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Derivation of the Equation of Motion

Consider a single-degree-of-freedom system.
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where

is the mass

is the viscous damping coefficient

is the stiffness

is the absolute displacement of the mass
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Note that the double-dot denotes acceleration.

The free-body diagram is

Summation of forces in the vertical direction

D F= mk (A-1)



mX = —cX —kx (A-2)

mX +cXx +kx =0 (A-3)

Divide through by m,

x+(ijx+(§x:0 (A-4)

By convention,

(¢/m)=2&w,
(k/m) = 0, >
where
W, is the natural frequency in (radians/sec),
¢ is the damping ratio.
By substitution,
K+ 28w, X + W2 x =0 (A-5)

Now take the Laplace transform.

;ﬁ{i&+2§wnk+wn2x} =/ (A-6)

s2 X(s) - sx(0) —%(0)

+2&w,sX(s) -2 {w,x(0) (A-7)

+w,2 X(s) =0

{s2 +28w, s+ 00,2 } X(s) +{ =1 %(0) +{ -s 2 £y} x(0) =0 (A-8)
{2 +280,s+ 0,2 } X(s) =x(0) +{s +2 £} x(0) (A-9)



X9 :{X<0>+{s+26wn} x(m}

s? +28w, s+ W, 2
Consider the denominator of equation (A-10),
2 2
2 +28wps+wy? =(s + 8, )" + 2 (&)
s? +28Ww,s + W, 2 :(s + Ewn)z + %2(1 - Ez)
Now define the damped natural frequency,
Wy = Wy1- &

Substitute equation (A-13) into (A-12),

2 42kw,sra,? (s i) vy

X9 = {X(O) +{s+28w, x(O)}

(s+Ewn)2 + Wy

(s+8wn)x(0) } +{ (0) + (E0p Jx(0)

X =
(s) {(S+ Ewn)z + 02

(s+ Ewn)2 + Wy

%(0) + (£, )x(0) .,

X(s) = { ( [s+200)x©) }+ { g

2
s+Ew, )" + 0,2

(s + Ewn)2 +wy2

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)



Oscillatory Motion

Now take the inverse Laplace transform using standard tables. Assume that & <1. This
case is referred to as oscillatory motion.

The resulting displacement is

xm:exp(—awnt){[x<o>]cos(wdt){"‘“’)*(Ewn)"m’}m(wdt)}, <1

W4
(B-1)

An alternate form is

x(t) = Lﬂ exp(— £y, twg [x(0)] cos(oag t) + [%(0) + (Ewy )x(0)]sin(cogt} ,  E<1

(B-2)
The velocity is
x(t) = {_i(:n } exp(— &wy, t){(,od [x(O)] cos((,od t) + [X(O) + (ann )X(O)] sin((,od t}
+ exp(— £y t - wq [x(0)] sin(wq t) +[%(0) + (Ewy, )x(0)] cos(wq t}, & <1
(B-3)
x(t) = exp(— &wy t){— &wy [X(O)] cos((,od t) + { _fo(:;n }[X(O) + (Ewn )X(O)] sin((,od t)}
+ exp(— £y, t - wq [x(0)] sin(wq t) +[%(0) + (Ewy, )x(0)] cos(wq t}, & <1
(B-4)

x(t) = exp(~ oy t){X(O) cos(wgt) + {— wg[x(0)] + {‘i‘jﬂ }[X(O) +(Ewy )x(O)]:I sin(wg t)} :

§<1

(B-5)



= - —0yg t ’ hz + ~8n |, 0) sin(oodt)} ,
x(t) exp( Eo.)nt) x(0) cos\wy

(B-6)
£<1

= - 0 wdt)+|— ||| —w 2 —22 2 x(0) +| ——1 }X(O)}sin(wdt)},
)'() S(dt){l}ﬁ d }(){
X(t) exp( Ewn't {x co Wn

£<1

(B-7)

%(t) = exp(~ £y t){X(O) cos(wgt) + { }ﬂ_ 0,2 (1 _g2 )_ £20,,2

1
Wq

- . . t ,
x(0) + {Z—Z’H}X(O)} sin(wg )}

£<1

(B-8)

(1) =

- . . t ,
x(O){ Z?H}X(O)}Sln(wd )}

£ <1

(B-9)

|
- 'O)sin(oodt)}, €<
(0) cos(w t)*{L}[‘wﬁ x(0) = &wy X(

K(0 =expl=Ean th KO cos{wg ) +| -

(B-10)



Critically Damped Motion

Recall,
wg = Wy y/1-& (C-1)

Consider the special case where
§=1 (C-2)
The damped natural frequency changes to

wq =0 (C-3)

This case is referred to as critically damped motion. Substitute equations (C-2) and (C-3)
into equation (A-16),

(s + 0y )x(0) | | %(0) + 0, x(0)
X(s) = C-4
¥ { branf | | Gran) Y
_[ x(0) |, | %(0) + w,x(0) ]
X(”‘{smn}’L{ s+ )’ } o

The resulting displacement is found via an inverse Laplace transformation.

x(t) = exp(~ @y ] [x(0)] +[ x(0) + w, x(0) t}, E=1 (C-6)



Non-oscillatory Motion

Now consider the special case where
£>1

Recall equation (A-10), restated here as equation (D-2).

