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FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B 
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Derivation of the Equation of Motion 
 
Consider a single-degree-of-freedom system. 
 
 
 
 
 
 
 
 
 
 
where 
 

 
m is the mass 
c is the viscous damping coefficient 
k is the stiffness 
x is the absolute displacement of the mass 

 
  
Note that the double-dot denotes acceleration. 
 
The free-body diagram is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Summation of forces in the vertical direction 
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mx cx kx&& &= − −                                                                                                     (A-2) 
 

mx cx kx&& &+ + = 0                                                                                                  (A-3) 
 
 
Divide through by m, 
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By convention, 
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where  
nω  is the natural frequency in (radians/sec),  

ξ  is the damping ratio. 
 

By substitution, 
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Now take the Laplace transform. 
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Consider the denominator of equation (A-10), 
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Now define the damped natural frequency, 
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Substitute equation (A-13) into (A-12), 
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Oscillatory Motion 
 

Now take the inverse Laplace transform using standard tables.  Assume that .1<ξ   This 
case is referred to as oscillatory motion.   
 
The resulting displacement is 
 
 

( ) [ ] ( ) ( ) ( ) 1,tsin
)0(x)0(x

tcos)0(xtexp)t(x d
d

n
dn <ξ













ω







ω

ωξ+
+ωωξ−=

&
                  

 
(B-1) 

 
An alternate form is 
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The velocity is 
 

( ) [ ] ( ) ( )[ ] ( ){ }

( ) [ ] ( ) ( )[ ] ( ){ } 1,tcos)0(x)0(xtsin)0(xtexp

tsin)0(x)0(xtcos)0(xtexp)t(x

dnddn

dnddn
d

n

<ξωωξ++ωω−ωξ−+

ωωξ++ωωωξ−







ω

ωξ−
=

&

&&
       

 
(B-3) 

 

( ) [ ] ( ) ( )[ ] ( )

( ) [ ] ( ) ( )[ ] ( ){ } 1,tcos)0(x)0(xtsin)0(xtexp

tsin)0(x)0(xtcos)0(xtexp)t(x

dnddn

dn
d

n
dnn

<ξωωξ++ωω−ωξ−+













ωωξ+







ω

ωξ−
+ωωξ−ωξ−=

&

&&
       

 
(B-4) 

 
 
 

( ) ( ) [ ] ( )[ ] ( )

1

,tsin)0(x)0(x)0(xtcos)0(xtexp)t(x dn
d

n
ddn

<ξ













ω











ωξ+








ω

ωξ−
+ω−+ωωξ−= &&&

       
 (B-5) 



 5

 
 

( ) ( ) ( )

1

,tsin)0(x)0(xtcos)0(xtexp)t(x d
d

n
d

2
n

2
ddn

<ξ













ω



















ω

ωξ−+












ω
ωξ−+ω−+ωωξ−= &&&

       

 (B-6) 
 
 

( ) ( ) ( )

1

,tsin)0(x)0(x1tcos)0(xtexp)t(x d
d

n2n22d
d

dn

<ξ













ω



















ω

ωξ−
+



 ωξ−ω−








ω

+ωωξ−= &&&

       
 (B-7) 

 
 

( ) ( ) ( )[ ] ( )

1

,tsin)0(x)0(x11tcos)0(xtexp)t(x d
d

n2
n

222
n

d
dn

<ξ













ω



















ω

ωξ−
+ωξ−ξ−ω−








ω

+ωωξ−= &&&

       
 (B-8) 

 
 

( ) ( ) [ ] ( )

1

,tsin)0(x)0(x1tcos)0(xtexp

)t(x

d
d

n2
n

22
n

22
n

d
dn

<ξ













ω



















ω

ωξ−+ωξ−ωξ+ω−







ω

+ωωξ−

=

&&

&

  
 (B-9) 

 
 

( ) ( ) [ ] ( ) 1,tsin)0(x)0(x1tcos)0(xtexp)t(x dn
2

n
d

dn <ξ












ωωξ−ω−







ω

+ωωξ−= &&&        

 (B-10) 
 
 



 6

 
 
Critically Damped Motion 
 
Recall, 

2
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Consider the special case where   
 

1=ξ                                                                                                              (C-2)   
 
The damped natural frequency changes to  
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This case is referred to as critically damped motion.  Substitute equations (C-2) and (C-3) 
into equation (A-16), 
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The resulting displacement is found via an inverse Laplace transformation. 
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Non-oscillatory Motion 
 
Now consider the special case where   
 

1>ξ                                                                                                              (D-1)   
 
Recall equation (A-10), restated here as equation (D-2).  
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Solve for the roots of the denominator. 
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Equation (D-2) can be rewritten as 
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Equation (D-10) can be expanded in terms of partial fractions using the following 
equation from Reference 1. 
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The expansion is performed in equation (D-12). 
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Take the inverse Laplace transform. 
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Apply the appropriate terms to equation (D-14). 
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Simplify 
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Simplify again, 
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Control Theory 
 
The transfer function denominator forms the characteristic equation, when it is set to 
zero.  
 
The roots of the characteristic equation are called poles and have a crucial importance.   
The system is stable if the real part of each root is negative. 
 
The roots of the transfer function numerator are called the zeros. 
 
Again, the transfer function for the single-degree-of-freedom subjected to free vibration 
is 
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An alternative form is 
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The characteristic equation is thus 
 

( ) 02
d

2
ns =ω+ωξ+                                                                                         (E-3) 

 
 
 
The poles are thus 
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The system is stable as long as nωξ  >  0. 
 

 
State Space Model 
 
The governing second-order ODE can be reduced to a pair of first-order ODEs. 
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The pair of equations can be expressed in matrix form as 
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Solve for the eigenvalues of he coefficient matrix. 
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The eigenvalues are 
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The eigenvalues are the same as the poles.   
 
The complete solution for equation (F-7) is given in Reference 2. 
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