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Figure 1.  Avionics Installation and Testing 

 

 

Introduction 

  

Avionics components in aircraft and launch vehicles may be mounted to surfaces which are 

exposed to high intensity acoustic excitation.  The external acoustic pressure field causes the 

panel and shell surfaces to vibrate.  This vibration then becomes a base input to any component 

mounted on the internal side.  Components must be designed and tested accordingly. 

 

The component vibration input levels can be derived via analysis and testing for a given sound 

pressure level.   

 

Acoustic testing of the structure can be performed in a reverberant chamber or using a direct 

field method.   There is some difficultly in testing, however, because the simulated acoustic field 

in the lab facility may be different in terms of spatial correlation and incidence than that of the 

flight environment even if the sound pressure level can be otherwise replicated. 

 

The vibroacoustic analysis techniques include finite element and boundary element methods, as 

well as statistical energy analysis.  These are powerful tools, but they require numerous 

assumptions regarding external acoustic pressure field type, coupling loss factors, modal density, 
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impedance, radiation efficiency, critical and coincident frequencies, distinguishing between 

acoustically fast and slow modes, etc.  

 

As an alternative, simple empirical methods exist for deriving the structural vibration level 

corresponding to a given sound pressure level.  Two examples are the Franken and Spann 

techniques. These methods may be most appropriate in the early design stage before hardware 

becomes available for lab testing and before more sophisticated analysis can be performed.   

 

The Franken method is given in References 1 and 2.  The Spann equation will be covered in this 

paper. 

 

The Spann method provides a reasonable estimate of the acoustically excited component 

vibration environments when only the areas exposed to the acoustic environment and mass are 

known, according to Reference 3. 

 

 

Spann Method 

 

This section describes the steps required to derive component vibration test specifications for 

typical aerospace structures subjected to high-intensity acoustic environments. The application of 

this prediction method is based on two conditions:  

 

1. Definition of the acoustic environment  

2. An adequate general understanding of structure and components to obtain estimates of 

mass and areas exposed to acoustic excitations  

 

 

Step 1 

 

The method begins with an external one-third octave band sound pressure level (dB). 

 

The sound pressure level SPL(fc) for band center frequency fc is converted into a pressure 

spectral density via the following equation.   

 

 

cSPL(f ) 10
2

P c
c

ref

10
W (f ) p

f

 
  

  
      Pa

2
/Hz                                                               (1)                                                                                                       

 

where  

 

ref
p  is the zero dB reference pressure (Pa) 

SPL(fc) is the sound pressure level (dB) 

cf  is the frequency bandwidth (Hz) 
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The typical zero dB reference is 

 

ref
p 20 Pa                                                                                                                    (2)         

 

 
22

refp 20 Pa                                                                                                                (3)                                                                                                                                  

                                                                                                                          

 

The RMS pressure in crmsp (f )  each band is 

 

c2 SPL(f ) 102
crms ref

p (f ) p 10 
 

                                                                                          (4)   

 

 

The pressure PSD is thus                                                                                                      

 
2

c
P c

c

rmsp (f )
W (f )

f



                                                                                                            (5) 

 

 

The one-third octave bandwidth is 

 

c cf 0.2316f                                                                                                                   (6) 

 

Preferred center frequencies are given in Appendix A. 

 

 

Step 2 

 

Estimate area A (m
2
) of the component and spacecraft support structure supporting the component 

exposed to acoustic excitation. 

 

Step 3 

 
Calculate total mass M (kg) of the component and support structure included in the above estimate in step 

2. 

 

Step 4 

 

Calculate, at each one-third-octave band frequency, the equivalent acceleration response A cW (f )  

(G
2
/Hz) using the following equation and the values of the pressure power spectral density P cW (f )  

(Pa
2
/Hz), area A (m

2
) and mass M (kg) calculated in steps 1, 2 and 3. 
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The acceleration power spectral density in one-third octave format for the component base input 

is 

                                                                                 

2 2
A c P c

2
A

W (f ) Q W (f )
gM

 
   

 
         (G

2
/Hz)                                                                    (7)                                                                                                                

 

 

where 

 

β is recommended as 2.5 per experimental data 

Q is the amplification factor recommended as 4.5 

g is the gravitational constant 9.81 m/sec
2
 

 

Note that the suggested values for β and Q are taken from Reference 3. 

