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Introduction 

There is an occasional need to compare the effects of two different power spectral density (PSD) base 

input functions for a particular component.  This would be the case if the component has already been 

tested to one PSD but now must be subjected to a new PSD specification.  

A comparison can readily be performed using a Vibration Response Spectrum (VRS) if the PSDs have 

the same duration.  This requires estimates of the bounds for both the amplification factor Q and the 

natural frequency. 

The task is more complex if the PSDs have different durations.  A Fatigue Damage Spectrum (FDS) 

comparison can be performed as an extension of the VRS method.  This also requires estimates of the 

fatigue exponent. 

The FDS has dimensions of:  relative damage index vs. natural frequency. 

This comparison method is demonstrated via an actual case history in this paper.  

 

Method Outline 

 

 

 

 

 

 

 

Figure 1.  Single-degree-of-freedom System Subject to Base Acceleration 
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The component is assumed to behave as a single-degree-of-freedom system.  The component has three 

independent variables for the fatigue damage calculation: 

 

1. Natural frequency 

2. Amplification factor Q 

3. Material fatigue exponent b 
 

Ideally, each of these three parameters is precisely known, but bounds must be estimated otherwise. 

The natural frequencies should be modeled in, say, 1/24
th
 octave steps between its estimated bounds, if 

the exact value is unknown. 

Simple high and low estimate pairs may be used for the both the amplification and fatigue exponent as 

needed.  

A response PSD must be calculated for each input PSD and for each natural frequency and amplification 

factor of interest, using the method in Reference 1. 

Next, the semi-empirical Dirlik method can be used to calculate the cumulative histogram of the 

acceleration response cycles, as shown in References 2 and 3.   

The resulting histogram is approximately the same as would be obtained by performing a rainflow cycle 

count in the time domain, per the method in Reference 4 and as shown in Reference 5.  

Finally, the fatigue damage spectrum is calculated for the set of response time histories using the b values 

and the method in Appendix A. 
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Case History 

A component was previously tested to the PSD in Table 1.   A new specification is given in Table 2.  Is 

retesting necessary? 

 

Table 1. 

Power Spectral Density, As Tested, 

25 GRMS Overall, 1 hour/axis  

Frequency 

(Hz) 

Accel 

(G^2/Hz) 

15 0.04 

47.26 0.04 

300 0.47 

1000 0.47 

2000 0.118 

 

 

Table 2. 

Power Spectral Density, New Specification, 

4.6 GRMS Overall, 5 hours/axis  

Frequency 

(Hz) 

Accel 

(G^2/Hz) 

10 0.04 

40 0.04 

2000 0.006 
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Figure 2. 

 

The two PSD levels are shown in Figure 2.  
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Analysis Results 

Each PSD was applied as a base input to a single-degree-of-freedom system with independent variables: 

natural frequency, damping, and fatigue exponent. 

The damping is represented in terms of the amplification factor Q.   

The material fatigue exponent is b.  This is the slope of the S-N curve. 

The Q value is unknown, so values of 10 and 50 were used as bound estimates. 

The fatigue exponent is also unknown, so values of 4 and 9 were used as bound estimates.  

Thus there were four total permutations of the Q and b cases. 

The results are given in terms of Fatigue Damage Spectra in Figures 3 through 4. 

The results show that the “As Tested” level envelops the “New Specification” as long as the component 

natural frequency is greater than 70 Hz.  

Note that Steinberg wrote in Reference 6:  

Most circuit boards appear to have their fundamental resonant frequencies between about 200 

and 300 Hz when used in military electronic systems. 

The fundamental frequency can be even higher in smaller electronics boxes with circuit boards populated 

by surface mounted parts. 
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Figure 3. 

 

Figure 4. 
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Figure 5. 

 

 

Figure 6. 
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APPENDIX A 

 

A relative damage index D can be calculated using  

 

i

m

1i

b
i

nAD 


                                                                                                      (A-1) 

        where 

i
A  is the response amplitude from the rainflow analysis  

i
n  is the corresponding number of cycles 

b is the fatigue exponent  

 

Note that the amplitude convention for this paper is  (peak-valley)/2. 
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APPENDIX B 

Dirlik Method 

The nth spectral moment nm  for a PSD is 





0

n
n df)f(Gfm                                                                                        (B-1)                                                                                                                                                                                          

        where 

f is frequency 

G(f) is the one-sided PSD 

 

The expected peak rate  ]P[E  is 

 

 

24 mm]P[E                                                                                                            (B-2) 

 

The Dirlik histogram formula  N(S)  for stress cycles ranges is 

 

)S(pT]P[E)S(N                                                                                                   (B-3) 

        where 

T is the duration 

S is the stress cycle range (peak-to-peak) 

 

The function  p(S)  is 
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The coefficients and variables are                      

     

 
2

2
m

1
1

x2
D




                                                                                                          (B-5)     

R1

DD1
D

2
11

2



                                                                                                   (B-6) 

     

213 DD1D                                                                                                          (B-7) 

     

0m2

S
Z                                                                                                                   (B-8) 

     

 

1

23

D

RDD25.1
Q


                                                                                               (B-9) 

     

2
11

2
1m

DD1

Dx
R




                                                                                                  (B-10)    

  

 

40

2

mm

m
                                                                                                       (B-11) 

     

 
4

2

0

1
m

m

m

m

m
x                                                                                                     (B-12)      

 

A cumulative histogram of the peaks can then be calculated from equation (B-3). 

The stress range of individual cycles can then be obtained by interpolating the cumulative 

histogram.                                                                   

 


