
 

THE NATURAL FREQUENCY OF A RECTANGULAR PLATE  

WITH FIXED-FREE-FIXED-FREE BOUNDARY CONDITIONS 

Revision A 

 

 

By Tom Irvine 

Email: tom@irvinemail.org 

 

July 9, 2023 

______________________________________________________________________________ 

 

 

Introduction 

 

The Rayleigh method is used in this tutorial to determine the fundamental bending frequency.  A 

displacement function is assumed which satisfies the geometric boundary conditions.  The 

geometric conditions are the displacement and slope conditions at the boundaries.  The assumed 

displacement function is substituted into the strain and kinetic energy equations. 

 

The Rayleigh method gives a natural frequency that is an upper limit of the true natural 

frequency.  The method would give the exact natural frequency if the true displacement function 

were used.  The true displacement function is called an eigenfunction. 

 

Consider the rectangular plate in Figure 1.  The largest dimension may be either a or b. 

 

 

 
       

 

 

 

 

 

 

 

 

 

 

 

 

               Figure 1. 
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Let Z represent the out-of-plane displacement.   The total strain energy V of the plate is 
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Note that the plate stiffness factor D is given by 
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where 

 

E = elastic modulus 

h = plate thickness 

μ = Poisson's ratio 

 

 

The total kinetic energy T of the plate bending is given by 
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where 

 

ρ = mass per volume 

Ω = angular natural frequency 

 

 

 

Rayleigh's method can be applied as 

 
         maxmax VT =     =   total energy of the system                                     (4) 

 
  



Fixed-Free-Fixed-Free Plate 

 

Consider the plate in Figure 2.   

 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  Figure 2. 

 

 

Seek a displacement function Z(x, y).  The geometric boundary conditions are 

 

Z(−b/2, y) = 0        and      Z(+b/2, y) = 0                                                  

 

(5) 

 

∂Z

∂x
= 0     at  (±b/2, y) = 0 

 

 

(6) 

 

 
My  is the moment along the y-axis. 
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Note that the twist is 

 

Mxy = −D [(1 − μ)
∂2Z

∂x ∂y
]
 

 

(8) 

 

yQ  is the shear along the y-axis. 
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The candidate displacement function is 

 

Z(x, y) = V(x)[1 + α cos(θy)]    
 

(10) 

                      

V(x) = [cosh(βx) − cos(βx)] − [
sinh(βL) + sin(βL)

cosh(βL) − cos(βL)
] [sinh(βx) + sin(βx)]

 

 

(11) 

 

    where 

 

             β = 4.73004 / b 
 

             b  is the free edge length        

 

 

The derivatives are 
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∂

∂y
Z(x, y) = −V(x)[αθ sin(θy)]
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Z(x, y) = −V(x)[αθ2 cos(θy)]
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The candidate displacement function satisfies the geometric boundary conditions.  But it does 

not satisfy the moment, twist, and shear boundary conditions. 

 

Now equate the total kinetic energy with the total strain energy per Rayleigh's method, equation 

(3). This is done numerically via the computer program in Appendix A.  The integrals are 

converted to series form for this calculation. 

 

Solve for Ω.  Select α and β values to minimize Ω via trial-and-error.   

 

The natural frequency fn is  

 

fn ≈
1
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A more proper equation is 

 

fn ≤
1

2π
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Verification 

 

The following formula taken from Steinberg’s text can be used as an approximation to check the 

Rayleigh natural frequency result.  The variable b is the free edge length. 
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The ρh term in the above equation is the mass per surface area. 

 

 

Example 

 

 

 

Figure 3. 

 

 

A fixed-free-fixed-free aluminum plate has dimensions:  

 

Fixed Edge = 6 in 

Free Edge = 4 in 

Thickness = 0.063 in   

 

 

The elastic modulus is 1.0e+07 lbf/in^2.   

 

The mass density is 0.1 lbm/in^3, or 0.000259 lbf sec^2/in^4. 

 



The fundamental frequency is 839.4 Hz, as calculated using the trial-and-error Rayleigh method 

outlined above.   

 

The expected natural frequency range per equation (19) is:  fn  ≈   833.6   Hz. 

 

The resulting mode shape is shown in Figure 3.   

 

 

The modal displacement equation is 

 

Z(x, y) = V(x)[1 + α cos(θy)]    
 

(20) 

                      

V(x) = [cosh(βx) − cos(βx)] − [
sinh(βL) + sin(βL)

cosh(βL) − cos(βL)
] [sinh(βx) + sin(βx)]

 

 

(21) 

 

 

where                                                                                                                                                                           

 

β = 4.73004 / b 

b = free edge length                             

α = -0.8577      

  = 0.09913 

 

 

 

 

The Rayleigh method accuracy can be improved using the Rayleigh-Ritz method. 
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