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Introduction

The mass condensation method is taken from Reference 1. Guyan (1965) and Irons
(1965) developed this method independently. The method is appropriate for the case
where the inertia forces associated with some of the displacements are greater than those
associated with other displacements.

The significant displacements are referred to as “master” displacements. The
insignificant displacements are referred to as “dave” displacements. Note that
displacements are also considered as degrees-of-freedom.

The method assumes that the elastic forces transmitted by the master displacements are
much greater than the inertia forces on the dave displacements for the lower frequency
modes. The dave displacements are thus assumed to move quasi-statically with the
master displacements.

The procedure is to sort each displacement into these two categories. The Save
displacements are then eliminated from the eigenvalue problem. This step reduces the
size of the problem, but the resulting accuracy isless.

In certain structural dynamics problems, there are both trandlational and rotational
displacements. The trandation displacements can often be regarded as the masters,
whereas the rotational displacements are considered as slaves.

A genera rule-of-thumb is to select the slave displacements as those with a high
stiffness-to-mass ratio.

The generalized eigenvalue problem in structural dynamics has the form

Ku=AMu D)

where

is the stiffness matrix

P

M isthe mass matrix

U isthe displacement eigenvector



A istheeigenvalue

The potential energy V is

The over-bar has been omitted from the u terms for brevity.

Thekineticenergy T is

T=2uTmu
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Divide the displacement vectorsinto the master vectors u; and slave vectors uo.
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Partition the mass and stiffness matrices as follows.
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For brevity, the partition lines are omitted from the following equations.
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By substitution,
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Take the partial derivative with respect to the slave vector.
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Assume no applied forces in the direction of the slave displacements.

Kojug +Kopup =0
Kaouo =-Kojug

_ -1
up =-Koo = Koqug

Substitute equation (18) into the displacement eigenvector (4).
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—Ka22 = Ko1ug
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Define a constraint matrix C.

u=Cup

|
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Matrix | isthe identity matrix.
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Transform the mass and stiffness matrices. The resulting matrices are the respective
condensed matrices.

M;=CTK C (23)

Ki=CTK C (24)
Substitute the condensed matrices into the generalized eigenval ue problem.
Kiu=AMju (25)

An exampleisgivenin Appendix A.
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APPENDIX A

Example

The mass condensation method is demonstrated by an example. Consider a finite
element mode of the bending vibration of beam with free-free boundary conditions.

The mass and stiffness matrices are taken from Reference 2.



The stiffness matrix is
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Choose three master degrees-of-freedom on the basis of alow stiffness-to-mass ratio.



Reconfiguration the rows and columns such that the eigenvector is

Y1
y2
Y3

A-4
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The adjusted stiffness matrix is

(12 -12 0 6 6 0]
-12 24 -12 -6 0 6
0O -12 12 0O -6 -6

K = (A-5)
6 -6 0 4 2 O
6 0 -6 2 8 2
0 6 -6 0 2 4]
Partition the stiffness matrix.
K K
K = { 11 12} (A6
K21 K22
12 -12 0
Kig = |-12 24 -12 (A-7)
0 -12 12
6 6 0
Kip = |-6 0 6 (A-8)



The adjusted mass matrix is
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Partition the mass matrix.

M
M = { 11
M21

156

<
=
=
|

0

22
Mo = |13
0

54

54 312

54

13
0

-13

MlZ}
Moo

54

54

-13
0
13

N
N 0O DN

54
156

13
-22

0

94 312 54

156

0
-13

- 22

A N O

-13 0 |
0 -13
13 -22
-3 0
8 -3
-3 4

(A-9)

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)



22 13 0
Moy = |-13 O 13
0 -13 -22
4 -3 0
Mo = |-3 8 -3
' 0 -3 4

Form aconstraint matrix.

|
-K22 "K2op

1 0 0
0 1 0
0 0 1
C=
- |-125 15 -0.25
-0.5 0 0.5
025 -15 1.25 |

Calculate the reduced stiffness matrix.

Ki=CTKC

15 -3 15
Ki=| -3 6 -3

15 -3 15

Calculate the reduced mass matrix.
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Mi=CTK C (A-21)

1195 585 -205
Mq=| 585 408 585 (A-22)
-205 585 1195

The reduced eigenvalue problem is

K1u=)\M1u (A-23)

The eigenvalues for the reduced problems are

0
0 (A-24)
0.0751
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The eigenvalues for the full problem are

0

0
0.0748
A = (A-25)
0.7329
45823

116957 |

Thefirst two eigenvalues correspond to rigid-body modes.
The third eigenvalues are nearly equal, with an error of 0.4%.
Note that the natural frequencies are proportional to the square root of the respective

eigenvalue. The error in the third natural frequency would be only 0.2%.
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