analog lowpass filter for anti-aliasing. 
The analog data is then converted to digital form.  
 
The next step is to post-process the data in order to extract useful information.  The primary 
metrics of interest are typically the spectral frequencies and corresponding amplitudes.  The 
Fourier transform is a tool for identifying these spectral components, particularly if the data has 
some distinct sinusoidal content. 
 
Furthermore, the power spectral density of signal can be calculated using the Fourier transform 
as an intermediate calculation step.  The power spectral density is useful for analyzing random 
vibration.  
 
This report presents both the Fourier transform and the power spectral density function.  It also 
provides some data acquisition guidelines in terms of sampling rate and anti-alias filtering. 
 
The remainder of the report discusses digital filtering, which can be used for many purposes. 
 
The main purpose of filtering is to clarify the response of a particular spectral component, which 
may be an excitation function or a modal response frequency.  Note that a given structure�s 
natural frequency, or frequencies, may be excited by an applied force, base motion, or initial 
velocity or displacement.  A structure may also experience �self-excited� vibration, such as 
flutter.  Resonance is a special case where the excitation frequency matches the structural 
frequency.  Bandpass filtering may be used to improve the signal-to-noise ratio of the frequency 
component of interest. 
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On the other hand, notch filtering can be used to suppress an unwanted frequency.  Consider a 
rocket vehicle with a closed-loop guidance system.  The autopilot has an internal navigation 
system which uses accelerometers and gyroscopes to determine the vehicle's attitude and 
direction.  The navigation system then sends commands to actuators which rotate the exhaust 
nozzle to steer the vehicle during its powered flight.  Feedback sensors measure the position of 
the nozzle.  The data is sent back to the navigation computer.  Unfortunately, the feedback 
sensors, accelerometers, and gyroscopes could be affected by the vehicle's body-bending 
vibration.  Specifically, instability could result if the vibration frequency coincides with the 
control frequency.  The body-bending frequencies must thus be removed from the sensor data via 
digital filtering. 
 
Furthermore, digital filtering can also be used to calculate a power spectral density.  This method 
is useful for educational purposes.  A power spectral density is more commonly calculated from 
a Fourier transform, however. 
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CHAPTER 1 
 

AN INTRODUCTION TO THE FOURIER TRANSFORM 
 
 
 
Introduction 
 
Stationary vibration signals can be placed along a continuum in terms of their qualitative 
characteristics.   
 
A pure sine oscillation is at one end of the continuum.  A form of broadband random vibration 
called white noise is at the other end.   
 
Reasonable examples of each extreme occur in the physical world.  Most signals, however, are 
somewhere in the middle of the continuum.  An example is shown in Figure 1-1. 
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            Figure 1-1.  
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The time history in Figure 1-1 appears to be the sum of several sine functions.  The goal of this 
chapter is to resolve the frequencies and amplitudes of the components.  
 
At the risk of short-circuiting the process, the equation of the signal in Figure 1-1 is 
 
 

( ) ( )[ ] ( )[ ] ( )[ ]t222sin2.1t162sin5.1t102sin0.1ty π+π+π=                                (1-1) 
 

 
The signal thus consists of three components with frequencies of 10, 16, and 22 Hz, respectively.  
The respective amplitudes are 1.0, 1.5, and 1.2 G. 
 
In addition, each component could have had a phase angle.  In this example, the phase angle was 
zero for each component. 
 
A "spectral function" is thus needed to display the frequency and amplitude data.  Ideally, the 
spectral function would have the form shown in Figure 1-2. 
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             Figure 1-2. 
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Some engineers would claim that Figure 1-2 is the Fourier transform of the signal in equation (1-
1).  In some sense, this is true. 
 
The Fourier transform, however, is a methodology which can be applied via many different 
forms and formulas.   
 
Mathematicians and engineers make such different use of Fourier transforms that a 
mathematician would likely be unable to comprehend an engineer's application and vice versa. 
 
This Unit will attempt to bridge the gap.  A method will eventually be derived to transform the 
time history in Figure 1-1 to the frequency domain "spectral function" in Figure 1-2.  The desired 
"spectral function" will be shown to be based on the Fourier transform.  Nevertheless, the phrase 
which most aptly describes this process is "some assembly required." 
 
 
Continuous Fourier Transform 
 
The Fourier transform is a method for representing a time history signal in terms of a frequency 
domain function.  
 
The Fourier transform is a complex exponential transform which is related to the Laplace 
transform.   
 
The Fourier transform is also referred to as a trigonometric transformation since the complex 
exponential function can be represented in terms of trigonometric functions.  Specifically, 
 

exp[ ] cos( ) sin( )j t t j tω ω ω= +                                                             (1-2a) 
 

   exp[ ] cos( ) sin( )− = −j t t j tω ω ω                                                           (1-2b) 
 
                                         where 1j −=  
 
 
The Fourier transform X(f) for a continuous time series x(t) is defined as 
 
 

[ ]X(f) = x(t)exp -j2 f t dt
-

π
∞
∞
∫                                                                           (1-3) 

 
                where   -∞ < f < ∞ 
 
 
Thus, the Fourier transform is continuous over an infinite frequency range. 
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The inverse transform is 
 

[ ]x(t) = X(f)exp +j2 f t df
-

π
∞
∞
∫                                                                           (1-4) 

 
 
Equations (1-3) and (1-4) are taken from Reference 1-1.  Note that X(f) has dimensions of  
[amplitude-time]. 
 
Also note that X(f) is a complex function.  It may be represented in terms of real and imaginary 
components, or in terms of magnitude and phase. 
 
The conversion to magnitude and phase is made as follows for a complex variable V. 
 

bjaV +=                                                                              (1-5) 
 

Magnitude V a b= +2 2                                                                (1-6) 
 

Phase V b a= arctan( / )                                                                   (1-7) 
 
 
Note that the inverse Fourier transform in equation (1-4) calculates the original time history in a 
complex form.  The inverse Fourier transform will be entirely real if the original time history 
was real, however.  
 
Continuous Example 
 
Consider a sine function 
 

[ ]x t A f t( ) sin $= 2π                                                                                      (1-8) 

 
                                        where   ∞ < t < ∞     
 
 
The Fourier transform of the sine function is  
 

( ) ( ){ }X f
jA

f f f f( ) $ $= 







− − + − −
2

δ δ                                                          (1-9) 

 
                                     where δ is the Dirac delta function. 
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Note that 
( ) f�ffor 0f�f ≠=−δ                                                                           (1-10) 

 
And 

( )∫
∞

∞−
=−δ 1dtf�f                                                                               (1-11) 

 
 
The derivation is given in Appendix A.  The Fourier transform is plotted in Figure 1-3. 

 
 

Imaginary X(f) 
 
 
 
 
 
 
                                                                       
 

 
 
 

Figure 1-3.  Fourier Transform of a Sine Function 
 

The transform of a sine function is purely imaginary.  The real component,  
which is zero, is not plotted. 

 
  
 
On the other hand, the Fourier transform of a cosine function is 
 

( ) ( ){ }X f
A

f f f f( ) $ $= 







− + − −
2

δ δ                                                                     (1-12) 

 

$f− $f

( )A
f f

2
δ − − $

( )−
−

A
f f

2
δ $



 10

The Fourier transform is plotted in Figure 1-4. 
 
 
                                                                Real X(f) 
 
 
 
 
 
 
 
 
 

Figure 1-4.  Fourier Transform of a Cosine Function 
 

The transform of a cosine function is purely real.  The imaginary component,  
which is zero, is not plotted. 

 
 
 
Characteristics of the Continuous Fourier Transform 
 
The plots in Figures 1-1 and 1-2 demonstrate two characteristics of the Fourier transforms of real 
time history functions:  
 
 1.  The real Fourier transform is symmetric about the f = 0 line. 

2.  The imaginary Fourier transform is antisymmetric about the f = 0 line. 
 
 
As an aside, the Dirac delta function is purely delightful from a mathematics point of view.  
Some mathematicians even promote it from a lowly function to a "distribution." 
 
The Dirac delta distribution is of little or no use to the engineer in the test lab, however.  A 
different approach is needed for engineers. 
 
 
Discrete Fourier Transform (DFT) 
 
An accelerometer returns an analog signal.  The analog signal could be displayed in a continuous 
form on a traditional oscilloscope.   
 
Current practice, however, is to digitize the signal, which allows for post-processing on a digital 
computer.  Thus, the Fourier transform equation must be modified to accommodate digital data.  
This is essentially the dividing line between mathematicians and engineers in regard Fourier 
transformation methodology.  Nevertheless, further assembly is required to meet the engineering 
goal, which is still the "spectral function" in Figure 1-2.  

$f− $f

( )A
f f

2
δ − − $ ( )A

f f
2

δ − $
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The discrete Fourier Transform kF�  for a digital time series nx  is 
 

1N,...1,0,kfor,nk
N
2jexpxtF�

1N

0n
nk −=















 π−∆= ∑

−

=
                            (1-13) 

 
where 
  

N is the number of time domain samples 

n is the time domain sample index 

k is the frequency domain index 

∆t is the frequency domain index 
 
 
Note that kF�  has dimensions of [amplitude-time]. 
 
The corresponding inverse transform is 
 

1N...,1,0,nfor,nk
N
2jexpF�fx

1N

0n
kn −=















 π+∆= ∑

−

=
                                 (1-14) 

 
Note that the frequency increment ∆f is equal to the time domain period T as follows 
 

∆f = 1
T

                                                                                          (1-15) 

 
The frequency is obtained from the index parameter k as follows 
 

frequency (k) k f= ∆                                                                                  (1-16) 
 
 
The discrete Fourier transform in equation (1-13) requires further modification to meet the 
engineering goal set forth in Figure 1-2. 
 
The following equation set is taken from Reference 1-2.  As an alternate form, the Fourier 
transform kF  for a discrete time series nx  can be expressed as 
 

1N...,,1,0kfor,nk
N
2jexpx

N
1F

1N
nk

0n

−=














 π−= ∑

−

=

                               (1-17) 
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The corresponding inverse transform is 
 
 

1N...,,1,0nfor,nk
N
2jexpFx

1N

0k
kn −=















 π+= ∑

−

=
                              (1-18) 

 
Note that kF  has dimensions of [amplitude].   Thus, an important milestone is reached. 
 
 
Discrete Example 
 
The discrete Fourier transform of a sine wave is given in Figure 1-5. 
 
