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Introduction

This tutorial is based on the analytical methods for multispan beams presented in
References 1 through 3.

The approach for finding the natural frequency of a beam on multiple supports is to
consider the section between each pair of supports as a separate beam with its origin at
the left support of each section. The equations for adjacent beams must be reconciled at
their common boundary.

The governing equation for the lateral or transverse vibration of a beam is

4 2
B =p" ) (1)
OX ot
where

E = Mass
I = viscous damping coefficient
P = mass per length
y = lateral displacement

Separation of variables yields the following spatial equation.
4

d 2] p
dx—4Y(x)—c {E}Y(X) =0 (2)

Separation of variables yields the following spatial equation.

Y(X)=a1 sinh(ﬁx) +ao cosh(Bx) +a3 sin(Bx) +aq cos(ﬁx) (3)



d\;f(x) =a1f cosh(Bx) +asp sinh(Bx) +asf COS(BX) —a4P Sin(Bx) (4)
2

d dIZ(X) = al[%z sinh(Bx) + a2B2 cosh(Bx) - ang sin(Bx) - a4[32 cos(Bx) (5)
3

d Yéx) — a1B3 cosh(Bx)+ aZB?’ sinh(Bx) - a3[33 cos(Bx)+ a453 sin(Bx) ®)
dx

The constant value c is equation 2 is related to the other variables as follows.

c? =Bn4{5} 1)
P

The subscript n denotes that there are multiple roots, or natural frequencies, which satisfy
the governing equation. The constant c is actually the natural frequency, with dimensions
of radian per time.
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APPENDIX A

Clamped-Pinned-Clamped Beam

Consider the beam in Figure A-1. For the case of two segments, the x-coordinates can be
defined as starting from opposite ends.
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Figure A-1.

The boundary conditions at the fixed end for the first segment are

Y1 |X o =0 (zero displacement) (A-1)
dﬂ =0 (slope) (A-2)
dX]_ X1=O

The boundary conditions at the intermediate pinned location for the first segment are

Y1 |Xl= . =0 (zero displacement) (A-3)



The boundary conditions at the intermediate pinned location for the second segment is

YZ|X2:b =0 (zero displacement)

An additional constraint at the intermediate pinned location is

dyy = _dyp (equal slope but opposite polarity)
2 2
d%y1 __9% (equal bending moment)
dx,? dx 52
1 Xl =a 2 X2 :b

The boundary conditions at the fixed end of the second segment are

y2 |X2 o =0 (zero displacement)
@2 =0 (slope)
dX2 X, =0

Eight constraints are thus defined.

Consider the first segment.
Y1(x1) = ag sinh(Bxq ) +ay cosh(Bxq )+az sin(Bxq )+ a4 cos(Bx1)
Apply boundary condition (A-1).
ar+ay =0

ag =-a

(A-4)

(A-5)

(A-6)

(A-7)

(A-8)

(A-9)

(A-10)

(A-11)



The displacement equation thus simplifies to
Y1(xq) =ag sinh(Bxy ) +az[cosh(Bxy ) - cos(Bx1)]+azsin(Bxy )

The first derivative is

dd71 Y1(xq) =agPcosh(Bxy)+aoBlsinh(Bx1 )+ sin(Bxy )]+ agpcos(pxy )

Apply boundary condition (A-2).

alf+aszp=0

The beta term must be nonzero for a nontrivial solution. Thus

ajz =—aj

The displacement equation is thus

Y1(x1) =ay[sinh(Bxq )—sin(Bxq )]+ a2 [cosh(Bx ) —cos(Bxq )]

Apply boundary condition (A-3).

a[sinh(pa)—sin(Ba)|+a,[cosh(Ba)— cos(Ba)] =0

The displacement equation is thus

1) = a3 sinh(Bx: ) —sin(Bx _ [sinh(Ba)-si
Yib)= 1{[ n(pxy)-sin(pxy )] [cosh(Ba)— cos(Ba)

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)

(A-18)

.n([_),a)]] [COSh(BXI) — COS(B Xl)]}

(A-19)



