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Introduction  

 

This tutorial is based on the analytical methods for multispan beams presented in 

References 1 through 3.  

 

The approach for finding the natural frequency of a beam on multiple supports is to 

consider the section between each pair of supports as a separate beam with its origin at 

the left support of each section. The equations for adjacent beams must be reconciled at 

their common boundary.  

 

The governing equation for the lateral or transverse vibration of a beam is  
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where  

 

E = Mass 

I = viscous damping coefficient 

  = mass per length 

y = lateral displacement 

 

 

Separation of variables yields the following spatial equation.  
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Separation of variables yields the following spatial equation. 

 

       Y x a x a x a x a x( ) sinh cosh sin cos   1 2 3 4                          (3) 
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The constant value c is equation 2 is related to the other variables as follows. 
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The subscript n denotes that there are multiple roots, or natural frequencies, which satisfy 

the governing equation. The constant c is actually the natural frequency, with dimensions 

of radian per time.  
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APPENDIX A 

 

 

Clamped-Pinned-Clamped Beam  

 

Consider the beam in Figure A-1. For the case of two segments, the x-coordinates can be 

defined as starting from opposite ends.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1.  

 

The boundary conditions at the fixed end for the first segment are 
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The boundary conditions at the intermediate pinned location for the first segment are  
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The boundary conditions at the intermediate pinned location for the second segment is  
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An additional constraint at the intermediate pinned location is 
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The boundary conditions at the fixed end of the second segment are 
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Eight constraints are thus defined.  

 

Consider the first segment.  

 

       1413121111 xcosaxsinaxcoshaxsinha)x(Y                       (A-9)  

 

Apply boundary condition (A-1).  

 

 0aa 42                                                                                   (A-10) 

 

24 aa                                                                                      (A-11) 
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The displacement equation thus simplifies to 

 

 

         131121111 xsinaxcosxcoshaxsinha)x(Y                        (A-12)  

 

 

The first derivative is 
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Apply boundary condition (A-2).  

 

0aa 31                                                                                            (A-14) 

 

 

The beta term must be nonzero for a nontrivial solution. Thus  

 

13 aa                                                                                                  (A-15) 

 

 

The displacement equation is thus  
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Apply boundary condition (A-3).  
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The displacement equation is thus 
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The first derivative is  
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The second derivative is  
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The displacement equation is thus  
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The first derivative is 
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The second derivative is  
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Evaluate the derivatives at the intermediate boundary.  
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Consider the second segment. 

 

 

       2423222122 xcosbxsinbxcoshbxsinhb)x(Y                  (A-32)  

 

 

 

The first and second segments are conceptually similar. Therefore, the derivative terms 

for the second segment can be written directly.  
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Apply boundary condition (A-5) to equations (A-28) and (A-33).  
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
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         
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
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Apply boundary condition (A-6) to equations (A-31) and (A-34).  
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 (A-38)  
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(A-39)  
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Arrange equations (A-37) and (A-39) into matrix form.  

 

 

    
    

    
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






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
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
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0
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b
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1

1
    

 

(A-41)  

 

 

 

The natural frequency is calculated by setting the determinant equal to zero.  
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        
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0
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









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
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(A-42)  

 

Multiply through by the common denominator.  

 

 

              

             

              0asinhacosacoshasinbcosbcosh1
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



 

(A-43)  

 

 

Now consider the special case where a = b=L/2.   

 

Note that either a1 = b1 or a1 = -b1 depending on the mode number for this special case.  

The correct polarity is found by setting the distance of the pinned support a slightly off-

center with b = 1-a in equation (A-40).  
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The characteristic equation becomes  

 

 

             

              0asinhacosacoshasinacosacosh1

asinhacosacoshasinacosacosh1





 

(A-44)  

 

 
 

The left-hand-side is equal to zero, independent of the argument. This fact represents 

another trivial solution. Note that equation (A-44) can also be satisfied by requiring the 

following two equations.  
 

 
 

    0acosacosh1                                                                           (A-45)  

 

 

        0asinhacosacoshasin                                                      (A-46)  

 
 

 

The pair of characteristic equations can be written as  

 

 

     1acosacosh                                                                  (A-47)  

 

 

   atanhatan                                                                     (A-48) 

  

 

The first three roots are shown in Table A-1. They were obtained using the Newton 

Raphson method from Reference 4.  

