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Readers are cautioned against seeking any perfection in the following statistical equations. 

 

 

Introduction 

 

An important parameter in random vibration analysis is the peak response, which can be the maximum 

relative displacement, velocity, acceleration, stress or strain.   The peak response can then be compared 

with the threshold for yielding, ultimate failure, etc.  The peak is also important for fatigue analyses, 

particularly for materials with higher exponents.  A common approach is to consider that the peak 

response is 3σ, where 1σ is the standard deviation.  Note that the 1σ value is equal to the overall RMS 

level for cases with zero mean.  Further details about peak assumptions are given in Reference 1, Table 2.  

The peak response for Gaussian stationary random vibration is almost always greater than 3σ, however.   
 

 

Basic Equations 

 

Consider the response peak P as 

 

λσ=P                                                                                                                   (1) 
 

where  λ is a scalar or crest factor. 

 

A common formula for estimating the crest factor for the response of a single-degree-of-freedom (SDOF) 

system to stationary random vibration is 
  

 

)Tfn(ln2=λ                                                                                                  (2) 

 

 

where fn is the natural frequency and T is the total duration.   
 

Equation (2) is given in References 1 and 2.  It may be used for either base excitation or applied force. 

 

An alternate equation from Reference 3 is 
 

 

)Tfn(ln2

5772.0
)Tfn(ln2 +=λ                                                                            (3) 

 
 

Note that 0.5772 is Euler’s constant rounded to four decimal places. 
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Note that equations (2) and (3) converge as the duration becomes longer.  Equation (2) thus appears to be 

an approximation suited for long durations. 

 

Now consider that the crest factors in equations (2) and (3) are calculated for a family of natural 

frequencies.  The resulting crest factor vs. natural frequency curve is referred to as the Maximax 

Response Spectrum (MRS) or Extreme Response Spectrum (ERS) in References 5 and 6, respectively, 

although these references omit the second term on the right-hand-side of equation (3). 

 

The natural frequency term in each of the previous two equations may be replaced by the rate of positive 

slope zero upcrossings n0+ for the case of a multi-degree-of-freedom system response, as discussed in 

Reference 4.  This upcrossing rate is approximately equal to the natural frequency for the case of an 

SDOF response. 

 

Let the maximax be the single highest absolute peak for a given event. 

 

Now assume that an SDOF system is to be subjected multiple incidents of the same long-duration 

excitation event.  The maximax peak is retained from each incident.  A Rayleigh-like distribution of these 

peaks will form around the crest factor from equation (3).  In some ideal sense, 50% of the maximax 

peaks would be either above or below this crest factor.  This would be the case if the maximax histogram 

were Gaussian or otherwise symmetric.  

 

In practice, the exceedance percent for a given numerical experiment might be 50% to 60% for a 

sufficiently large set of trials, based on the author’s experience.  Reference 6 claims that the exceedance 

probability is 63.2%, but this appears to be a conservative envelope.  Further research and 

experimentation is needed.   

 
 

Advanced Equation 

 

A more conservative estimate of the crest factor is needed for some design and analysis cases.  A goal 

might be to find the crest factor above which only 10% of the maximax peaks will occur. 
 

This alternate crest factor αλ derived from References 5 and 6 is   
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where α is the probability of exceedance for the maximax peak for a given event. 

 
Equation (4) is a more conservative approach than the previous ones, as it requires a stated probability of 

exceedance. 

As an aside, Reference 6 omitted the )Tn(ln2/5772.0
0
+

 term, which is needed for small Tn0
+

values.  
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Now consider that the crest factor in equation (4) is calculated for a family of natural frequencies.  The 

resulting crest factor vs. natural frequency curve is referred to as the X Response Spectrum (XRS) or Up-

Crossing Risk Spectrum (URS) in References 5 and 6, respectively.  A still more conservative equation is 

given in Appendix A, as taken from Reference 7. 

 

Numerical Experiment I 

 
An incident of an event is represented by a trial for the experiment.  The event could be a test 

specification or an actual field environment that the system must withstand.   For experimental purposes, 

the event has a stated specification, but each trial has a unique time history. 

 
The equation of motion for an SDOF system subjected to base excitation is given in Appendix A.   

 

An SDOF system with fn = 800 Hz and 5% damping was subjected to base acceleration for an event 

duration of 1200 seconds.   The base input was white noise, 10,000 samples/sec, and lowpass filtered at 

1600 Hz.  The number of response peaks was approximately 960,000 per trial.  The positive slope zero-

crossing rate was 783 Hz, just below the natural frequency. 

 

The response was calculated in the time domain using the ramp invariant, digital recursive filtering 

relationship in Reference 8.  All maximax peaks were represented in terms of their respective crest 

factors.  The peak acceleration response was determined for each of 12,000 trials.  The time history 

synthesis and response calculations were performed using a Matlab script. 

 

A sample base input and response pair are shown in Figures 1 and 2, respectively.  The maximax 

histogram for the collection of trials is shown in Figure 3.  The theoretical response probability from 

equation (4) and the experimental results are shown together in Figure 4 as a function of crest factor. 