A characteristic of the discrete Fourier transform is that the frequency domain is taken from 0 to 
(N-1)∆f.  The line of symmetry is at a frequency of 
 

   
N

f
−





1
2

∆                                                                            (1-19) 

 
 
 
Nyquist Frequency 
 
Note that the line of symmetry in Figure 1-5 marks the Nyquist frequency.  The Nyquist 
frequency is equal to one-half of the sampling rate.  Shannon�s sampling theorem states that a 
sampled time signal must not contain components at frequencies above half the Nyquist 
frequency, from Reference 1-3. 
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Figure 1-5.  Fourier Transform of a Sine Wave 
 
Note that the sine wave has a frequency of 1 Hz.  The total number of cycles is 512, 
with a resulting period of 512 seconds.  Again, the Fourier transform of a sine wave is 
imaginary and antisymmetric.  The real component, which is zero, is not plotted. 

 
 
 
Spectrum Analyzer Approach 
 
Spectrum analyzer devices typically represent the Fourier transform in terms of magnitude and 
phase rather than real and imaginary components.  Furthermore, spectrum analyzers typically 
only show one-half the total frequency band due to the symmetry relationship. 
 
The spectrum analyzer amplitude may either represent the half-amplitude or the full-amplitude  
of the spectral components.  Care must be taken to understand the particular convention of the 
spectrum analyzer.   Note that the half-amplitude convention has been represented in the 
equations thus far, particularly equations (1-14) and (1-17). 
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The full-amplitude Fourier transform magnitude kG  would be calculated as  
 

{ }















−=


























 π−





=


















=

∑

∑

−

−

=

=

1
2
N...,,1kfornk

N
2jexpx

N
2magnitude2

0kfor     x
N
1magnitude

G
1N

n

1N
n

k

0n

0n
 

 
with N as an even integer.   

 (1-20) 
 
 

 
Note that k = 0 is a special case.  The Fourier transform at this frequency is already at full-
amplitude. 
 
For example, a sine wave with amplitude of 1 G and a frequency of 1 Hz would simply have a 
full-amplitude Fourier magnitude of 1 G at 1 Hz, as shown in Figure 1-6. 
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              Figure 1-6. 
 
 
 
Goal 
 
The sine function considered in Figures 1-5 and 1-6 had a long duration of 512 seconds.  The 
time history in Figure 1-1 has a duration of only 2 seconds, however.  Note that the Fourier 
transform frequency resolution is the inverse of the duration, as given in equation (1-15).  The 
frequency resolution is thus 0.5 Hz for a duration of 2 seconds. 
 
The full-amplitude Fourier transform of the time history in Figure 1-1 is given in Figure 1-7.  
The "spectral function" goal is thus reasonably met, at least for this example.  The course 
frequency resolution, however, gives the spectral lines a triangular shape. 
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                Figure 1-7. 
 
 
 
The 10, 16, and 22 Hz sinusoidal frequencies are thus clearly apparent in Figure 1-7.  The 
corresponding amplitudes are also correct per equation (1-1).    
 
Note that this example is somewhat idealistic.  The Fourier transform data in Figure 1-7 is 
defined at each 0.5 Hz frequency increment, beginning at 0.   Thus, three of the spectral lines 
occur exactly at 10, 16, and 22 Hz. 
 
What if the 10 Hz component in equation (1-1) were shifted to 9.75 Hz?  The answer is that 
some of the energy would be shifted to 9.5 Hz and some to 10.0 Hz in the Fourier transform.  
This effect is one of several error sources in the Fourier transform.   This error can be avoided by 
taking a longer duration.  
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Magnetostriction Example 
 
 

               
 
 
              Figure 1-8. 
 

 
               Figure 1-9. 
 
 
The residential transformer in Figure 1-8 supplies 60 Hz electrical power to several homes.  The 
transformer core experiences two mechanical vibration cycles per each electromagnetic cycle, as 
shown in Figure 1-9.   
 
The resulting acoustic noise measured via a microphone is shown in Figure 1-10.   The 
amplitude scale is uncalibrated.  The time history appears to be somewhat periodic.  The Fourier 
transform magnitude in Figure 1-11 reveals spectral peaks at 120, 360 and 480 Hz. 
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Figure 1-10. 
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CHAPTER 2 

 
NOTES ON THE FOURIER TRANSFORM MAGNITUDE 

 
 
Introduction 
 
Fourier transforms, which were introduced in Chapter 1, have a number of potential error sources 
and other peculiar characteristics.  The purpose of this chapter is to discuss the Fourier transform 
magnitude, which must be interpreted with great care. 
 
Sine Example 
 
Consider a sine function with a 1 Hz frequency and 1 G amplitude.  Let the period be 20 
seconds, which is equivalent to 20 cycles.  Thus, ∆f = 0.05 Hz.  The corresponding Fourier 
transform magnitude is shown in Figure 2-1. 
 
Now define the same sine function over a period of 40 seconds.  Thus, ∆f = 0.025 Hz.  The 
Fourier transform magnitude is shown in Figure 2-2. 
 
The Fourier transform magnitude at 1 Hz is 1 G in each case, independent of the duration 
difference.  Thus, the Fourier transform magnitude is shown to be a good tool for resolving 
sinusoidal amplitudes. 
 
In each Fourier transform, there is a spectral line exactly at a frequency of 1 Hz.  Otherwise, the 
acceleration amplitude would be smeared between frequencies adjacent to 1 Hz.  This smearing 
effect is not a concern if the duration is sufficiently long and hence the frequency resolution is 
sufficiently narrow. 
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White Noise Example 
 
Consider the two white noise time histories in Figures 2-3 and 2-4.  Each has a sample rate of 
200 samples per second.  Each has a standard deviation of 1 G.   The overall level is 1 GRMS 
since the mean is zero, in each case.   
 
The parameters for the Fourier transform calculation are given in Table 2-1. 
 
 
 Table 2-1.  White Noise Parameters for Fourier Transform 
 Parameter Figure 2-3 Figure 2-4 
 Overall Level 1 GRMS 1 GRMS 
 Duration  5 sec 10 sec 
 ∆f 0.2 Hz 0.1 Hz 
 Sample Rate 200 sps 200 sps 
 Frequency 

Domain (Hz) 0 to 100 Hz 0 to 100 Hz 

 Number of 
Spectral Lines 500 1000 

  
  sps = samples per second. 
 
 
Recall that the frequency resolution f∆ is the inverse of the duration T. 
 

T/1f =∆                                                                                     (2-1) 
 
 
The frequency domain is taken from zero to one-half the sample rate.   
 
The number of spectral lines N is equal to the maximum frequency divided by the frequency 
resolution. 
 

f
maxFN
∆

=                                                                                     (2-2) 

 
The Fourier transforms of the respective white noise time histories are shown in Figures 2-5 and 
2-6.  
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     Figure 2-3. 
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     Figure 2-4. 
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Ideally, the "white noise" would have a constant Fourier transform magnitude with respect to 
frequency.  The fact that there is some variation within Figures 2-5 and within Figure 2-6 is 
unimportant for this example.  The pertinent point is that the mean magnitude decreases by about 
one-half, comparing the transform in Figure 2-6 to the transform in Figure 2-5. 
 
The reason for the decrease is that the transform in Figure 2-6 has 1000 spectral lines compared 
to the 500 spectral lines in the Figure 2-5 transform.  Thus, the "energy" is divided into a greater 
number of spectral lines in the Figure 2-6 transform. 
 
Each transform, however, yields the same overall value of 1 GRMS.  This is found as follows: 

 
1. Divide each spectral magnitude by √2 to convert from peak to RMS. 
2. Square each spectral RMS value to convert to mean square. 
3. Sum the mean square values. 
4. Take the square root of the sum. 

 
 
For a random signal, the Fourier transform magnitude depends on the number of spectral lines. 
This drawback is overcome by the power spectral density function, discussed in Chapter 8. 
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CHAPTER 3 
 

LEAKAGE ERROR IN FOURIER TRANSFORMS 
 
 
 
Introduction 
 
Several error sources are associated with the Fourier transform.  One error source is called 
"leakage." 
 
Leakage is a smearing of energy throughout the frequency domain.  Leakage results when both 
of the following conditions are present: 
 

1. The signal is taken over a finite duration. 
2. The signal is "non-periodic" in the time record. 

 
Both these conditions are usually present in engineering data.  Thus, leakage usually occurs. 
 
For example, leakage occurs if a Fourier transform is calculated for a non-integral number of 
sine function cycles. 
 
 
Sine Function Example 1 
 
Consider that a data acquisition system is used to monitor a continuous sine function.  The sine 
function has amplitude of 1 G and a frequency of 1 Hz, as shown in Figure 3-1.  The sample rate 
is 32 samples per second.  
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Now consider that the data acquisition system measures three cycles as shown in Figure 3-2.   
Note that the time history amplitude is zero at the start and end of the record. 
 
In essence, the Fourier transform will correctly assume that the original signal is a series of 
three-cycle segments as shown in the time history in Figure 3-3. 
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The three-cycle sine function in Figure 3-2 is converted to a Fourier transform in Figure 3-4.  As 
expected, a spectral line of 1 G appears at 1 Hz.   Note that ∆f = 0.333 Hz.  
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             Figure 3-4. 
 
 
 
 
 
Sine Function Example 2 
 
Now assume that the data acquisition system has a limited memory buffer and is only able to 
capture 2.5 cycles of the sine function, as shown in Figure 3-5. 
 
In essence, the Fourier transform will assume that the original signal is a series of 2.5 cycle 
segments as shown in Figure 3-6.  Distortion is clearly visible in the time history in Figure 3-6.   
Specifically, the input signal is not periodic in the time record. 
 
The 2.5 cycle sine function in Figure 3-5 is converted to a Fourier transform in Figure 3-7.  Note 
that leakage occurs as shown by the smearing of energy across the frequency band. 
 
A related problem is that ∆f = 0.4 Hz.  Thus, there are spectral lines at the following frequencies 
in Hz:  0, 0.4, 0.8, 1.2, �.    There is no spectral line at 1 Hz, however, which is the frequency of 
the sine function.  
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CHAPTER 4 
 

HANNING WINDOW 
 
 
 
Introduction 
 
A Fourier transform may have a leakage error, as discussed in Chapter 3.  The leakage error can 
be reduced by subjecting the time history to a window, as discussed in References 4-1 through 4-
6.     
 
Two common types of windows are the rectangular window and the Hanning window.   
 