 

The derivation of equation (7) is given in Appendix B. 

 

 

Step 5 

 

Iterate steps 2, 3 and 4, using different values of the input parameters to determine maximum A cW (f )  

response curve.  

 

 

Example 

 

An example is given in Appendix C 
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APPENDIX A 

 

 

Preferred One-Third Octave Bands 

 

1/3 Octave Bands 

Lower Band Limit  
(Hz) 

Center 
Frequency(Hz) 

Upper Band Limit  
(Hz) 

14.1 16 17.8 

17.8 20 22.4 

22.4 25 28.2 

28.2 31.5 35.5 

35.5 40 44.7 

44.7 50 56.2 

56.2 63 70.8 

70.8 80 89.1 

89.1 100 112 

112 125 141 

141 160 178 

178 200 224 

224 250 282 

282 315 355 

355 400 447 

447 500 562 

562 630 708 

708 800 891 

891 1000 1122 

1122 1250 1413 

1413 1600 1778 

1778 2000 2239 

2239 2500 2818 

2818 3150 3548 

3548 4000 4467 

4467 5000 5623 

5623 6300 7079 

7079 8000 8913 

8913 10000 11220 

11220 12500 14130 

14130 16000 17780 

17780 20000 22390 
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The previous table is taken from: 

 

http://www.engineeringtoolbox.com/octave-bands-frequency-limits-d_1602.html 

 

 

Note the following relationships. 

 

fl Lower band frequency 

fc Band center frequency 

fu Upper frequency 

 

 

 

f f fc u l                                                                                                                 (A-1) 

 
1/6f 2 fu c                                                                                                                (A-2) 

 
1/6

lf f / 2c                                                                                                               (A-3) 

 

For two consecutive bands, 

 

i 1 if , f ,c c                                                                                                               (A-4) 

 

 

The preferred frequencies in the previous table approximately satisfy this set of formulas. 

  

http://www.engineeringtoolbox.com/octave-bands-frequency-limits-d_1602.html
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APPENDIX B 

 

Derivation 

The following is taken from Reference 4.  The baffled simply-supported plate in Figure B-1 is 

subjected to a uniform pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-1.    

 

 

The following equations are taken from Reference 4. 
 

 

The governing differential equation is  
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The plate stiffness factor D is given by 

 

 

 2

3

112

Eh
D


                                                                                         (B-2) 
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where 

E is the modulus of elasticity 

 Poisson’s ratio 

h is the thickness 

  is the mass density (mass/volume) 

P is the applied pressure 

 

 

Now assume that the pressure field is uniform such that 

 

)t,y,x(P)t(W                                                                                                 (B-2) 

 

 

The differential equation becomes 
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The mass-normalized mode shapes are 
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The natural frequencies are 
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The participation factors for constant mass density are 

 

dxdy)y,x(Zh mn
b

0

a

0mn                                                                          (B-6)   
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     1mcos1ncos
nm

hba2

2mn 

















                                                   (B-7)    

 

 

 

The displacement response Z(x, y, ) to the applied force is 
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(B-9)                                                    
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The velocity response V(x, y, ) to the applied force is 
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(B-11)                                                    

The acceleration response A(x, y, ) to the applied force is 

 

   
     

  








































 







 














 





1m 1n mnmn
22

mn

2
mn

2
2j

b

yn
sin

a

xm
sin1mcos1ncos

nm
W

h

4
,y,xA  

 (B-12)      

 

The acceleration response  cA  due to the first mode only at the center is  
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Assume resonant excitation and response for conservatism. 
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For band center frequency cf . 
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Let 
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Let 

 

AW  = acceleration power spectral density at the center of the plate 

 

pW = uniform pressure power spectral density 
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APPENDIX C 

 

Example 

 

 

 
 

Figure C-1. 

 

An avionic box is mounted to a surface with the following parameters. 

 

β 2.5 

Q 4.5 

M 10 lbm 

A 400 in^2 

 

The external mounting surface is subjected to the sound pressure level in Figure C-1. 
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Figure C-2. 

 

 

The resulting acceleration PSD is shown in Figure C-2.  This would be the base input for the 

avionics component. 