The first derivative is

[sinh(pa) —sin(§a)) sinh(Bxq )+sin{Bx
[cosh(Ba)—cos(Ba)][ h(B 1) (B 1)]}

di Yi(x1) = 313{[005h(l3xl)‘ cos(Bxa )]
X1

(A-20)

The second derivative is

i x1) = a1p24 [sinh(Bxq ) + sin(Bx _[sinh(Ba)—sin(Ba)] cosh(pxy )+ cos(Bx
o va00) = (o) s - TS st o
(A-21)
The displacement equation is thus
Y1(xq) = [Cosh(Ba){ os(pa)] {{cosh(pa)— cos(pa)[sinh(Bx ) - sin(Bxq )
+ ! sinh(pa)—sin(Ba)]cosh(Bx1)— cos(Bx
[cosh(Ba)—cos(Ba)]{[ h(B ) (B )][ h(B 1) (B 1)]}
(A-22)

The first derivative is

a - a1p
Y100 = osh(Ba) - cos(pal]

Xm
~agp | o |
oo eoa(pay M (82) - sin(pa)lsinn(pxy) +sinpxy )

{[cosh(Ba)— cos(Ba)Jcosh(Bx1) - cos(Bxq )]}

(A-23)



The second derivative is

9 =S8 feosn(pa)- cos(pafsinn(Bxs )+ sinxo )
dx2 — ~ [cosh(pa)-cos(pa)] . .
+ _alﬁz sinh(Ba)—sin(Ba)|cosh(Bx1 )+ cos(BXx
lcosh(pa)— cos(pa)] (= (B2) —sin(Ba)lcosh(pxy ) + cos(p 1)]}( N
A-24
Evaluate the derivatives at the intermediate boundary.
4 = a1 cosh(Ba)— cos(fa)|cosh(pa)— cos(fa
dxq Y1 - [cosh(Ba)—cos(Ba)]{[ h(B ) (B )][ h(B ) (B )]}
+ —aip sinh(Ba)—sin(Ba)]sinh(pa)+sin(Ba
[cosh(pa)  cos(pay] o (B2)-sin(Ba)lsinh(pa) + sin(pa)} .
A-25

- °gp osh?(Ba)— 2cosh(pa)cos(Ba)+ cos (Ba
:a_[cosh(ﬁa)—cos(ﬁa)]{C h<(Ba)—2cosh(Ba)cos(pa) (B )}

* —ap inh2(Ba)—sin?(Ba
[cosh(Ba)—cos(Ba)]{S h<(Ba) (& )}

(A-26)
d a1B[2—2cosh(Ba)cos(Ba)]
i A-27
dxg X, = [cosh(Ba) - cos(Ba)] (A-27)
4 _ 2p[1—cosh(pa)cos(pa)] _
dxq 1 X, =a ~ [cosh(Ba)—cos(pa)] a (A-28)



d* Y. = ap” {[cosh(Ba)— cos(pa)[sinh(Ba)+ sin(Ba)]}
dx,2 1 a [cosh(Ba)— cos(Ba)]
+ _a1B2 sinh(pBa )—sin(Ba )| cosh(Ba )+ cos(Ba
lcosh(pa)— cos(pa)] (="(B2)—sin(Ba)lcosh(pa) + cos(pa)}
(A-29)
2
dfl(l2 " x1=a:

a1B2 {cosh(Ba )sinh(Ba)— cos(Ba)sinh(Ba)+ sin(Ba)cosh(Ba)— cos(Ba)sin(Ba)}
[cosh(Ba)— cos(Ba)]
~ ayB? {cosh(Ba)sinh(Ba)- sin(Ba)cosh(Ba)+ cos(Ba)sinh(Ba) — cos(Ba)sin(Ba)}
[cosh(Ba) - cos(Ba)]

(A-30)
d% v, _ 2B {sin(Ba)cosh(Ba)— cos(Ba)sinh(Ba)} ar (A-31)
a1’y - [cosh(pa)—cos(Ba)]
Consider the second segment.
Yo (Xx2) = by sinh(Bx2 )+ by cosh(Bx )+ bz sin(Bx2 )+ by cos(Bx>) (A-32)