Rectangular Window 
 
The rectangular, or flat, window leaves the time history data unmodified.  Thus, a rectangular 
window is equivalent to no window at all.  A rectangular window is appropriate for transient data 
or nonstationary data.  Ideally, the time history includes some data during the "quiet" periods 
both before and after the event.  An example of a transient event is shown in Figure 4-1. 
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                 Figure 4-1. 
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Hanning Window 
 
One of the most common windows is the Hanning window, or the cosine squared window.  It is 
appropriate for stationary vibration.   
 
This window tapers the time history data so that the amplitude envelope decreases to zero at both 
the beginning and end of the time segment.  The Hanning window w(t) can be defined as  
 











 ≤≤



π−

=
elsewhere,0

Tt0,
T
tcos1

)t(w

2

                                                               (4-1) 

 
Equation (4-1) is plotted in Figure 4-2.  
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             Figure 4-2. 
 
 
Furthermore, a normalization factor of 8 3/  may be applied to the Hanned data to compensate 
for the lost energy, from Reference 4-6. 
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Example 
 
A 1 Hz sine function is shown in Figure 4-3.  The same function is shown after a normalized 
Hanning window is applied in Figure 4-4. 
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The Fourier transforms of two time histories are shown together in Figure 4-5. 
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Ideally, the Fourier transform would have a single, discrete line at 1 Hz with amplitude of 1 G. 
 
Both the rectangular and Hanning Fourier transforms have some leakage error, however.  The 
rectangular window produces more leakage error than the Hanning window.   Thus, the Hanning 
window is recommended for stationary data. 
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CHAPTER 5 
 

FAST FOURIER TRANSFORM (FFT) 
 
 
 
Introduction 
 
The discrete Fourier transform requires a tremendous amount of calculations.  A time history 
with M coordinates would require M2 complex multiplication steps. 
 
The discrete Fourier transform can be carried out by a Fast Fourier transform method, however.  
The method is based on a time series with a number of points equal to 2N, where N is an integer. 
 
The FFT requires M log 2 M complex multiplication steps, where M = 2N. 
 
The details of the FFT algorithm are given in Reference 5-1.   
 
Example 
 
Now consider a time history with 1,000,000 points.  A regular Fourier transform would require 
1012 complex multiplication steps.  On the other hand, an FFT would only require approximately 
2(107) steps.  Thus, the FFT achieves the calculation in 1/50,000th of the time. 
 
 
Limitation of the FFT 
 
The above example is not quite correct.  Again, the FFT is based on a time series with 2N 
coordinates.  Note that 
 

219  =  524,288 
and 
 

220  =  1,048,576 
 
 
Unfortunately, a time history with 1,000,000 points falls between these two cases. 
 
There are two options for dealing with a time history that is not an integer power of 2.   
 
One option is to truncate the time history.  This should be acceptable if the data is stationary.  In 
the above example, the time history would thus be truncated to 524,288 points.   
 
The second option is to pad the time history with trailing zeroes to bring its length to an integer 
power of 2.  A problem with this option is that it artificially reduces the amplitude of the Fourier 
transform spectral lines.  
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CHAPTER 6 
 

INVERSE FOURIER TRANSFORM 
 
 
 
 
Introduction 
 
Recall that the Fourier transform kF  for a discrete time series nx  can be expressed as 
 

1N...,,1,0kfor,nk
N
2jexpx

N
1F

1N
nk

0n

−=














 π−= ∑

−

=

                               (6-1) 

 
The corresponding inverse transform is 
 

1N...,,1,0nfor,nk
N
2jexpFx

1N

0k
kn −=


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











 π+= ∑

−

=
                              (6-2) 

 
Note that kF  has dimensions of [amplitude]. 
 
Points 
 
Here are some important points about the Fourier transform and its inverse: 
 
1. The Fourier transform converts a time history to the frequency domain.  The inverse Fourier 

transform converts the frequency domain function back to a time history. 
 
2. In some cases, an intermediate calculation may be performed on the Fourier transform prior 

to taking its inverse.  This calculation might involve a transfer function.   
   
3. The Fourier transform and its inverse must be a matched pair.  This is an absolute 

requirement since there are many different types of Fourier transforms. 
 
4. The main difference between the two transforms is the polarity of the argument in the 

exponential function.  In addition, the Fourier transform has a scale factor of 1/N. 
 
5. A measured time history consists only of real amplitude.  The Fourier transform converts this 

to a complex function.  The inverse Fourier transform converts this complex function to a 
complex time history, but the resulting imaginary component is zero.   

 
6. An exception to point 5 could occur if some intermediate calculation were performed prior to 

taking the inverse Fourier transform. 
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7. Theoretically, the input time history could be complex with a non-zero imaginary 

component.  For practical purposes, this never occurs. 
 
8. A Hanning window may be applied in the Fourier transform, but it is never applied to the 

inverse calculation. 
 
9. An inverse Fourier transform can be performed as an "inverse Fast Fourier transform" if the 

number of points is an integer power of 2. 
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CHAPTER 7 

 
 

WATERFALL FFT EXAMPLES 
 
 
 

 
 

Figure 7-1. Minuteman II ICBM at March AFB Museum, California 
 
 
 
M57A1 Motor 
 
The M57A1 motor is a solid-fuel motor originally developed as the third stage for the 
Minuteman II missile program. The Minuteman II is designated as LGM-30F Mk II. The M57A1 
motor has since been used on a variety of suborbital vehicles, such as target vehicles. 
 
This motor has a distinct sinusoidal pressure oscillation which forms in its cavity. The oscillation 
frequency sweeps downward from 530 Hz to 450 Hz over a 16-second duration. A Waterfall 
FFT plot taken from flight accelerometer data during the M57A1 burn is given in Figures 7-4.  
The magnitude is the unscaled acceleration. 
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Figure 7-2. 
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Figure 7-3. 
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The SR-19 motor is a solid-fuel motor originally developed as the second stage for the 
Minuteman II missile program. The SR-19 motor has since been used on a variety of suborbital 
vehicles, such as target vehicles. The HERA missile in Figure 7-5 had an SR-19 first stage and 
an M57A1 second stage. 
 
The SR-19 motor has a distinct sinusoidal pressure oscillation which forms in its cavity.  The 
oscillation frequency sweeps downward from 700 Hz to 550 Hz over a 5-second duration, as 
shown in the Waterfall FFT plot in Figure 7-6. This data is from a static fire test where the motor 
was mounted to a frame, with the motor horizontal to the ground. 
 
The corresponding GRMS plot is shown in Figure 7-7. The amplitude is high because the 
accelerometer was mounted to the forward motor dome. 
 

Figure 7-5. 



 
45 

 
S

R
19

 M
ot

or
 F

or
w

ar
d 

M
ot

or
 D

om
e 

S
ta

tic
 F

ire
 T

es
t 

  

Fi
gu

re
 7

-6
. 

Fr
eq

ue
nc

y 
(H

z)
 

Ti
m

e 
(s

ec
) 



 46

 

 
 
Figure 7-7. 
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CHAPTER 8 
 

POWER SPECTRAL DENSITY FUNCTION 
 

 
 

0.00001

0.0001

0.001

0.01

0.1

1

10 100 100020 2000

GCA Skin, 13.3 GRMS
Skin MPE Level

FREQUENCY (Hz)

AC
C

E
L 

(G
2 /H

z)

PSD TLV-3  FLIGHT  STAGE 1 BURN  
30.0 to 32.5 sec

 
 

 
Figure 8-1.  Power Spectral Density from a Sample Rocket Vehicle�s Flight 
 
The PSD was calculated from flight accelerometer data.  The vibration level was driven 
by aerodynamic buffeting as the vehicle encountered its maximum dynamic pressure 
condition soon after passing Mach one.  The measured overall level is 13.3 GRMS, 
which is equal to the square root of the area under the PSD curve.  The MPE level is the 
maximum predicted environment.   

 
 
 
Introduction 
 
A Fourier transform by itself is a poor format for representing random vibration because the 
Fourier magnitude depends on the number of spectral lines, as shown in previous chapters. 
 
The power spectral density function, which can be calculated from a Fourier transform, 
overcomes this limitation.  Again, some assembly is required. 
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Note that the power spectral density function represents the magnitude, but it discards the phase 
angle.  The magnitude is typically represented as G

2
/Hz.  The G is actually GRMS.  

 
 
Calculation Method 
 
Power spectral density functions may be calculated via three methods: 
 
1. Measuring the RMS value of the amplitude in successive frequency bands, where the signal 

in each band has been bandpass filtered. 
2. Taking the Fourier transform of the autocorrelation function.  This is the Wierner-Khintchine 

approach. 
3. Taking the limit of the Fourier transform X(f) times its complex conjugate divided by its 

period T as the period approaches infinity.  Symbolically, the power spectral density function 
XPSD(f) is 

 

T
)f(*X)f(X

T
lim

)f(XPSD ∞→
=                                                                       (8-1) 

 
These methods are summarized in Reference 8-1.  Only the third method is considered in this 
unit.  
 
Fourier Transform Method 
 
Equation (8-1) assumes that the Fourier transform has a dimension of [amplitude-time]. 
 
The following equations are taken from Reference 8-2. 
 
The discrete Fourier transform [amplitude-time] is 
 

1N...,,1,0kfor)nk
N
2

jexp()n(xt)k(X
1N

0n
−=

π
−∆= ∑

−

=
                            (8-2a) 

 
Note that the index k can be related to the frequency  

 
fk(k)frequency ∆=                                                                                  (8-2b) 

 
The inverse transform is 
 

1N...,,1,0nfor)nk
N
2

jexp()k(Xf)n(x
1N

0k
−=

π
+∆= ∑

−

=
                              (8-3) 
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These equations give the Fourier transform values X(k) at the N discrete frequencies k∆f and 
give the time series x(n) at the N discrete time points n ∆t.  The total period of the signal is thus 
 
 

T = N∆t                                                                                                      (8-4) 
 
 
where  
 

N is number of samples in the time function and in the Fourier transform 
T is the record length of the time function 
∆t is the time sample separation 

 
 
Consider a sine wave with a frequency such that one period is equal to the record length.  This 
frequency is thus the smallest sine wave frequency which can be resolved.  This frequency ∆f is 
the inverse of the record length. 
 

∆f = 1/T                                                                                                    (8-5) 
 
 
This frequency is also the frequency increment for the Fourier transform. 
 
 
Alternate Fourier Transform Method 
 
The Fourier transform with dimension of [amplitude-time] is rather awkward.   
 