 

 
Figure 1.   Band-limited White Noise Input, Experiment I 
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Figure 2.  SDOF System Response, Experiment I 

 

 
 
Figure 3.   Maximax Histogram for 12,000 Trials, Experiment I 
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Figure 4.   Probability Comparison, Experiment I 

 

The theoretical crest factor for experiment I is 
 

35.5
sec)1200Hz800(ln2

5772.0
sec))1200Hz800(fn(ln2 =

⋅
+⋅=λ                                              (5) 

 

The theoretical crest factor has a 63.2% exceedance probability. 
 

The crest factor for 10% exceedance probability is 5.8. 
 

 

Numerical Experiment II 

 

An SDOF system with fn = 250 Hz and 5% damping was subjected to base acceleration for an event 

duration of 1000 seconds.   The base input was white noise, 10,000 samples/sec, and lowpass filtered at 

1000 Hz.  The number of response peaks was approximately 250,000 per trial, with 4000 total trials. 

 

The maximax histogram is shown in Figure 3.  The theoretical response probability from equation (4) and 

the experimental results are shown together in Figure 4 as a function of crest factor. 
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Figure 5. Maximax Histogram for 4000 Trials, Experiment II 
 

 

 
Figure 6. Probability Comparison, Experiment II  
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The theoretical curve envelops that of the experiment in Figure 6. 

 

The theoretical crest factor for experiment II is. 

 
 

10.5
sec)1000Hz250(ln2

5772.0
sec))1000Hz250(fn(ln2 =

⋅
+⋅=λ                                      (6) 

 

The theoretical crest factor has a 63.2% exceedance probability. 

 

The crest factor for 10% exceedance probability is 5.54. 
 

 
Conclusions 

 

The crest factors in Figures 4 and 6 were calculated as a function of probability via equation (4).  The data 

was then represented in terms of probability vs. crest factor. The theoretical curve in each case enveloped 

that of the respective experiment.   The margin for experiment I in Figure 4 was up to 10%.  The margin 

for experiment II in Figure 6 was within 5%. 

 

Clearly more test cases are needed, including multi-degree-of-freedom system response. 

 

Select the appropriate crest factor for a given design or analysis problem is a matter of engineering 

judgment. 
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APPENDIX A 

 
Alternate Equation 

 

The XRS equation from Reference 7 is 

 

( )

)Tn(ln

ln
1)Tn(ln2

0

0 +

+
α

α
−=λ                                                   (A-1) 

 
 

This equation is more conservative than that in equation (4).  It is given in this paper for historical 

purposes only. 
 

 

 

 

  



9 

 

 

APPENDIX B 
 

 

SDOF System Equation of Motion Derivation 
 

Consider a single degree-of-freedom system subjected to base excitation.   
 

 

 

 

 

 

 

 

 

 

 
 

Figure B-1. 

  

where  

 

m is the mass 

c is the viscous damping coefficient 

k is the stiffness 

x is the absolute displacement of the mass 

y is the base input displacement 

 
The double-dot denotes acceleration. 

 

 

The free-body diagram is 
 

 

 

 

 

 

 

 

 

 

 
            Figure B-2. 
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Summation of forces in the vertical direction, 

 

F m x=∑ ɺɺ                                                                                                            (B-1) 

 

m x f (t) c (y x) k (y x)= + − + −ɺɺ ɺ ɺ                                                                        (B-2) 

 

Define a relative displacement 

 

z = x – y                                                                                                         (B-3) 

 

 

Substituting the relative displacement terms into equation (B-2) yields 

 

 

m(z y) cz kz+ = − −ɺɺ ɺɺ ɺ                                                                                         (B-4) 

 

m z cz k z m y+ + = −&& & &&                                                                                         (B-5) 

 

 

Dividing through by mass yields, 

 

( ) ( )z c m z k m z y+ + = −ɺɺ ɺ ɺɺ                                                                                (B-6) 

       

By convention, 

 

n(c / m) 2= ξω                                                                                                   (B-7) 

 

2
n)m/k( ω=                                                                                                   (B-8) 

 

where ωn is the natural frequency in (radians/sec), and ξ is the damping ratio. 

 
 

Substituting the convention terms into equation (B-6) yields 
 

                      
2

n nz 2 z z y+ ξω + ω = −ɺɺ ɺ ɺɺ                                                                                (B-9) 

 
This equation can be solved for arbitrary base excitation using Reference (7). 

 

 

 

  



11 

 

 

APPENDIX C 
 

 

Continuation of Interrupted Random Vibration Test 

 

Consider a component which must be subjected to a 60-second vibration test on a shaker table.  Assume 

that the base input acceleration is stationary, broadband random vibration with a Gaussian distribution.  

Also assume that the component can be modeled as a linear, single-degree-of-freedom (SDOF) system. 

Can two separate 30-second tests be substituted for one 60-second test?  This question could arise, for 

example, if the test shut down halfway through due to a power outage, etc.   Consideration of both peak 

response and fatigue damage are needed to answer this question. 

The quick answer to the question is “Reasonably Yes” for engineering purposes but with caveats. 