The first and second segments are conceptually similar. Therefore, the derivative terms
for the second segment can be written directly.

d 2B[L— cosh(Bb)cos(Bb)]
—Y = b A-33
dxz %l _p [cosh(Bb)— cos(Bb)] (A-33)




d? ~ 2p2sin(Bb)cosh(Bb)— cos(Bb)sinh(Bb)}
Al [cosh({3b) - cos(Bb)] ’

1 (A-34)

X2 :b
Apply boundary condition (A-5) to equations (A-28) and (A-33).

2B[1— cosh(Ba)cos(Ba)] oo 2B [L— cosh(Bb)cos(Bb)] _
[cosh(Ba)—cos(pa)] [cosh(Bb)—cos(Bb))] b (A-35)

[1—cosh(Ba)cos(pa)] , . [L—cosh(Bb)cos(Bb)] , _ _
[cosh(Ba)—cos(Ba)] " [cosh(Bb)— cos(Bb)] by =0 (A-36)

__[cosh(Bb)—cos(Bb)[1— cosh(Ba)cos(Ba)] . _
b= [L— cosh(Bb)cos(Bb)[cosh(Ba)— cos(pa)] - (A-37)

Apply boundary condition (A-6) to equations (A-31) and (A-34).

282 {sin(Ba)cosh(Ba)— cos(Ba)sinh(Ba)} T 282 {sin(Bb)cosh(Bb)— cos(Bb)sinh(Bb )} b

[cosh(Ba)—cos(Ba)] ! [cosh(Bb)— cos(Bb)] !

(A-38)

[sin(Ba)cosh(pa)— cos(Ba)sinh(Ba)] 2+ [sin(Bb)cosh(Bb)— cos(Bb)sinh(Bb )] by =0
[cosh(Ba)— cos(Ba)] [cosh(Bb)—cos(Bb)]

(A-39)

- [cosh(Bb) - cos(Bb)]sin(Ba)cosh(Ba)— cos(Ba)sinh(Ba)] ar
[sin(Bb)cosh(Bb) - cos(Bb)sinh(Bb )]cosh(Ba)— cos(Ba)]

(A-40)



Arrange equations (A-37) and (A-39) into matrix form.

[1— cosh(pa)cos(Ba)] [1— cosh(Bb)cos(Bb)]
[cosh(Ba)—cos(Ba)] [cosh(Bb)—cos(Bb)]

[sin(Ba)cosh(pa)— cos(Ba)sinh(Ba)] [sin(Bb)cosh(Bb)—cos(Bb)sinh(Bb )]
[cosh(Ba)—cos(Ba)] [cosh(Bb)—cos(Bb)]

The natural frequency is calculated by setting the determinant equal to zero.

[1— cosh(Ba)cos(Ba)] [sin(Bb)cosh(Bb) - cos(Bb)sinh(Bb )]
[cosh(Ba) - cos(Ba)] [cosh(Bb)— cos(Bb)]

[1— cosh(Bb)cos(Bb)] [sin(Ba)cosh(pa) - cos(Ba)sinh(Ba)]

"~ [cosh(Bb)—cos(Bb)] [cosh(Ba) - cos(Ba)] =0

Multiply through by the common denominator.

[1— cosh(Ba)cos(Ba)[sin(Bb)cosh(Bb)— cos(Bb)sinh(Bb )]

—[1— cosh(Bb)cos(Bb)[sin(Ba)cosh(Ba)— cos(Ba)sinh(Ba)] =0

Now consider the special case where a = b=L/2.

(A-42)

(A-43)

Note that either a; = b1 or a; = -bq depending on the mode number for this special case.
The correct polarity is found by setting the distance of the pinned support a slightly off-

center with b = 1-a in equation (A-40).
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The characteristic equation becomes

[1— cosh(pa)cos(Ba)[sin(Ba)cosh(Ba)— cos(Ba)sinh(Ba )]

—[1—cosh(pa)cos(pa)]sin(Ba)cosh(Ba) - cos(Ba)sinh(Ba)] =0
(A-44)

The left-hand-side is equal to zero, independent of the argument. This fact represents
another trivial solution. Note that equation (A-44) can also be satisfied by requiring the
following two equations.

