AN INTRODUCTION TO MUSIC THEORY Revision A

By Tom Irvine Email: tomirvine@aol.com

July 4, 2002

Historical Background

Pythagoras of Samos was a Greek philosopher and mathematician, who lived from approximately 560 to 480 BC. Pythagoras and his followers believed that all relations could be reduced to numerical relations. This conclusion stemmed from observations in music, mathematics, and astronomy.

Pythagoras studied the sound produced by vibrating strings. He subjected two strings to equal tension. He then divided one string exactly in half. When he plucked each string, he discovered that the shorter string produced a pitch which was one octave higher than the longer string. A one-octave separation occurs when the higher frequency is twice the lower frequency.

German scientist Hermann Helmholtz (1821-1894) made further contributions to music theory. Helmholtz wrote "On the Sensations of Tone" to establish the scientific basis of musical theory.

Natural Frequencies of Strings

A note played on a string has a fundamental frequency, which is its lowest natural frequency. The note also has overtones at consecutive integer multiples of its fundamental frequency. Plucking a string thus excites a number of tones.

Ratios

The theories of Pythagoras and Helmholz depend on the frequency ratios shown in Table 1.

Table 1. Standard Frequency Ratios		
Ratio	Name	
1:1	Unison	
1:2	Octave	
1:3	Twelfth	
2:3	Fifth	
3:4	Fourth	
4:5	Major Third	
3:5	Major Sixth	
5:6	Minor Third	
5:8	Minor Sixth	

These ratios apply both to a fundamental frequency and its overtones, as well as to relationship between separate keys.

Consonance

Now consider two strings which are plucked simultaneously. The degree of harmony depends on how the respective fundamental frequencies and overtones blend together.

Music notes which blend together in a pleasing manner are called *consonances*. Notes with a displeasing blend are *dissonances*.

Helmholtz gave a more mathematical definition of these terms:

When two musical tones are sounded at the same time, their united sound is generally disturbed by the beats of the upper partials, so that a greater or less part of the whole mass of sound is broken up into pulses of tone, and the joint effect is rough. This relation is called *Dissonance*. But there are certain determinant ratios between pitch numbers, for which this rule suffers an exception, and either no beats at all are formed, or at least only such as have so little intensity that they produce no unpleasant disturbances of the united sound. These exceptional cases are called *Consonances*.

Helmholtz has defined degrees of consonance as shown in Table 2.

Table 2. Consonances		
Degree	Interval	
Absolute	Octave, Twelfth, Double Octave	
Perfect	Fifth, Fourth	
Medial	major Sixth, major Third	
Imperfect	minor Sixth, minor Third	

For reference, a glossary of musical terms is given in Appendix A.

Octave

Again, a one-octave separation occurs when the higher frequency is twice the lower frequency. The octave ratio is thus 2:1

A note's first overtone is one octave higher than its fundamental frequency.

Consider a modern piano keyboard, as shown in Appendix A. The beginning key on the left end is an A0 note with a fundamental frequency of 27.5 Hz. A piano key has harmonic overtones at integer multiples of its fundamental frequency. Thus, the A0 key also produces a tone at 55.0 Hz, which is one octave higher than the fundamental frequency. The second overtone is at 82.5 Hz.

The twelfth key to the right of A0 is A1, counting both the black and white keys. The A1 note has a fundamental frequency of 55.0 Hz. The A1 note is thus one octave higher than the A0 note, in terms of their respective fundamental frequencies. In fact, there is a one-octave separation between any two piano keys which are twelve keys apart.

A pleasing, harmonious sound is produced when two notes separated by one octave are played simultaneously on a piano or other musical instrument. Helmholtz calls such a pair an *absolute consonance*. Thus, the A0 and A1 keys are an absolute consonance.

This effect is shown for the A0 note and the A1 note in Table 3.

Table 3.				
Comparison of Two Notes and Their				
Respective Overtones up to 165 Hz.				
A0	A1			
Frequency (Hz)	Frequency (Hz)			
27.5				
55.0	55.0			
82.5				
110.0	110.0			
137.5				
165.0	165.0			

The overtones of the A1 note thus coincide with the evenly numbered overtones of the A0 note. Again, these two notes are separated by one octave.

Hermann Helmholz wrote:

A note accompanied by its Octave consequently becomes brighter in quality, because the higher upper partial tones on which brightness of quality depends, are partially reinforced by the additional Octave.

Twelfth

A twelfth is two notes which form a frequency ratio of 1:3.

A note's second overtone is a twelfth higher than its fundamental frequency.

Recall the A0 note with its fundamental frequency of 27.5 Hz. Its second overtone is 82.5 Hz, which is three times higher than its fundamental frequency.

Ideally, there would be a key with a fundamental frequency of 82.5 Hz. The nearest is the E2 key which has a fundamental frequency of 82.407 Hz. This frequency approximately meets the goal. Thus, the E2 key is considered as a twelfth higher than A0. A comparison is shown in Table 4.