Fortunately, the power spectral density can be calculated from a Fourier transform with 
dimension of [amplitude].  The corresponding formula is  
 

f
)f(*F)f(F

0f
lim

)f(XPSD ∆→∆
=                                                                       (8-6) 

 
 
The Fourier transform )k(F  for the discrete time series )n(x  is 
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Note that the index k can be related to the frequency  
 

fk(k)frequency ∆=                                                                                  (8-7b) 
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The corresponding inverse transform is 
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One-sided Fourier Transform Approach 
 
The power spectral density functions in equations (8-1) and (8-6) were both double-sided.  The 
power spectral density amplitude would be symmetric about the Nyquist frequency. 
 
A one-sided, or single-sided, power spectral density function is desired.   
 

Let )f(X� PSD be the one-sided power spectral density function. 
 
 

f
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0f
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)f(X� PSD ∆→∆
=                                                                       (8-9) 

 
 
 
The one-sided Fourier transform G(k) is 
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with  

N as an even integer  
Frequency (k) = k∆f 

 (8-10) 
 
 
Implementation 
 

Calculation of a power spectral density requires that the user select the ∆f value from a list of 
options.  The ∆f value is linked to the number of degrees of freedom. 
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Statistical degrees of freedom 
 
The reliability of the power spectral density data is proportional to the degrees of freedom. 
 
The statistical degree of freedom parameter is defined from References 8-3 and 8-4 as follows: 
 

  dof = 2BT                                                                                            (8-11) 
 

 
where dof is the number of statistical degrees of freedom and B is the bandwidth of an ideal 
rectangular filter.  This filter is equivalent to taking the time signal �as is,� with no tapering 
applied.  Note that the bandwidth B equals ∆f, again assuming an ideal rectangular filter. 
 
The 2 coefficient in equation (8-11) results from the fact that a single-sided power spectral 
density is calculated from a double-sided Fourier transform.  The symmetries of the Fourier 
transform allow this double-sided to single-sided conversion. 
 
For a single time history record, the period is T and the bandwidth B is the reciprocal so that the 
BT product is unity, which is equal to 2 statistical degrees of freedom from the definition in 
equation (8-11). 
 
A given time history is thus worth 2 degrees of freedoms, which is poor accuracy per Chi-Square 
theory, as well as per experimental data per Reference 8-3.  Note that the Chi-Square theory is 
discussed in Reference 8-5.   
 
 
Breakthrough 
 
The breakthrough is that a given time history record can be subdivided into small records, each 
yielding 2 degrees of freedom, as discussed in Reference 8-4 for example.  The total degrees of 
freedom value is then equal to twice the number of individual records.  The penalty, however, is 
that the frequency resolution widens as the record is subdivided.  Narrow peaks could thus 
become smeared as the resolution is widened.  
 
An example of this subdivision process is shown in Table 8-1.  The process is summarized in 
equations (8-12) through (8-16). 
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Table 8-1.   Example:  4096 samples taken over 16 seconds, rectangular filter 

Number of 
Records 

 
NR 

Number of 
Time 

Samples per 
Record 

Period of 
Each 

Record Ti 
(sec) 

Frequency 
Resolution 

Bi=1/Ti 
(Hz) 

dof 
per 

Record 
=2Bi TI 

Total dof 
 
 

1 4096 16 0.0625 2 2 
2 2048 8 0.125 2 4 
4 1024 4 0.25 2 6 
8 512 2 0.5 2 16 

16 256 1 1 2 32 
32 128 0.5 2 2 64 
64 64 0.25 4 2 128 

 
Notes: 
 

1.  The subscript �i� is used to denote �individual� in Table 8-1. 
2.  The rows in the table could be continued until a single sample per record remained. 

 
Also note that:    

 
Total dof = 2 NR                                                                                                      (8-12) 

 
 NR = T / Ti                                                                                                       (8-13) 

 
Bi = 1 / Ti                                                                                                       (8-14) 

 
NR = Bi T                                                                                                         (8-15) 

 
Total dof = 2 Bi T                                                                                                       (8-16) 

 
 
 
Window 
 
A window is typically applied to each time segment during the power spectral density 
calculation.  The purpose of the window is to reduce a type of error called leakage.  One of the 
most common windows is the Hanning window, or the cosine squared window.  This window 
tapers the data so that the amplitude envelope decreases to zero at both the beginning and end of 
the time segment.   
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The Hanning window w(t) can be defined as  
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Tt0,
T
tcos1

)t(w

2

                                                               (8-21) 

 
The window operation reduces the leakage error but also has the effect of reducing the statistical 
degrees-of-freedom.  
 

Also, a normalization factor of 8 3/  is applied to the Hanned data to compensate for the lost 
energy. 
 
 
Overlap 
 
The lost degrees-of-freedom can be recovered by overlapping the time segments, each of which 
is subjected to a Hanning window.  Nearly 90% of the degrees-of-freedom are recovered with a 
50% overlap.   
 
The concept of windows and overlapping is represented in Figure 8-2. 
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Figure 8-2. 
 
 
 
 
 
Fast Fourier Transform   
 
Three variations of the discrete Fourier transform have been given in this chapter.  The solution 
to any of these transforms requires a great deal of processing steps for a given time history.  Fast 
Fourier transform methods have been developed, however, to greatly reduce the required steps.  
These methods typically require that the number of time history data points be equal to 2 

N, 
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where N is some integer.  The derivation method is via a butterfly algorithm, as shown, for 
example, in Reference 8-8.   
 
Records with sample numbers which are not equal to an integer power of 2 can still be processed 
via the fast Fourier transform method.  Such a record must either be truncated or padded with 
zeroes so that its length becomes an integer power of 2.   
 
 
Summary 
 
Time history data is subdivided into segments to increase the statistical-degrees-of-freedom by 
broadening the frequency bandwidth.  Next, a window is applied to each segment to taper the 
ends of the data.  Finally, overlapping is used to recover degrees-of-freedom lost during the 
window operations.  The effect of these steps is to increase the accuracy of the power spectral 
density data.  Nevertheless, there are some tradeoffs as shown in the following examples. 
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CHAPTER 9 
 

SAMPLE RATE CRITERIA AND THE NYQUIST RULE 
 
 
 
Introduction 
 
An understanding of sample rate criteria requires some preliminary consideration of filtering, 
however.  Lowpass filtering of the analog signal is necessary to prevent an error source called 
aliasing.  Aliasing is covered in Chapter 10. 
 
Eventually, the accelerometer data is passed through an analog-to-digital converter.  The proper 
sampling rate must be selected to ensure that the digitized data is accurate.   
 
This chapter gives guidelines for choosing the sampling rate.  It also briefly covers amplitude 
resolution.   
 
 
Sampling Rate, First Requirement 
 
The first requirement is that the sampling rate must be greater than the maximum analysis 
frequency.  Industry guidelines for this requirement, as discussed in Reference 9-1, are 
summarized in Table 9-1. 
 

 
Table 9-1.  Sampling Rate First Requirement   
 
(minimum sampling rate)  >  ( N )( maximum analysis frequency ) 
 
Analysis Type N 
Frequency Domain 2 
Time Domain 10 

 
Fourier transforms and power spectral density functions are used in frequency domain analysis. 
 
The shock response spectrum (SRS) is an example of a time domain analysis. 
 
 
Frequency Domain 
 
The frequency domain requirement in Table 9-1 is based on the fact that at least two time-
domain coordinates per cycle are required to resolve a sine wave for analytical purposes. 
 



 57

The Nyquist frequency is equal to one-half the sampling rate.  The frequency domain analysis 
thus extends up to the Nyquist frequency.    
 
Note that some conservative sources specify a value of N = 2.5 for frequency domain analysis. 
 
 
Time Domain 
 
Reference 9-1 gives the following guideline: 
 

Unlike other spectral quantities evolving from the discrete Fourier transform 
computations, the SRS is essentially a time domain quantity.  Hence, the digital sampling 
rate given by Rs = 1/(delta t), introduces errors beyond those associated with aliasing 
about the Nyquist frequency. Thus, Rs must be high enough to accurately describe the 
response of the SRS oscillators. To minimize potential error, it is recommended that the 
SRS computations be performed with a sampling rate of Rs > 10 fh, where fh is the 
highest natural frequency of the SRS computation. 

 
A sampling rate of 100,000 samples per second is thus required for a shock response spectrum 
analysis extending to 10,000 Hz per this guideline.  Again, the SRS is calculated in the time 
domain, even though the SRS peaks levels are represented as function of natural frequency.  
 
 
Sampling Rate, Second Requirement 
 
The second requirement is that the sampling rate must be greater than the maximum frequency 
present in the source energy at the measurement location.  This requirement is necessary to 
prevent aliasing.   
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The guidelines for the second requirement are summarized in Table 9-2. 
 
     

Table 9-2.  Sample Rate Second Requirement 
 
(minimum sampling rate)  >  ( M )( maximum frequency in source energy ) 
 
Analysis Type M 
Frequency Domain 2 
Time Domain 10 

 
Note the similarity between Tables 9-1 and 9-2. 
 
Shannon�s sampling theorem states that a sampled time signal must not contain components at 
frequencies above the Nyquist frequency. Again, the Nyquist frequency is equal to one-half the 
sampling rate.  Shannon's theorem applies to frequency domain analysis.     
 
 
Lowpass Filtering 
 
In many cases, the maximum expected frequency is unknown.  Thus, lowpass filtering can be 
used as a precaution to ensure compliance with the requirement in Table 9-2.   
 
 

Summary  
 
Note that the maximum source energy frequency may be independent of the maximum analysis 
frequency.  Thus, the first and second requirements may be independent. 
 
A common example of this independence occurs in rocket vehicle vibration testing. 
 
Avionics components are typically subjected to power spectral density specifications which are 
defined up to 2000 Hz. The test specifications assume that the components are immune to 
vibration above 2000 Hz.  The same specifications, however, assume that the components must 
be tested up to 2000 Hz to verify their integrity, even if the expected flight levels occur at a 
lower frequency domain. 
 
The component test specifications are derived, in part, from measured or predicted flight levels.  
Note that a rocket vehicle is excited by aerodynamic turbulence and motor pressure oscillations 
during its powered flight.  The content of this energy may be well below, or perhaps above, 2000 
Hz. 
 
An engineer designing a telemetry system must thus consider the expected flight vibration 
environments as well as post-flight analytical needs.  
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Amplitude Resolution 
 
Amplitude resolution is considered in this chapter as a supplementary topic. 
 