1—cosh(Ba)cos(Ba)=0 (A-45)

sin(Ba)cosh(pa)— cos(Ba)sinh(Ba) = 0 (A-46)

The pair of characteristic equations can be written as
cosh(Ba)cos(Ba)=1 (A-47)
tan(Ba) = tanh(Ba) (A-48)

The first three roots are shown in Table A-1. They were obtained using the Newton
Raphson method from Reference 4.

Table A-1. Clamped-Pinned-Clamped Beam, Roots for a = b=L/2 Case
N Bpa BnL Equation
1 3.92660 7.8532 tan(Ba) = tanh(Ba)
2 4.73004 9.46008 cosh(Ba)cos(Ba) =1
3 7.06858 14.13716 tan(Ba) = tanh(Ba)

11



Recall equation (7).

c2 =p,* {_} (A-49)
p

Note that the natural frequency o, is equal to the constant c.
®p =C (A-50)

Thus,

op =Pn”|— (A-51)

Substitute the values from Table 1 into equation (A-51) in order to obtain the first three
natural frequencies.

2
o = {7.8532} E (A52)

2
o = [9.46008} El (A-53)
L p
2
o = {w} El (A-54)
L p
The mode shape for mode n is given by the following pair of equations.
Y1,(X1) =an {+[005h(Bn a)— COS(Bn a)][sinh(Bn Xl)_Sin(Bn Xl)]
—[sinh(Bna)-sin(B na)Jcosh(B n x1 ) cos(Bn x1)] }
(A-55)

12



Y2, (X2) =-ap {+[C05h(Bn a)— COS(Bn a)][sinh(Bn XZ)_Sin(Bn XZ)]

~[sinh(Bna)-sin(B na)Jcosh(Bnx2)—cos(Bnx2)] |
(A-56)

Note that &,, is an arbitrary scalar for mode n. Again, this pair of equations is for the

special casea=b =L/2.

The first three mode shapes are plotted in Figures A-2 through A-4, respectively.

CLAMPED-PINNED-CLAMPED BEAM FIRST MODE SHAPE

MODE SHAPE AMPLITUDE
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
NORMALIZED LENGTH

Figure A-2.

a1 =-bq for this mode.
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CLAMPED-PINNED-CLAMPED BEAM SECOND MODE SHAPE

MODE SHAPE AMPLITUDE
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
NORMALIZED LENGTH

Figure A-3.

a1 = bq for this mode

14
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CLAMPED-PINNED-CLAMPED BEAM THIRD MODE SHAPE

MODE SHAPE AMPLITUDE
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
NORMALIZED LENGTH

Figure A-4.

a1 = -bq for this mode
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APPENDIX B

Clamped-Pinned-Clamped Beam, Alternate Method

- L >
< a b >
4
/ ; /
;
X1 | X2
>

Figure B-1.

The boundary conditions at the fixed end for the first segment are

Y1 |X1=0 =0 (zero displacement) (B-1)
M =0 (zero slope) (B-2)
dX]_ X1=0

The boundary conditions at the intermediate pinned location for the first segment are

Y1 |x1=a =0 (zero displacement) (B-3)

The boundary conditions at the intermediate pinned location for the second segment is

Yo |X2 0 = 0 (zero displacement) (B-4)

16



An additional constraint at the intermediate pinned location is

% _ W2 (equal slope)
2 2
a1 _ 972 (equal bending moment)
dx12 dx 2
1 Ix,=a 2 Ix,=0

The boundary conditions at the fixed end of the second segment are

y2 |X2 _p =0 (zero displacement)

da|

(zero slope)
dX2 X, =b

Eight constraints are thus defined.

Consider the displacement of first segment.