Ideally, a shock test would be used to cover peak response, and random vibration used for fatigue.  This 

assumes that the shock response level is much higher than the peak random response level.  But there may 

be a component test plan which specify random vibration only. 

Dave Steinberg wrote: 

The most obvious characteristic of random vibration is that it is nonperiodic.  A knowledge 

of the past history of random motion is adequate to predict the probability of occurrence of 

various acceleration and displacement magnitudes, but it is not sufficient to predict the 

precise magnitude at a specific instant. 

Thus, there is uncertainty as to the peak response value of a system subjected to random vibration.  

 

Probability Density Functions 

An SDOF system will have a narrowband, Gaussian response to a broadband Gaussian input.  This tends 

to also be true for a non-Gaussian input due to the Central Limit Theorem.  There are three probability 

density function or equivalent histograms associated with the SDOF response as shown in Figure C-1. 
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  Figure C-1. 

 

 

 

 

Figure C-1.  Sample Response Probability Density Functions 

 

The area under each curve is one. 

The blue curve for the instantaneous amplitude has a Gaussian or normal distribution. 

The red curve for the local peaks has a Rayleigh distribution. 

The black curve is for the extreme value, which is the maximum absolute peak.  

Now consider the blue and red curves to be those for a single record of some test duration.   Assume there 

are numerous repetitions of the test, where the extreme value is retained from each.  The black curve is 

the distribution of extreme values for the whole set of tests.  

The black curve shows the potential variation of extreme value from one test to another.  The crest factor 

could vary from 4 to 6.   Recall that the crest factor is the (extreme peak / standard deviation).  

Also note that the black curve will shift according to the total number of response cycles, whereas the 

blue and red curves are independent of this number. 
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Numerical Experiment 

 

 

 

 

 

 

Figure C-2.  SDOF System 

 

 

 
  

 

Figure C-3.  Extreme Value Histogram for 1000 Responses with 60-second Duration Each 

 

The range has a 3.3 dB spread. 

 

 

 

   Range:   8.77 to   12.83 G  

    Mean:   10.04 G   

 Std Dev:  0.61 G 

 

The SDOF system has a natural frequency of 300 Hz 

with an amplification factor Q=10.  It is subjected to 

band-limited white noise base input with a standard 

deviation of 1 G for 60-seconds.  The white noise is 

lowpass filtered at 1000 Hz. 

A set of 1000 such time histories are generated using 

these parameters.  The response acceleration is calculated 

for each case.  The extreme value is retained for each 

case.   The histogram of these values is shown in Figure 

C-3.  The average response standard deviation of the 

instantaneous response was approximately 2.17 G. 
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Figure C-4.  Extreme Value Histogram for 2000 Responses with 30-second Duration Each 

 

 

The calculation is repeated for 2000 inputs of 30-seconds each.  The extreme value histogram is shown in 

Figure C-4.  The mean value for this set is about 3% lower than that for the group of 1000 inputs of 60-

seconds each.  This difference is expected per equation (4). 

 

 

  

   Range:   8.28 to   12.78 G  

    Mean:   9.70 G 

 Std Dev:   0.62 G 
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Figure C-5.  Extreme Value Histogram for 1000 Response Pairs 

 

Now create extreme value pairs from the 30-second records, such that the pair represents a total of 60 

seconds.  The number of records is thus reduced from 2000 to 1000.   Each pair represents two 

discontinuous 30-second tests. 

Reduce the two values within each pair to the highest value for each of the 1000 pairs.   The resulting 

histogram is shown in Figure C-5.   The descriptive statistics for this case closely match those for the 

1000, 60-second records, as shown in Table C-1. 

 

Table C-1.   Extreme Value Comparison for Groups of 1000 Tests 

Metric 60-sec Test Paired 30-sec Tests 

Range (G) 8.77 to   12.83 8.78 to   12.78 

Mean (G) 10.04 10.04 

Standard Deviation (G) 0.61 0.60 

 

Note that the 10.04 G mean corresponds to a crest factor of 4.63.  Approximately 50% of the extreme 

values were above this crest factor per equation (4). 

   Range:   8.78 to   12.78 G 

    Mean:   10.04 G   

 Std Dev:  0.60 G 
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Conclusion 

The extreme response probability for one 60-second test is essentially the same as that for a pair of 

separate 30-second tests, assuming stationary input level.   But the precise extreme value is subject to test-

to-test variation similar to the histograms shown in Figures C-3 through C-5 for the sample case. 

A shock test would be better than random vibration for covering a peak response requirement.  A sine test 

could also be applied if precision is needed. 

Further consideration is needed for fatigue.  Fatigue damage accumulates in a linear manner per the 

Palmgren-Miner rule.  So, a 60-second test should have the same fatigue damage as a pair of 30-seconds 

tests, but again some statistical variation is expected for the case of random vibration.  This will be 

explored in the next revision of this paper. 
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APPENDIX D 

 

Crest Factor Equation with Probability 

Recall the equation for the crest factor λα. 
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The equation can be expressed in terms of the probability of exceedance α. 
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The probability density function is 
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