Analog-to-digital conversion systems have amplitude resolution, which is measured in bits.   
 
The amplitude resolution is one part in 2^(number of bits).  Thus, a 12-bit system has a 
resolution of one part in 4096. 
 
Consider a 12-bit system set up to measure a full scale amplitude of 10 V peak-to-peak.  The 
resolution is ( 10 V / 4096) = 2.4 mV.  This example is shown in Table 9-3, along with two other 
cases. 
 
 

Table 9-3.   
Example for 10 V peak-to-peak 

Bit Resolution Voltage Resolution 
(mV) 

8 39.1 
12 2.4 
16 0.15 

 
 
Note that telemetry data is sometimes given in terms of bits, where the bits are in integer format.  
The user must apply a scale factor to the bit values.  The scale factor might convert the bit values 
to volts, or to some engineering unit. 
 
The voltage resolution is proportional to the G level for an accelerometer.  For example, consider 
the following configuration:  
 

1. An accelerometer has a 10 V peak-to-peak range. 
2. The accelerometer sensitivity is 10 G/volt ( 0.010 G /mV). 
3. The accelerometer signal is applied to a 12 bit acquisition system   

 
In this case, the accelerometer data would have an amplitude bit resolution of 0.024 G.  This 
would cause a measured sine wave to have a "stair-step" appearance if the peak amplitude were 
below, say, 0.2 G.  
 
The bit resolution for a data acquisition system is usually fixed.  The user can manipulate the 
resolution by choosing an accelerometer with a particular sensitivity.  The user may also have 
control over the full-scale voltage value. 
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CHAPTER 10 
 

ALIASING 
 
 
 
Introduction 
 
Again, engineers collect accelerometer data in a variety of settings.  The accelerometers measure 
the data in analog form.  The accelerometer may have an integral mechanical lowpass filter.  
Furthermore, the signal conditioning unit may have an analog lowpass filter.   
 
Eventually, the accelerometer data is passed through an analog-to-digital converter.  The proper 
sampling rate must be selected to ensure that the digitized data is accurate.  Sampling rate 
guidelines were given in Chapter 9.   
 
Lowpass filtering of the analog signal is necessary to prevent an error called aliasing.1   The 
purpose of this chapter is to discuss aliasing.    
 
 
 
Aliasing Examples 
 
The following examples show the consequences of failure to comply with the sampling rate 
guidelines in Chapter 9.  An aliasing error results. 
 
Consider a sine wave sampled at 2000 samples per second.  The Nyquist frequency is thus 1000 
Hz.  The Nyquist frequency is also the upper limit for a frequency domain calculation, per the 
Chapter 9 guidelines. 
 
The power spectral density function of a 200 Hz sine wave sampled at this rate is given in Figure 
10-1.  As expected, a spectral line appears at 200 Hz. 
 
The power spectral density of an 1800 Hz sine wave is given in Figure 10-2.  Note that aliasing 
occurs.  The 1800 Hz signal is folded about the Nyquist frequency such that a spectral line 
appears at 200 Hz.  The Nyquist frequency thus forms a line of symmetry.  
 
The power spectral density of a 200 Hz sine wave appears to equal that of an 1800 Hz sine wave.  
Again, this error occurs due to inadequate sampling rate. 
 
The time histories for each of these sine waves are given in Figure 10-3.  Note that the 1800 Hz 
sine wave appears to equal a 200 Hz sine wave with a 180 degree phase difference.    
 

                                                        
1  An optical analogy of aliasing occurs in certain old western movies where stagecoach wheels 
appear to spin backwards. 
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The alias frequency is summarized in equation (10-1). 
 

frequencyenergytheisE
ratesampletheisS

where

SES
2
1if,ESfrequencyAlias

f
f

fffff <<−=

                                         (10-1) 

 
In addition, aliasing will occur if the energy frequency is above the sample rate.  A separate 
formula is required, however. 
 
 
Lowpass Filtering 
 
Aliasing can be prevented by lowpass filtering the analog data.  
 
Consider a stage separation test or a launch vehicle flight.  The maximum expected frequency in 
the source energy is essentially unknown.  Thus, there is no proper means to set the sampling 
rate, other than setting it at some exceedingly high value.   
 
The simple solution is to pass the analog data through a lowpass filter as shown in the flowchart.   
 
 
 
 
 
 
 
 
 
The lowpass filter removes the high-frequency energy from the signal.  This filter is often called 
an "anti-aliasing" filter. 
 
The filter can be part of the signal conditioning system.  Typically, a Butterworth filter is used.  
The Butterworth filter has a roll-off which attenuates the signal by 3 dB at the cut-off frequency.  
 
The cut-off frequency is typically set at, or slightly above, the maximum analysis frequency. 
 
 

Accelerometer Signal 
Conditioner with
Lowpass Filter 

Analog-to-Digital 
Converter 
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Recommended Filtering Parameters 
 
Let   f c   be the cutoff frequency. 
 
Let   f N  be the Nyquist frequency.  
 
Reference 8-1 gives the following guidelines: 
 

(1)  A lowpass anti-aliasing filter with a cutoff rate of at least 60 dB/octave should be 
used for the analog-to-digital conversion of all dynamic data. 

 
(2)  With a 60 dB/octave cutoff rate, the half-power point cutoff frequency of the filter 

should be set at f c  <  0.6 f N. 
 

If the anti-aliasing filter has a more rapid cutoff rate, a higher cutoff frequency can be used, but 
the bound f c  <  0.8 f N  should never be exceeded. 
 
 
Telemetry Design Example 
 
Ideally, the sampling rate could be chosen after the maximum excitation and analysis frequencies 
were identified.  Practical considerations often require a reverse approach. 
 
Consider a telemetry system for a launch vehicle.  Several accelerometers will be mounted in the 
vehicle.  The data will be digitized on-board the vehicle.  The digitized signal will be sent via a 
radio link to a ground station. 
 
The flight dynamic environments are unknown.  The maximum sampling rate, however, is 4000 
samples per second for each accelerometer channel.  This sampling rate is constrained by the 
available radio link bandwidth and other considerations. 
 
Given this constraint, choose an analog lowpass filter with a cut-off frequency at 2000 Hz.   This 
frequency does not meet the strict guidelines in Reference 10-1, which would set the cut-off 
frequency at 1200 Hz.  Some compromise is often required in telemetry system design, however.  
In this case, the cut-off frequency is set higher than the guidelines in order to capture additional 
data beyond 1200 Hz.  
 
The lowpass filter is placed between the accelerometer and the vehicle�s analog-to-digital 
converter. 
 
Now consider that the vehicle has flown and the digital data has been received at the ground 
station. 
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Power spectral density functions of the flight data can be calculated up to 2000 Hz, per Table 10-
1.  Some roll-off may appear starting at about 1600 Hz depending on the filter characteristics, but 
this is a practical trade-off. 
 
 

Table 10-1.  Sampling Rate First Requirement   
 
(minimum sampling rate)  >  ( N )( maximum analysis frequency ) 
 
Analysis Type N 
Frequency Domain 2 
Time Domain 10 

 
 
Recall that Fourier transforms and the power spectral density functions are used in frequency 
domain analysis. 
 
On the other hand, the shock response spectrum is a time domain function. 
 
Shock response spectra of the flight data can be calculated accurately up to 200 Hz, per Table 
10-1.  This frequency can be extended somewhat if greater error margins are allowed.   
 
This telemetry system will thus yield usable vibration data.   
 
On the other hand, the telemetry system will yield marginal shock data.  The resulting shock data 
may be adequate to characterize motor ignition and launch shock, which are typically dominated 
by energy below 2000 Hz.  Unfortunately, the telemetry data will be inadequate to characterize 
high-frequency pyrotechnic shock from stage separation events. 
 
Stage separation shock must thus be measured during ground development tests prior to flight.  
Data acquisition systems with high sampling rates can be used during ground tests.   
 
 
Reference 
 

10-1. IES Handbook for Dynamic Data Acquisition and Analysis, Institute of 
Environmental Sciences, Illinois.   
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Figure 10-1. 
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Figure 10-2. 
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Figure 10-3. 
 
 
 
 



 67

 
CHAPTER 11 

 
FILTERING BASICS 

 
 
 
Filtering 
 
The purpose of this chapter is to demonstrate the use of filtering using a Butterworth filter as an 
example.  A Butterworth filter is one of several common infinite impulse response (IIR) filters.  
The derivation underlying Butterworth filters is given in Chapters 12 and 14.   
 
The Butterworth filter can be used either for highpass, lowpass, or bandpass filtering. 
 
A highpass filter is a filter which allows the high-frequency energy to pass through.  It is used to 
remove low-frequency energy from a signal. 
 
A lowpass filter is a filter which allows the low-frequency energy to pass through.  It is thus used 
to remove high-frequency energy from a signal. 
 
A bandpass filter may be constructed by using a highpass filter and lowpass filter in series. 
 
A Butterworth filter is characterized by its cut-off frequency.  The cut-off frequency is the 
frequency at which the corresponding transfer function magnitude is �3 dB, equivalent to 0.707.    
 
A Butterworth filter is also characterized by its order.  A sixth-order Butterworth filter is the 
filter of choice for this tutorial.  Further details on the significance of order are given in 
References 11-1 and 11-2. 
 
A property of Butterworth filters is that the transfer magnitude is �3 dB at the cut-off frequency 
regardless of the order.  Other filter types, such as Bessel, do not share this characteristic, 
however. 
 
Consider a lowpass, sixth-order Butterworth filter with a cut-off frequency of 100 Hz.  The 
corresponding transfer function magnitude is given in Figure 11-1. 
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Figure 11-1. 
 
 

 
 
 
Note that the curve in Figure 11-1 has a gradual roll-off beginning at about 70 Hz. Ideally the 
transfer function would have a rectangular shape, with a corner at (100 Hz, 1.00).  This ideal is 
never realized in practice, however, due to stability concerns.  Thus, a compromise is usually 
required to select the cut-off frequency. 
 
The transfer function in Figure 11-1 also has a corresponding phase relationship, but this is not 
shown.  The transfer function could also be represented in terms of a complex function, with real 
and imaginary components. 
 
A transfer function magnitude plot for a sixth-order Butterworth filter with a cut-off frequency of 
100 Hz is shown in Figure 11-2. 
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Figure 11-2. 