 

 

Table A-1. Clamped-Pinned-Clamped Beam, Roots for a = b=L/2 Case  

N an  Ln  Equation 

1 3.92660 7.8532    atanhatan   

2 4.73004 9.46008     1acosacosh   

3 7.06858 14.13716    atanhatan   
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Recall equation (7).  

 

 











EI42c n                                                                                (A-49)  

 

 

Note that the natural frequency n  is equal to the constant c.  

 

 cn                                                                                      (A-50)  

 

Thus, 




EI2
nn                                                                             (A-51)  

 

 

Substitute the values from Table 1 into equation (A-51) in order to obtain the first three 

natural frequencies.  

 

 











EI
2

L

7.8532
n                                                                       (A-52) 

 

 











EI
2

L

9.46008
n                                                                      (A-53) 

 

 











EI
2

L

14.13716
n                                                                    (A-54) 

 

 

The mode shape for mode n is given by the following pair of equations.  

 

 

      

          

          1n1nnn

1n1nnnn1n1

xcosxcoshasinasinh

xsinxsinhacosacoshâ)x(Y




 

(A-55)  
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          

          2n2nnn

2n2nnnn2n2

xcosxcoshasinasinh

xsinxsinhacosacoshâ)x(Y




 

 (A-56)  

 

 

Note that nâ  is an arbitrary scalar for mode n. Again, this pair of equations is for the 

special case a = b = L/2.  

 

The first three mode shapes are plotted in Figures A-2 through A-4, respectively.  

 

 

 

 

 
 

 

Figure A-2. 

 

 

a1 = -b1  for this mode. 
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Figure A-3.  

 

 

 a1 = b1 for this mode 
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Figure A-4. 

 

 

a1 = -b1  for this mode 
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APPENDIX B 

 

 

Clamped-Pinned-Clamped Beam, Alternate Method  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-1. 

 

 

The boundary conditions at the fixed end for the first segment are  

 

 

0y
0x1

1



             (zero displacement)                                                (B-1) 

       

                                                      

0
dx

dy

0x1

1

1





             (zero slope)                                                        (B-2) 

 

 

The boundary conditions at the intermediate pinned location for the first segment are  

 

 

0y
ax1

1



             (zero displacement)                                                (B-3) 

 

 

The boundary conditions at the intermediate pinned location for the second segment is  

 

0y
0x2

2



             (zero displacement)                                              (B-4) 

 

a b 

x1 x2 

L 
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An additional constraint at the intermediate pinned location is  

 

0x2

2

ax1

1

21
dx

dy

dx

dy



        (equal slope)                                         (B-5)                                   

 

 

 

0x
2

2

2
2

ax
2

1

1
2

21
dx

yd

dx

yd



         (equal bending moment)                   (B-6) 

 
 

The boundary conditions at the fixed end of the second segment are 
 

  

 0y
bx2

2



             (zero displacement)                                       (B-7) 

 
 

0
dx

dy

bx2

2

2





             (zero slope)                                               (B-8) 

 
 
 

Eight constraints are thus defined.  

 

Consider the displacement of first segment.  

 

        1413121111 xcosaxsinaxcoshaxsinha)x(Y                            (B-9)  

 

       14131211
11 xsinaxcosaxsinhaxcosha

dx

)x(dY
                 (B-10) 

 

       1
2

41
2

31
2

21
2

12
11

2

xcosaxsinaxcoshaxsinha
dx

)x(Yd
  

(B-11)         

       1
3

41
3

31
3

21
3

13
11

3

xsinaxcosaxsinhaxcosha
dx

)x(Yd
      

(B-12)          

 
The displacement of the second segment is 

 

       2423222122 xcosbxsinbxcoshbxsinhb)x(Y                     (B-13) 



 18 

       

       

       
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bsinbcosbsinhbcosh0000
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3
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1

 

(B-14)

 

 

 

The natural frequencies are calculated by setting the determinant of the coefficient matrix 

equal to zero and then solving for the roots.  This can be done by a trial-and-error 

numerical method. 

 




EI2
nn                                                                                   (B-15)  

 

 

The mode shape coefficients can then be found for each mode by setting a1=1 and 

inserting the value for the   root obtained from the determinant of the coefficient matrix 

from equation (B-14). 