Y1(x1) = ag sinh(Bxq )+ a5 cosh(Bxq )+az sin(Bxq )+ a4 cos(Bx1)

% = agBcosh(Bxy )+ aoPsinh(Bxq )+azBcos(Bxq )—asPsin(Bxy)
2
TNB) _ 5 32 inn(Bxy)+ 2282 cosh(xy ) - aap sin(Bxy) - a4B? cos(xy)
dx
3
a3y, gxl) = a° cosh(x )+ B> sinh(Bxg ) —agp> cos(Bxy ) +asp> sin(Bx; )
dx

The displacement of the second segment is

Yo (X2) = by sinh(Bx2 )+ by cosh(Bx2 )+ b3 sin(Bx5 )+ b4 cos(Bx2)

17
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(B-6)

(B-7)

(B-8)

(B-9)

(B-10)

(B-11)

(B-12)

(B-13)



0 1 0 1 0 0 0 0 Ta
1 0 1 0 0 0 0 0 an
sinh(Ba) cosh(Ba) sin(Ba) cos(Ba) 0 0 0 0 as
cosh(Ba) sinh(Ba) cos(Ba) -—sin(Ba) -1 0 -1 0 ay
sinh(Ba) cosh(Ba) —sin(Ba) —cos(Ba) 0 -1 0 1 by
0 0 0 0 0 1 0 1 bo

0 0 0 0 sinh(Bb) cosh(Bb) sin(Bb) cos(Bb) || bs
0 0 0 0 cosh(Bb) sinh(Bb) cos(Bb) —sin(Bb)| by |
(B-14)

O O O O O o o o

The natural frequencies are calculated by setting the determinant of the coefficient matrix
equal to zero and then solving for the roots. This can be done by a trial-and-error
numerical method.

2 [E

on =Pn (B-15)

The mode shape coefficients can then be found for each mode by setting a;=1 and
inserting the value for the  root obtained from the determinant of the coefficient matrix
from equation (B-14).

The resulting linear algebra equation is

1 0 0 0 0 0 0 0 a1

1 0 1 0 0 0 0 0 an
sinh(Ba) cosh(Ba) sin(Ba) cos(Ba) 0 0 0 0 as
cosh(Ba) sinh(Ba) cos(Ba) -sin(Ba) -1 0 -1 0 ay
sinh(Ba) cosh(Ba) —sin(Ba) —cos(Ba) 0 -1 0 1 by
0 0 0 0 0 1 0 1 bo

0 0 0 0 sinh(Bb) cosh(Bb) sin(Bb) cos(Bb) || bs
0 0 0 0 cosh(Bb) sinh(Bb) cos(Bb) —sin(Bb)| by |
(B-16)

18
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The coefficients and the corresponding [ value are then applied to the pair of
displacement equations.

Y1(x1) = a1 sinh(Bxq)+ap cosh(Bxy)+azsin(Bxq)+az cos(Bxy ) (B-17)
Yo (Xp) = blsinf’(ﬁxz)+ bo COS|"(BX2)+ b3 sin(Bx2)+ by COS(BXZ) (B-18)
Example

An aluminum clamped-pinned-clamped rod had a total length of 48 inches and a diameter
of 1 inch. The pinned support point is located 36 inches from the left clamped end.

The natural frequencies and mode shapes are shown in Figures B-2 through B-4. The

calculations were made using the equations in this appendix as implemented in Matlab
script: clamped_pinned_clamped.m.
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Figure B-2.
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Figure B-3.
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Figure B-4.
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APPENDIX C

Clamped-Pinned-Free Beam

Consider the overhanging beam in Figure C-1.

NN

AN
B

The boundary conditions at the fixed end for the first segment are

Figure C-1.