 
 
 
 
The curves in Figures 11-1 and 11-2 suggest that filtering could be achieved as follows: 
 

1. Take the Fourier transform of the input time history. 
2. Multiply the Fourier transform by the filter transfer function, in complex form. 
3. Take the inverse Fourier transform of the product. 

 
The above frequency domain method is valid.  Nevertheless, the filtering algorithm is usually 
implemented in the time domain for computational efficiency, as explained in Chapter 12. 
 



 70

Seismic Filtering Example 
 
 

 
 

Figure 11-3.  Lehman Seismometer  
  
  
The boom is a horizontal pendulum.  It has a period of 14.2 seconds, equivalent to a natural 
frequency of 0.071 Hz.   A sensor at the free end measures the displacement.  The boom length is 
64 inch.  The total frame height is 35 inch.  The boom has a knife edge that pivots against a bolt 
head in the lower cross-beam of the frame.  
  
The boom is suspended from the frame by a wire cable.    The cable is attached to the top cross-
beam of the frame.  The other end of the cable is attached to the boom, about two-thirds of the 
distance from the pivot to the free end of the boom.  The pivot point is offset from the top cable 
attachment point.   Thus, the boom oscillates as if it were a swinging gate.   
  
The plate supporting the frame has three adjustable mounting feet.  The feet can be adjusted to 
tune the pendulum to the desired natural frequency.  Furthermore, the wire cable has a 
turnbuckle which is used to adjust height of the free end of the boom. The  detached  frame  in  
the  center  of  the  figure  is  used  for  assembly  and  to  limit  the displacement during tuning.   
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Figure 11-4. 
 
 
The Solomon Island Earthquake occurred on October 8, 2004, with a magnitude of 6.8.  The time 
history is shown in Figure 11-4 as recorded on the Lehman seismometer in Mesa, Arizona.  The 
time history shows that the Earth is remarkably reverberant.  The oscillations last well over one 
hour.  
 
The time is referenced to the earthquake occurrence using USGS data. The plot�s Y-axis is 
labeled as relative displacement because it is the response of the boom relative to the ground.  
Further calculation would be required to estimate the true ground motion.    
  
The phase components are  
  

P primary wave 
S secondary or shear wave 

LQ Love wave 
 

The P-wave is indiscernible against the background microseismic noise.  Nevertheless, it can be 
extracted by additional filtering, as shown in the next figure.  
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Figure 11-5. 
 
 
 
The data in Figure 11-5 is highpass filtered with a cut-off frequency of 0.2 Hz, clarifying the 
arrival of the P-wave.  The P-wave is a longitudinal wave.  It is a structural-borne sound wave.  It 
is the fastest of the various seismic waveforms. 
 
References 
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                                                                  CHAPTER 12 
 
 

DIGITAL FILTER DESIGN 
 
 
Z-Transform 
 
A useful tool for designing digital filters is the  z-transform.  The two-sided z-transform X(z) of a 
time history sequence x k is defined as  
 

X z x zk
k

k
( ) = −

=−∞

∞
∑                                                                                        (12-1) 

 
 
The z-transform method is used to derive a transfer function H(z).  This transfer function relates 
the output Y(z) to the input X(z) as follows 
 
 

H z Y z
X z

( ) ( )
( )

=                                                                                     (12-2) 

  
 
Digital filters are based on this transfer function, as shown in the block diagram in Figure 12-1.  
Note that xk and yk are the time domain input and output, respectively. 
 
 
 
 
 
 
 
 
 
Figure 12-1.  Filter Block Diagram 
 
 
The transfer function can be represented by a series of an and bn coefficients as follows 
 

H z
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L
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− −
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11

L

L
                                                                 (12-3) 

 
The coefficients are constants which determine the system response.  Note the H(z) defines the 
direct form transfer function for an Lth-order, linear, time-invariant digital system.  
 

yk 
Time domain 
equivalent of H(z) 

xk 
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Note that  
 

( )z j T= exp ω                                                                                            (12-4) 
 
 
The T variable is the time step.  By substitution, 
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With some manipulation, equations (12-1) through (12-3) can be used to derive the time domain 
equivalent of H(z) as 
 
 

y b x a yk n k n
n

L
n k n

n

L
=











−











−

=
−

=
∑ ∑

0 1
                                                                  (12-6) 

 
 
Equation (12-6) is recursive because the output at any time index k depends on the output at 
previous times. 
 
 
Filter Impulse Response Class 
 
Digital filters are classified according to their impulse response:  infinite impulse response (IIR) 
and finite impulse response (FIR). 
 
FIR filters are feedforward filters.  IIR filters are feedback filters.   
 
Each class can be implemented in the time domain.  The theory underlying each of these classes 
is discussed in Reference 12-1. 
 
The familiar Bessel, Butterworth, and Chebyshev filters are all examples of IIR filters.  Signal 
processing software typically uses this class of filters. 
 
This report will focus on the IIR class.  The Bessel filter is discussed briefly in Chapter 13.  The 
Butterworth filter is discussed in detail in Chapter 14. 
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IIR Filter Design, Phase Correction 
 
 
Ideally, a filter should provide linear phase response.  This is particularly desirable if shock 
response spectra calculations are required.  IIR filters, however, do not have a linear phase 
response, for reasons discussed in Reference 12-1.  A number of methods are available, however, 
to correct the phase response.  One method is based on time reversals and multiple filtering as 
shown in Figure 12-2.  
 
 
 
 
 
 
 
 
 
 
Figure 12-2.  Phase Correction Method 
 
 
 
 
 
 
Reference 
 
12-1. Stearns and David, Signal Processing Algorithms in Fortran and C, Prentice 

Hall, Englewood Cliffs, New Jersey, 1993. 
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CHAPTER 13 
 
 

BESSEL FILTERS 
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Figure 13-1.  Bessel Filter Transfer Magnitude 
 
 
 
 
Bessel filters use the direct-form transfer function as shown in Figure 13-1.  Other filters, 
however, use a cascade approach, as explained later in this report. 
 
An analog Bessel filter has a nearly linear phase response.  This property translates only 
approximately into to the digital version, however. 
 
Bessel filter transfer functions tend to have a very gradual roll-off beyond the cut-off frequency.   
Another characteristic is that a lower order provides more attenuation above the cutoff 
frequency. 
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The analog Bessel lowpass filter transfer function for order L is defined by the following two 
equations. 
  
 

( )
( )!kL!kkL2

!kL2
kc

−−
−=                                                                    (13-1) 

 
 

0cLsLc
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++
=

L
                                                             (13-2) 

 
 

The transfer function can be calculated by setting Ω= js . 
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CHAPTER 14 
 
 

BUTTERWORTH FILTERS 
 
 
 
 
Analog Transfer Function Magnitude 
 
Butterworth filters are often used as anti-aliasing filters.  For example, the Pegasus vehicle has 
on-board analog anti-aliasing filters which are 4-pole Butterworth. 
 
The Lth-order lowpass analog Butterworth filter magnitude response is  
 
 

P LL L
( ) ,Ω

Ω
=

+
≥1

1
1

2
                                                                 (14-1) 

 
 
Equation (14-1) is normalized to have a cutoff frequency Ωc  equal to 1 radian/sec. 

A characteristic of equation (14-1) is that all curves pass through the coordinate 1
1
2

,






, 

regardless of the order.  Note that other filter types do not necessarily have this same 
characteristic.   
 
Equation (14-1) is graphed in Figure 14-1 for three cases. 
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Figure 14-1.  Butterworth Filter Transfer Magnitude 

 
 
 
An Lth-order filter has a total of 2L poles.  Only the L poles in the left half of the s-plane are 
used, however, to form a stable filter. 
 

The poles sk are given by 
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Again, only the poles in the left half s-plane are used.  Effectively, only the poles for  
1 < k <  L are used.  
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Note that the same pole equations are used for both lowpass and highpass filter designs. 
 
The poles are inserted into the following transfer function 
 

( )( ) ( )H s
s s s s s s L

( ) =
− − −

1

1 2 K
                                                      (14-4) 

 
 
The conventional implementation is to apply the filter in a cascade manner rather than fully 
expanding the denominator in equation (14-4).  Each section of the cascade is a second order-
section Hk(s) given by 
 
 

( )( )H s
s s s sk

k L k
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− − + −

1

1
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Note that the sections are arranged to match the complex conjugate pairs of the poles. 
 
The analog transfer function for a lowpass Butterworth filter with even order can now be written 
as 

 

  H s H s
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Sixth-order Butterworth Example 
 
A sixth-order lowpass Butterworth filter has the poles given in Table 14-1.  Only the poles on the 
left half of the s-plane are given. 
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 Table 14-1.  

 Sixth-order Lowpass Butterworth Filter 
 k sk   Pole 
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5 cos sin
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
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

j  

 
6 cos sin
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π π



 + 



j  

 
 
Note the following complex conjugate pairings: 
 

s s
s s
s s

4 3

5 2
6 1

=
=
=

*
*
*

                                                                      (14-7)                         

 
 
Apply the poles into equation (14-6). 
 

( )( )H s
s s s s1

1 6

1
( ) =

− −
                                                                                           (14-8) 

 

( )( )H s
s s s s1

1 1

1
( )

*
=

− −
                                                                                         (14-9) 

 

H s
s j s j

1
1

7
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7
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7
12

7
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cos sin cos sin

=
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

 + 
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



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














− 



 − 























π π π π
                      (14-10) 
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H s
s j s j

1
1

7
12

7
12

7
12

7
12

( )
cos sin cos sin

=
− 



 − 













− 



 + 



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







π π π π
                                (14-11) 

 
 

H s

s
1 2 2

1

7
12

7
12

( )

cos sin

=

− 













+ 













π π
                                                                 (14-12) 

 
 

H s
s s

1
2

1

2
7
12

1
( )

cos
=

− 



 +

π
                                                                                    (14-13) 

 
 
Similarly, 
 

H s
s s

2
2

1

2
9
12

1
( )

cos
=

− 



 +

π
                                                                                  (14-14) 

 

H s
s s

3
2

1

2
11
12

1
( )

cos
=

− 



 +

π
                                                                                 (14-15) 

 
 
Normalized Frequency Parameter 
 
Now consider a generic stage. 
 

( )H s
s s

g =
− +

1

12 α
                                                                                                   (14-16) 

 
Define a frequency parameter Ωc as 
 

( )Ωc f T= tan π 0                                                                                                      (14-17) 
 

Note that T is the time segment duration.  It is thus the inverse of the sampling rate.  
Furthermore, f0 is the filter cutoff frequency. 
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Apply the frequency parameter to the generic transfer function. 
 