Table 4.				
Comparison of Two Notes and Their				
Respective Overtones up to 250 Hz.				
A0	E2			
Frequency (Hz)	Frequency (Hz)			
27.5				
55.0				
82.5	82.407			
110.0				
137.5				
165.0	164.814			
192.5				
220.0				
247.5	247.221			

Thus A0 and E2 have three tones very nearly in common in the frequency domain up to 250 Hz.

<u>Fifth</u>

A fifth is two notes which form a frequency ratio of 2:3.

A note's second overtone is a fifth higher than its first overtone.

Recall the A0 note with its fundamental frequency of 27.5 Hz. A fifth higher would be 41.25 Hz. Such a note does not exist in an exact sense. On the other hand, the E1 note has a frequency of 41.203 Hz, which is approximately equal to the exact fifth. Thus, E1 is considered as a fifth higher than A0. A comparison is shown in Table 5.

Table 5.Comparison of Two Notes and TheirRespective Overtones up to 165 Hz.				
A0	E1			
Frequency (Hz)	Frequency (Hz)			
27.5				
	41.203			
55.0				
82.5	82.406			
110.0				
	123.609			
137.5				
165.0	164.812			

Thus, A0 and E1 have two overtones very nearly in common in the frequency domain up to 165 Hz.

<u>Reference</u>

1. Hermann Helmholtz, On the Sensations of Tone, Dover, New York, 1954.

APPENDIX A

Glossary

Consonance – a simultaneous combination of sounds conventionally regarded as pleasing.

Dissonance - a simultaneous combination of sounds conventionally regarded as lacking harmony.

Harmony – a combination of musical considered to be pleasing.

Harmonic – a tone in the harmonic series of overtones produced by a fundamental tone.

Harmonic Series – a series of tones consisting of a fundamental tone and the overtones produced by it, whose frequencies are at integral multiples of the fundamental frequency.

Interval – the difference in pitch between two musical tones

Octave – the interval of eight diatonic degrees between two tones, one of which has twice the frequency as the other.

Overtone – a harmonic.

Partial – a harmonic.

Pitch – the frequency of a tone.

Reference: American Heritage Dictionary, Houghton Mifflin Company, Boston, 1982.

APPENDIX B

		A0 27.5	A0# 29 135	
		B0 30.868	Au 20.100	
		C1 32.703		PIANO KEYBOARD
		D1 36.708	C1# 34.648	The number beside each
		E1 41.203	D1# 38.891	key is the fundamental
		F1 43.654		frequency in units of cycles
		G1 48.999	F1# 46.249	nequency in anits of cycles
		A1 55.000	G1# 51.913	
		B1 61.735	A1# 58.270	OCTAVES
		C2 65.406	0.01/ 0.0.000	
		D2 73.416	C2# 69.296	For example, the A4 key has
		E2 82.407	D2# //./82	a frequency of 440 Hz.
		F2 87.307	E2# 02 /00	
		G2 97.999	F2# 92.499	Note that A5 has a
		A2 110.00	G2# 105.65	frequency of 880 Hz. The
		B2 123.47	A2# 110.34	A5 key is thus one octave
		C3 130.81	CO# 400 E0	higher than A4 since it has
		D3 146.83		twice the frequency.
		E3 164.81	D3# 155.56	
		F3 174.61	E3# 185.00	OVERTONES
		G3 196.00	C2# 207 65	
		A3 220.00	G3# 207.05	An overtone is a higher
		B3 246.94	A3# 233.00	natural frequency for a given
Middle C		C4 261.63	C4# 277 18	string. The overtones are
		D4 293.66	D4# 311 13	"harmonic" if each occurs at
		E4 329.63	D-# 011.10	an integer multiple of the
		F4 349.23	E1# 360 00	fundamental frequency.
		G4 392.00	GA# 415 20	
		A4 440.00	04# 415.30 A4# 466 16	
		B4 493.88	A4# 400.10	
		C5 523.25	05# 554.07	
		D5 587.33	C5# 554.37	
		E5 659.25	D5# 622.25	
		F5 698.46	F5# 739.99	
		G5 783.99	G5# 830.61	
		A5 880.00	A5# 932.33	
		B5 987.77		
		C6 1046.5	C6# 1108.7	
		D6 1174.7	D6# 1244.5	
		E6 1318.5		
		F6 1396.9	F6# 1480.0	
		G6 1568.0	G6# 1661.2	
		A6 1760.0	A6# 1864.7	
		B6 1979.5		
		C7 2093.0	C7# 2217.5	
		DI 2349.3	D7# 2489.0	
	├ ────┤	EI 2031.U		
		FI 2193.0	F7# 2960.0	
		Δ7 3520.0	G7# 3322.4	
		B7 3951 1	A7# 3729.3	
		C8 4186.0		