2

X(s) = {X(O) +s + 280y} xé@}
$° + 28wy s + Wy

Solve for the roots of the denominator.

_ - 280, #1280, ) — 40,
2

51,2

o

| =2 20y /E 2~ 1
2

Note that

51—52:%[‘§+\/ﬁ }‘%[‘E‘\/ﬁ }
51—52:%[‘§+\/ﬁ }+wn[§+\/ﬁ }

S1 =Sy = 2w, 52—1

(D-1)

(D-2)

(D-3)

(D-4)

(D-5)

(D-6)

(D-7)

(D-8)



Equation (D-2) can be rewritten as

(D-9)

X(s) = {X(O) +{s + 28w} x(O)}

ls=s1 ]ls =55

(D-10)

X(s) = {X(O)S +[x(0) + 2Ewnx(0)]}

ls=s1][s -s2]

Equation (D-10) can be expanded in terms of partial fractions using the following
equation from Reference 1.

il B e

The expansion is performed in equation (D-12).

{X(O)S +[x(0)+ 2Ewnx(0)]}
[s s [[s-so]

_ { ! } H[xw) + 2800 X(0)] + x(0)s } { ~x(0)s3 = [%(0) + 28w, x(0)] } }

- —Sp t51 S—S1 S—S)

(D-12)

X(s) = { ! } { {[5«(0) + 280, x(0)] + x(0)s } { - x(0)s2 = [%(0) + 20 x(0) } }

—Sp t81 S—S1 S—S»o

(D-13)



Take the inverse Laplace transform.

x(t) = ! {Aexp(slt) +Bexp(szt)}
-8y t59

where
A = [x(0) + 2803, x(0)] + x(0)s;

B = ~x(0)s7 ~[%(0) +2&wy x(0)
(D-14)

Apply the appropriate terms to equation (D-14).
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where
A = [%(0) + 28w, x (0)] + x(0)w,, [—z + 4821 }
B = —x(0)wy [— g- 4821 } ~ [x(0) +2&w, x(0)]

(D-15)

Simplify

“{—FH{ BRI  E|

where
A = %(0) + 280w, x(0) — Ex(0)wy, + x(0)w, & 2-1
B = &x(0)wo, + x(0)00y E2-1 —%(0) - 2800, x(0)

(D-16)



Simplify again,

x(t) = ﬁ\/ﬁ {Aexp{ [—E + \/Z }wnt}+Bexp{ [—E - E2—1 }wnt}}

where

A =%(0) +oonx(0)[z +\/52—1}
B=—4(0) + wnx(O)[—z ; \/22—1}

(D-17)

Control Theory

The transfer function denominator forms the characteristic equation, when it is set to
Zero.

The roots of the characteristic equation are called poles and have a crucial importance.
The system is stable if the real part of each root is negative.

The roots of the transfer function numerator are called the zeros.

Again, the transfer function for the single-degree-of-freedom subjected to free vibration
is

%(0) +{s +2&w,} x(0)
X(s) = E-1
® { s? +28w,s+ W, } (E-D
An alternative form is
o= O {s+280,} x(0) )

(s+ Ewn)2 + Wy

10



The characteristic equation is thus

(s+&wy)? +g? =0

The poles are thus
s=-&wp Tjuqg

Or

The system is stable as long as & wy,, > 0.

State Space Model

The governing second-order ODE can be reduced to a pair of first-order ODEs.

K+ 2800, X + W2 x = 0

Let

X9 +28wy X2 +w§><1 =0

The resulting pairs are

X]1= X2

X9 =-28wp X3 _ngl

11

(E-3)

(E-4)

(E-5)

(F-1)

(F-2)

(F-3)

(F-4)

(F-5)

(F-6)



The pair of equations can be expressed in matrix form as

X1 _ 0 1 X1 (F-7)
X9 _(*)I% -28wy |[ X2

Solve for the eigenvalues of he coefficient matrix.

aet| ° A NEL (F-8)
w2 —28w, -2 |
def| : =0 (F-9)
w2 —28w, -2 |

A + 28w A + w2 =0 (F-10)

The eigenvalues are

A=-Eoy *juyg (F-11)

The eigenvalues are the same as the poles.

The complete solution for equation (F-7) is given in Reference 2.
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