$ ( ) ( )
/

H s H s H
s

g g s s g
cc

= =








= Ω Ω
                                                                       (14-18) 

 
 

( )$H s
s s

g

c c

=






 −







 +

1

1
2

Ω Ω
α

                                                                             (14-19)  

 
 

( )$H s
s sg

c

c c
=

− +

Ω

Ω

2

2 αΩ
                                                                                   (14-20) 

 
                        

Z-transform of Butterworth Filter 
 
The bilinear transform is defined by 
 

s
z
z

=
−
+

1
1

                                                                                                           (14-21) 

 
The purpose of this function is to transform an analog filter into the z-domain.  The frequency 
transformation in equation (14-17) actually follows from the bilinear transformation in equation 
(14-21).  The derivation is given in Appendix B. 
 
Substitute the bilinear transform into the transfer function in equation (14-20). 
 

( )$H s
z
z

z
z

g
c

c c

=
−
+







−
−
+







+

Ω

Ω

2

21
1

1
1

αΩ
                                                               (14-22) 

 
 

( ) [ ]
[ ] [ ][ ] [ ]

$H s
z

z z z zg
c

c c
=

+
− − − + + +

Ω
Ω

2 2

2 2
1

1 1 1 1αΩ
                                              (14-23) 

 
 

( ) [ ]
[ ] [ ] [ ]

$H s
z z

z z z z z
g

c

c c
=

+ +

− + − − + + +

Ω

Ω

2 2

2 2 2

2 1

2 1 1 2 1αΩ
                                         (14-24) 
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( )$H s
z z

z z z z zg
c c c

c c c c c
=

+ +

− + − + + + +

Ω Ω Ω

Ω Ω Ω

2 2 2 2

2 2 2 2 2 2
2

2 1 2αΩ αΩ
                         (14-25)  

    
 

( ) [ ] [ ] [ ]
$H s

z z
z zg
c c c

c c c c c
=

+ +
− + + + + − + + +

Ω Ω Ω
Ω Ω Ω

2 2 2 2

2 2 2 2
2

1 2 2 1αΩ αΩ
                     (14-26) 

 
 

( ) [ ] [ ] [ ]
$H s

z z
z zg
c c c

c c c c c
=

+ +
− + + − + + +

Ω Ω Ω
Ω Ω Ω

2 2 2 2

2 2 2 2
2

1 2 1 1αΩ αΩ
                           (14-27)  

 
 

                  ( ) { } { } { }
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
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(14-28a)  

 
where 

[ ]b c

c c
0

2

2 1
=

− +

Ω

Ω αΩ
                                                                            (14-28b) 

 
 
 
Recall equation (12-3). 
 

H z
b b z b z

a z a z
L

L

L
L( ) =

+ + +
+ + +

− −

− −
0 1

1

1
11

L

L
                                                                 (14-29) 

 
Set L=2. 
 

H z
b b z b z

a z a z
( ) =

+ +

+ +

− −

− −
0 1

1
2

2

1
1

2
21

                                                                 (14-30) 
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Multiply through by z 2, 
 

H z
b z b z b

z a z a
( ) =

+ +

+ +
0

2
1 2

2
1 2

                                                                          (14-31) 

 
Again, 
 

[ ]b c

c c
0

2

2 1
=

− +

Ω

Ω αΩ
                                                                            (14-32) 

 

[ ]b c

c c
1

2

2
2

1
=

− +

Ω

Ω αΩ
                                                                                (14-33) 

 

b2 = b0                                                                                                       (14-34) 
 
 

[ ]
[ ]a c

c c
1

2

2

2 1

1
=

−

− +

Ω

Ω αΩ
                                                                               (14-35) 

 
 

[ ]
[ ]a c c

c c
2

2

2

1

1
=

+ +

− +

Ω

Ω

αΩ

αΩ
                                                                                (14-36) 

 
 
The coefficients can be inserted into equation (14-1).  The resulting recursive equation for a filter 
section is 
 
 

[ ] [ ]y b x b x b x a y a yk k k k k k= + + − +− − − −0 1 1 2 2 1 1 2 2                                     (14-37) 
 

 
\ 

Equation (14-37) represents one of three cascade stages for a sixth-order filter.  Note that there is 
a unique set of coefficients for each of these stages.   
 
Equation (14-37) is applied six times if refiltering is used for phase correction, again assuming a 
sixth-order filter.                                                                   
 
 
Highpass Butterworth Filter 
 
Recall the generic transfer function for a lowpass filter stage 
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( )H s
s s

g =
− +

1

12 α
                                                                                      (14-38) 

 
The lowpass filter H can be transformed into a highpass filter J by changing s to 1/s.   
 

( )J s

s s
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





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
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                                                                                (14-39) 
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                                                                      (14-41) 

 
 

( )J s
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s sg
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=
− +

2

2 2Ω αΩ
                                                                          (14-42) 

 
 
 

Recall the bilinear transform  
 

s
z
z

=
−
+

1
1

                                                                                                       (14-43) 
 
 

By substitution, 
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(14-48a)    

 
where 
 

2
cc1

1
0b

Ω+Ωα−
=                                                                                        (14-48b) 

                        
 
 

Recall the z-transform 
 
 

H z
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z a z a
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+ +
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1 2

2
1 2

                                                                          (14-49)               
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Thus the highpass filter coefficients are thus                            
 
 

[ ]
[ ]a c

c c
1

2

2

2 1

1
=

− +

− +

Ω

ΩαΩ
                                                                  (14-50) 

 
 

[ ]
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c c
2

2

2

1

1
=

+ +

− +
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αΩ

Ω

Ω
                                                                     (14-51) 

 
 

2
cc1

1
0b

Ω+Ωα−
=                                                                       (14-52) 

 
 

2
cc1

2
1b

Ω+Ωα−

−
=                                                                     (14-53) 

 
 
 

 b b1 02= −                                                                                      (14-54) 
 

 
 b b2 0=                                                                                         (14-55) 

 
 

Again, the coefficients are inserted into the following filter equation for an individual stage 
 
 

[ ] [ ]y b x b x b x a y a yk k k k k k= + + − +− − − −0 1 1 2 2 1 1 2 2                                         (14-56) 
 
 
 
Equation (14-56) represents one of three cascade stages for a sixth-order filter.  Note that there is 
a unique set of coefficients for each of these stages.   
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CHAPTER 15 
 
 

FILTER NUMERICAL STABILITY 
 
 
 
Numerical Stability 
 
The following criteria are taken from Reference 15-1.  The criteria apply to a cascade filter 
implementation.  Note that the stability of each stage must be evaluated separately. 
 

The filter tends to become unstable if the product ( )f T0  is very small.  This comes about 

because the filter weights require more digits for a very small ( )f T0  product. 
 
Recall the z-transform 

 

H z
b z b z b

z a z a
( ) =

+ +

+ +
0

2
1 2

2
1 2

                                                                          (15-1)               

 
Define stability coordinates  
 
 

(x, y) = (-a1,-a2)                                                                                  (15-2) 
 
 

The coordinates must fall inside the triangle shown in Figure 15-1.  The coordinate  
(0.6, -0.4) is used as an example in Figure 15-1. 
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Figure 15-1.  Coefficient Stability Triangle 
 
 
The filter is stable is the coordinate pair is within the triangle.  The filter becomes unstable if the 
pair is on a border or outside the triangle. 
 
Three distance parameters are shown in Figure 5-1.  For this example, 
 

d1 = 0.6 

d2 = 0.8 

d3 = 2.0 

 
The key distance is the smallest of the three values, denoted as d.  For this example,  
d = 0.6. 
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The stability criteria for d are shown in Table 15-1. 
 
 
 Table 15-1.  Stability Criteria 

 
 Size of d Stability Comment 
 

d > 5.0(10-6) Good Stability 

 
5.0(10-6)  >  d  > 0 Marginally Unstable 

 d < 0 Unstable 

 
 
Actually, the criteria in Table 15-1 apply to computers with word lengths greater than 32 bit.  
The 5.0(10-6) threshold should be increased for computers with smaller word lengths. 
 
Also note that the cutoff frequency must be less than the Nyquist frequency, which is one-half of 
the sampling rate.  The filter becomes unstable in the limiting case where the cutoff frequency is 
equal to the Nyquist frequency.     
 

 
 

Reference 
 
15-1. Stearns and David, Signal Processing Algorithms in Fortran and C, Prentice 

Hall, Englewood Cliffs, New Jersey, 1993. 
 

 
 
 
 



 92

CHAPTER 16 
 
 

DETAILED FILTERING EXAMPLE 
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            Figure 16-1.  Synthesized Time History, Raw Data 
 
 
 
Time History Example 
 
A synthesized time history is shown in Figure 16-1.  The sample rate is 2000 samples per 
second.  The time increment is thus 0.0005 seconds.  The signal is largely white noise, but a 
possible transient event appears near 0.6 seconds.  
 
The raw data was lowpass filtered at 30 Hz using a 6th order Butterworth filter with refiltering for 
phase correction.  The resulting time history clarifies the transient, as shown in Figure 16-2. 
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Figure 16-2.  Filtered Time History 
 
 

The transient is a 20 Hz sinusoid with 5% damping. 
 
The digital filter transfer function is shown in Figure 16-3.  The transfer function includes the 
refiltering effects. 
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          Figure 16-3.  Transfer Magnitude 
 
 
Note that refiltering decreases the -3 dB point to -6 dB at the cutoff frequency of 30 Hz. 
 
The poles are those shown in Table 14-1.  The filter coefficients are shown in Table 16-1. 
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Table 16-1.  Filter Coefficients 
Stage Denominator Numerator 

1 
a(1)=  -1.943779       
a(2)=   0.9524443     
 

b(0)=   0.2166255E-02   
b(1)=   0.4332509E-02   
b(2)=   0.2166255E-02 

2 
a(1)=  -1.866892       
a(2)=   0.8752146     
 

b(0)=   0.2080568E-02   
b(1)=   0.4161135E-02   
b(2)=   0.2080568E-02 

3 
a(1)=  -1.825209       
a(2)=   0.8333458     
 

b(0)=   0.2034114E-02   
b(1)=   0.4068227E-02   
b(2)=   0.2034114E-02 

 
 
The stability results are shown in Figure 16-3.  The plot is focused on the lower right corner of 
the triangle.  Each of the three coordinates is close to the right leg of the triangle.  Nevertheless, 
each coordinate is sufficiently inside the boundary to yield good stability. 
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             Figure 16-3.  Stability Results 
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CHAPTER 17 
 
 

POWER SPECTRAL DENSITY VIA SUCCESSIVE BANDPASS FILTERING 
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Figure 17-1. 
 