 

The resulting linear algebra equation is 

 

 

       

       
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 (B-16) 
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The coefficients and the corresponding   value are then applied to the pair of 

displacement equations. 

 

 

       1413121111 xcosaxsinaxcoshaxsinha)x(Y 
                (B-17)    

                                                                         

       2423222122 xcosbxsinbxcoshbxsinhb)x(Y 
             (B-18) 

 

 

 

 

 

Example 

 

An aluminum clamped-pinned-clamped rod had a total length of 48 inches and a diameter 

of 1 inch.  The pinned support point is located 36 inches from the left clamped end. 

 

The natural frequencies and mode shapes are shown in Figures B-2 through B-4.  The 

calculations were made using the equations in this appendix as implemented in Matlab 

script:  clamped_pinned_clamped.m. 
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Figure B-2. 
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Figure B-3. 
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Figure B-4. 
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APPENDIX C 

 

 

Clamped-Pinned-Free Beam 

 

Consider the overhanging beam in Figure C-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-1.  

 

The boundary conditions at the fixed end for the first segment are  

 

 

0y
0x1

1



             (zero displacement)                                                (C-1) 

       

                                                      

0
dx

dy

0x1

1

1





             (slope)                                                                  (C-2) 

 

 

The boundary conditions at the intermediate pinned location for the first segment are  

 

 

0y
ax1

1



             (zero displacement)                                                (C-3) 

 

 

The boundary conditions at the intermediate pinned location for the second segment is  

 

0y
0x2

2



             (zero displacement)                                              (C-4) 

 

  

a b 

x1 x2 
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An additional constraint at the intermediate pinned location is  

 

0x2

2

ax1

1

21
dx

dy

dx

dy



        (equal slope)                                         (C-5)                                   

 

 

 

0x
2

2

2
2

ax
2

1

1
2

21
dx

yd

dx

yd



         (equal bending moment)                   (C-6) 

 
 

The boundary conditions at the free end are 
 

  

 0
dx

yd

bx
2

2

2
2

2





              (zero bending moment)                     (C-7) 

 

0
dx

yd

bx
3

2

2
3

2





             (zero shear force)                               (C-8) 

 

 

Eight constraints are thus defined.  

 

Consider the displacement of first segment.  

 

        1413121111 xcosaxsinaxcoshaxsinha)x(Y                            (C-9)  

 

       14131211
11 xsinaxcosaxsinhaxcosha

dx

)x(dY
                 (C-10) 

 

       1
2

41
2

31
2

21
2

12
11

2

xcosaxsinaxcoshaxsinha
dx

)x(Yd
  

(C-11)         

       1
3

41
3

31
3

21
3

13
11

3

xsinaxcosaxsinhaxcosha
dx

)x(Yd
      

(C-12)          

 
The displacement of the second segment is 

 

       2423222122 xcosbxsinbxcoshbxsinhb)x(Y                     (C-13)   



 25 

The complete set of boundary conditions, displacement equations and their derivatives 

can be assembled into the following matrix. 
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(C-14) 

 

 

The natural frequencies are calculated by setting the determinant of the coefficient matrix 

equal to zero and then solving for the roots.  This can be done by a trial-and-error 

numerical method. 

 

 




EI2
nn                                                                                   (C-15)  
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The mode shape coefficients can then be found for each mode by setting a1=1 and 

inserting the value for the   root obtained from the determinant of the coefficient matrix 

from equation (C-14). 

 

The resulting linear algebra equation is 
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 (C-16) 

 

 

The coefficients and the corresponding   value are then applied to the pair of 

displacement equations. 

 

 

       1413121111 xcosaxsinaxcoshaxsinha)x(Y 
                (C-17)    

                                                                         

       2423222122 xcosbxsinbxcoshbxsinhb)x(Y 
             (C-18) 
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Example 

 

An aluminum clamped-pinned-free rod had a total length of 48 inches and a diameter of 1 

inch.  The pinned support point is located 36 inches from the clamped end. 

 

The natural frequencies and mode shapes are shown in Figures C-2 through C-5.  The 

calculations were made using the equations in this appendix as implemented in Matlab 

script:  clamped_pinned_free.m. 

 

 

 

 
 

Figure C-2. 
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Figure C-3. 
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Figure C-4. 
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Figure C-5. 