Y1 |X1:0 =0 (zero displacement) (C-1)
M =0 (slope) (C-2)
Xm X, -0

The boundary conditions at the intermediate pinned location for the first segment are

Yily _4 =0 (zero displacement) (C-3)

The boundary conditions at the intermediate pinned location for the second segment is

2|y _g =0 (zero displacement) (C-4)

23



An additional constraint at the intermediate pinned location is

dyy _dy2 (equal slope)
X1y, =0 9X2 Iy, -0
2 2
d%yy _d%2 (equal bending moment)
2 2
Xm Xl:a dXZ X2 =0

The boundary conditions at the free end are

2
d_y§ -0 (zero bending moment)
dX2 X2 :b
3
d_yg =0 (zero shear force)
dX2 X, —b

Eight constraints are thus defined.

Consider the displacement of first segment.
Y1(x1) = ay sinh(Bx1 )+ap cosh(Bx1 )+az sin(Bxq)+ag cos(Bxy )

dYy(xq)

Feante aypcosh(Bxq )+ aoPsinh(Bxq )+azpcos(Bxy)—asPsin(Bxy)

2
TN) _ 5 32 inn(Bxy)+ 2282 cosh(xy ) - aap sin(Bxy) - a4B? cos(x;)
dx

3
IN) _ 53 cosn(pxy )+ a B sin(Bxy ) agh? cos(Bxy)+ agB3 sin(pxy)
dx

The displacement of the second segment is

Y5 (X2) = by sinh(Bx2 )+ bs cosh(Bx )+ b sin(Bx2 )+ b4 cos(Bx2)

24
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The complete set of boundary conditions, displacement equations and their derivatives
can be assembled into the following matrix.

0 1 0 1 0 0 0 0 Tay
1 1 0 0 0 0 0 as
sinh(Ba) cosh(Ba) sin(Ba) cos(Ba) 0 0 0 0 as
cosh(Ba) sinh(Ba) cos(Ba) -—sin(Ba) -1 0 -1 0 ay
sinh(Ba) cosh(Ba) —sin(Ba) —cos(Ba) 0 -1 0 1 by
0 0 0 0 0 1 0 1 bo
0 0 0 0 sinh(Bb) cosh(Bb) —sin(Bb) —cos(Bb)| b3

0 0 0 0 cosh(Bb) sinh(Bb) —cos(Bb) sin(Bb) | by |

(C-14)

The natural frequencies are calculated by setting the determinant of the coefficient matrix
equal to zero and then solving for the roots. This can be done by a trial-and-error
numerical method.

El
on =B’ = (C-15)
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The mode shape coefficients can then be found for each mode by setting aj=1 and
inserting the value for the  root obtained from the determinant of the coefficient matrix
from equation (C-14).

The resulting linear algebra equation is

1 0 0 0 0 0 0 0 a
1 0 1 0 0 0 0 0 |as
sinh(Ba) cosh(Ba) sin(Ba)  cos(Ba) 0 0 0 0 as
cosh(Ba) sinh(Ba) cos(pa) -sin(Ba) -1 0 -1 0 ay
sinh(Ba) cosh(Ba) —sin(Ba) —cos(Ba) 0 -1 0 1 by
0 0 0 0 0 1 0 1 |by
0 0 0 0 sinh(Bb) cosh(Bb) —sin(Bb) —cos(Bb)|l b3
0 0 0 0 cosh(Bb) sinh(Bb) —cos(Bb) sin(Bb) | by

(C-16)

The coefficients and the corresponding [ value are then applied to the pair of
displacement equations.

Y1(X1) = aj sinh(Bx1 ) +az cosh(Bxy )+azsin(Bxq ) +a4 cos(Bxq) (C-17)

Y2(x2) = b1 sinh(Bx2)+ bz cosh(Bx2 )+ bz sin(Bx2 )+ b4 cosBx2) (C-18)

26
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Example

An aluminum clamped-pinned-free rod had a total length of 48 inches and a diameter of 1
inch. The pinned support point is located 36 inches from the clamped end.

The natural frequencies and mode shapes are shown in Figures C-2 through C-5. The

calculations were made using the equations in this appendix as implemented in Matlab
script: clamped_pinned_free.m.

Mode 1 Freg= 73.04 Hz

Madal Displacement

Figure C-2.
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Figure C-3.
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Figure C-4.
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Figure C-5.
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