 
A power spectral density can be calculated using bandpass filtering a shown in the 
following example. 

 
The NAVMAT P9492 power spectral density is shown in Figure 17-1.  A time history 
was synthesized to satisfy this specification, using the method in Reference 17-1.  The 
synthesized time history is shown in Figure 17-2. 
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Figure 17-2. 
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Figure 17-3. 
 
 
 

 
 
A power spectral density of the synthesized time history was calculated by bandpass filtering the 
time history over successive one-third octave bands.  The filter was a Butterworth sixth order 
filter.  The RMS value was calculated for each band.  The resulting power spectral density is 
shown in Figure 17-3 along with the specification.  The calculation details are shown in Table 
17-1. 
 
Again, G^2/Hz is an abbreviation for GRMS^2/Hz. 
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Table 17-1.  Successive Bandpass Filtering Results 

Center Freq 
(Hz) 

Lower Freq 
(Hz) 

Upper Freq 
(Hz) 

Bandwidth 
(Hz) GRMS PSD(G^2/Hz) 

20 17.82 22.45 4.631 0.067 9.73E-04 
25 22.27 28.06 5.789 0.116 2.33E-03 

31.5 28.06 35.36 7.294 0.177 4.28E-03 
40 35.64 44.9 9.263 0.271 7.93E-03 
50 44.54 56.12 11.58 0.405 1.42E-02 
63 56.13 70.72 14.59 0.608 2.53E-02 
80 71.27 89.8 18.53 0.841 3.82E-02 

100 89.09 112.2 23.16 1.001 4.33E-02 
125 111.4 140.3 28.95 1.128 4.40E-02 
160 142.5 179.6 37.05 1.268 4.34E-02 
200 178.2 224.5 46.31 1.420 4.35E-02 

250 222.7 280.6 57.89 1.579 4.31E-02 
315 280.6 353.6 72.94 1.749 4.19E-02 
400 356.4 449 92.63 1.830 3.62E-02 
500 445.4 561.2 115.8 1.850 2.96E-02 
630 561.3 707.2 145.9 1.849 2.34E-02 
800 712.7 898 185.3 1.843 1.83E-02 

1000 890.9 1122 231.6 1.838 1.46E-02 
1250 1114 1403 289.5 1.838 1.17E-02 
1600 1425 1796 370.5 1.790 8.65E-03 
2000 1782 2245 463.1 1.310 3.71E-03 

 
 
 

Reference 
 

17-1. T. Irvine, A Method for Power Spectral Synthesis Rev B, Vibrationdata 
Publications, 200. 
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                                                                    APPENDIX A 
 
 

FOURIER TRANSFORM OF A SINE FUNCTION 
 
 

 
Consider a sine wave 
 

[ ]x t A f t( ) sin $= 2π                                                                                      (A-1) 
 
where    

      -∞ < t < ∞     
 
 

The Fourier transform is calculated indirectly, by considering the inverse transform.  Note that 
the sine wave is a special case in this regard. 
 
Recall 
 

[ ]x(t) = X(f)exp + j2 f t df
-

π
∞
∞
∫                                                                            (A-2) 

 
Thus 
 

[ ] [ ]A f t X f j f t dfsin $ ( ) exp2 2π π= +
−∞
∞
∫                                                          (A-3) 

 

[ ] [ ] [ ]{ }A f t X f f t j f t dfsin $ ( ) cos sin2 2 2π π π= +
−∞
∞
∫                                        (A-4) 

 
 
Let 
 

X(f) = P(f) + j Q(f)                                                                            (A-5) 
 

where  
P(f) and Q(f) are both real coefficients  

 
and   

   -∞ < f < ∞. 
 

 

[ ] { } [ ] [ ]{ }A f t P f j Q f f t j f t dfsin $ ( ) ( ) cos sin2 2 2π π π= + +
−∞
∞
∫                             (A-6) 
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[ ] [ ] [ ]{ }
[ ] [ ]{ }

A f t P f f t Q f f t df

j P f f t Q f f t df

sin $ ( ) cos ( ) sin

( ) sin ( ) cos

2 2 2

2 2

π π π

π π

= −

+ +

−∞
∞

−∞
∞

∫

∫
                            (A-7) 

 
 
Equation (A-7) can be broken into two parts 
 

[ ] [ ] [ ]{ }A f t P f f t Q f f t dfsin $ ( ) cos ( ) sin2 2 2π π π= −
−∞
∞
∫                                 (A-8) 

 

[ ] [ ]{ }0 2 2= +
−∞
∞
∫j P f f t Q f f t df( ) sin ( ) cosπ π                               (A-9) 

 
Consider equation (A-8) 
 

[ ] [ ] [ ]{ }A f t P f f t Q f f t dfsin $ ( ) cos ( ) sin2 2 2π π π= −
−∞
∞
∫                              (A-10) 

 
 
Now assume  
 

P(f)=0                                                                       (A-11) 
 
With this assumption, 
 

[ ] [ ]A f t Q f f t dfsin $ ( ) sin2 2π π= −
−∞
∞
∫                                                     (A-12) 

 
 
Now let 

 
Q(f)= q1 (f) + q2 (f)                                                                                (A-13) 

 
 

[ ] [ ] [ ]A f t q f q f f t dfsin $ ( ) ( ) sin2 21 2π π= − +
−∞
∞
∫                                                 (A-14) 

 

[ ] [ ] [ ] [ ] [ ]A f t q f f t dt q f f t dfsin $ ( ) sin ( ) sin2 2 21 2π π π= − −
−∞
∞

−∞
∞

∫ ∫                     (A-15) 

 

[ ] [ ] [ ] [ ] [ ]A f t q f f t dt q f f t dfsin $ ( ) sin ( ) sin2 2 21 2π π π= − + −
−∞
∞

−∞
∞

∫ ∫                  (A-16) 
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Equation (A-14) is satisfied by the pair of equations 
 

( )q f
A

f f1 2
( ) $= − −δ                                                                  (A-17) 

 

( )q f
A

f f2 2
( ) $= − −δ                                                                  (A-18) 

 
where δ is the Dirac delta function. 
 
By substitution, 
 

 ( ) ( )Q f
A

f f
A

f f( ) $ $=
−

− + − −
2 2

δ δ                                                        (A-19) 

 
Verification must be made that equation (A-9) is satisfied.  Recall 
 

[ ] [ ]{ }0 2 2= +
−∞
∞
∫j P f f t Q f f t df( ) sin ( ) cosπ π                      (A-20) 

 

[ ] ( ) ( ) [ ]0 0 2
2 2

2= +
−

− + − −













−∞

∞
∫

?
sin $ $ cosj f t

A
f f

A
f f f t dfπ δ δ π              (A-21) 

 

[ ] [ ]0
2

2
2

2=
−

+ −







?
cos $ cos $j

A
f t

A
f tπ π                                    (A-22) 

 

[ ] [ ]0
2

2
2

2=
−

+







?
cos $ cos $j

A
f t

A
f tπ π                                    (A-23) 

 
 

0 = 0                                                                         (A-24) 
 
Recall the time domain function 
 

[ ]x t A f t( ) sin $= 2π                                                                  (A-25) 
 
                                                      where    -∞ < t < ∞     
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The Fourier transform is thus 
 

( ) ( )X f
jA

f f
jA

f f( ) $ $=
−

− + − −
2 2

δ δ                                                          (A-26) 

 

( ) ( ){ }X f
jA

f f f f( ) $ $= 







− − + − −
2

δ δ                                                          (A-27) 

 
 

 
 



 105

        APPENDIX B 
 
    
FILTER ARGUMENT 

 
 

Consider the points at s j= Ω0  on the s-plane and [ ]z j= exp ω0  on the z-plane. 
 
By substitution in to equation (14-21), 
 
 

[ ]
[ ]j
j

j
Ω0

0

0

1

1
=

−

+

exp

exp

ω

ω
                                                             (B-1) 

 
 

[ ] [ ]
[ ] [ ]j

j

j
Ω0

0 0

0 0

1

1
=

+ −

+ +

cos sin

cos sin

ω ω

ω ω
                                                   (B-2) 

 
 

[ ] [ ]
[ ] [ ]Ω0

0 0

0 0

1
=

+ −

− +

cos sin

cos sin

ω ω

ω ω

j

j j
                                                   (B-3) 

 
 

[ ] [ ]
[ ] [ ]{ }Ω0

0 0

0 0

1

1
=

− +

− + +

cos sin

sin cos

ω ω

ω ω

j

j
                                              (B-4) 

 
 
 

[ ] [ ]
[ ] [ ]{ }

[ ] [ ]{ }
[ ] [ ]{ }Ω0

0 0

0 0

0 0

0 0

1

1

1

1
=

− +

− + +













− − +

− − +













cos sin

sin cos

sin cos

sin cos

ω ω

ω ω

ω ω

ω ω

j

j

j

j
                     (B-5) 

 
 

[ ]{ } [ ] [ ]{ }{ } [ ]{ } [ ] [ ]{ }{ }
[ ] [ ]{ }

Ω0
0 0 0 0 0 0

2
0 0

2

1 1 1

1
=

− − − + + − − +

+ +













cos sin cos sin sin cos

sin cos

ω ω ω ω ω ω

ω ω

j j j
 

 
(B-6) 
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[ ] [ ] [ ] [ ]{ }
[ ] [ ] [ ] 











+ω+ω+ω

−ω−ω+ωω−
=Ω

10cos20
2cos0

2sin

10
2cosj0sin0sin0cos

0  

 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] 











+ω+ω+ω

ω−ω+ωω
+

10cos20
2cos0

2sin
0

2sinj0sin0sin0cos  

 
 

 (B-7) 
 
 

[ ]
[ ]Ω0

0

0

2

2 2
=

+













sin

cos

ω

ω
                                                                            (B-8) 

 
 

[ ]
[ ]Ω0

0

0 1
=

+













sin

cos

ω

ω
                                                                               (B-9)  

 
 






ω=Ω
2
0tan0                                                                                   (B-10) 

 
 

[ ]Ω0 0= tan πf T                                                                                (B-11) 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 


