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TWO-STAGE ISOLATION FOR HARMONIC BASE EXCITATION 
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__________________________________________________________________________ 

 

Introduction 
 

 

Consider a base plate mass m1 and an avionics mass m2 modeled as two-degree-of-freedom.  

Evaluate the benefits and drawbacks of this two-stage isolation scheme. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 

 
 

 
 
 

The system also has damping, but it is modeled as modal damping. 
 

A free-body diagram of mass 1 is given in Figure 2. A free-body diagram of mass 2 is given 

in Figure 3. 
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Figure 2. 

 

 

 

Determine the equation of motion for mass 1. 

 

11 xmF                                                                                                      (1) 

 

   y1x1k1x2x2k1x1m                                                                   (2) 

 

  y1k1x2x2k1x1k1x1m                                                                 (3) 

 

  y1k2x1x2k1x1k1x1m                                                                 (4) 

 

  y1k2x2k1x2k1k1x1m                                                                 (5) 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3. 
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Derive the equation of motion for mass 2. 

 

22 xmF                                                                                       (6) 

 

 1x2x2k2x2m                                                                       (7) 

 

  01x2x2k2x2m                                                                    (8) 
 

01x2k2x2k2x2m                                                                  (9) 

 
 

Assemble the equations in matrix form. 
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Define a relative displacement z such that 

 
 

y1z1x                                                                                          (11) 
 

y2z2x                                                                                         (12) 

 

 

Substitute equations (11) and (12) into (10). 
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Decoupling  

 

Equation (16) is coupled via the stiffness matrix.  An intermediate goal is to decouple the 

equation. 

 

Simplify, 
 

FzKzM                                                                                             (17) 

 

where 
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                                                                                                (21) 

 

 

Consider the homogeneous form of equation (17). 
 

  0zKzM                                                                                               (22) 
 

 

Seek a solution of the form 

 

 tjexpqz                                                                                                  (23) 

 

The q vector is the generalized coordinate vector. 
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Note that 
 

 tjexpqjz                                                                                            (24) 
 
 

 tjexpq2z                                                                                         (25) 

 
Substitute equations (23) through (25) into equation (22). 
 

 

    0tjexpqKtjexpqM2                                                              (26) 

 

    0tjexpqKqM2                                                                          (27) 

  

0qKqM2
n                                                                                         (28) 

 

  0qKM2                                                                                         (29) 

 

  0qMK 2                                                                                         (30) 

 

 

Equation (30) is an example of a generalized eigenvalue problem.  The eigenvalues can be 

found by setting the determinant equal to zero. 
 

 

  0MKdet 2                                                                              (31) 
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The eigenvalues are the roots of the polynomial. 

 

 

a2

ac4bb 2
2

1


                                                                              (36) 

 

a2

ac4bb 2
2

2
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where 
 

21mma                                                                                                      (38) 

 

  21221 kkmkmb                                                                         (39) 

 

21 kkc                                                                                                        (40) 
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                       (41)                                                                                                                                                        
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                      (42)                                                                                                                                                            

 

 

 

The eigenvectors are found via the following equations. 
 

  0qMK 1
2

1                                                                                     (43) 

 

  0qMK 2
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where 











12

11
1

q

q
q                                                                                            (45) 

 



 7 











22

21
2

q

q
q                                                                                           (46) 

 
 

An eigenvector matrix Q can be formed.  The eigenvectors are inserted in column format. 

 

 

 21 q|qQ                                                                                        (47) 
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The eigenvectors represent orthogonal mode shapes.   
 

Each eigenvector can be multiplied by an arbitrary scale factor.  A mass-normalized 

eigenvector matrix Q̂ can be obtained such that the following orthogonality relations are 

obtained. 

 

IQ̂MQ̂T                                                                                   (49) 
 

and 
 

Q̂KQ̂T                                                                                  (50) 

 

where 
 

  superscript T represents transpose 

 I is the identity matrix 

   is a diagonal matrix of eigenvalues 

 

Note that 
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Rigorous proof of the orthogonality relationships is beyond the scope of this tutorial.  

Further discussion is given in References 5 and 6. 
 

Nevertheless, the orthogonality relationships are demonstrated by an example in this tutorial. 
 

Now define a modal coordinate )t(  such that 

 

 Q̂z                                                                                      (53) 

 

 

2121111 q̂q̂z                                                                (54) 

 

2221212 q̂q̂z                                                              (55) 

 

 

Recall 

y1z1x                                                                                          (56) 
 

y2z2x                                                                                        (57) 

 

The displacement terms are 

 

2121111 q̂q̂yx                                                                (58) 
 

2221212 q̂q̂yx                                                               (59) 

 

The velocity terms are 

 

2121111 q̂q̂yx                                                                 (60) 
 

2221212 q̂q̂yx                                                                (61) 

 

The acceleration terms are 

 

2121111 q̂q̂yx                                                                 (62) 
 

2221212 q̂q̂yx                                                               (63) 

 

 

Substitute equation (53) into the equation of motion, equation (17). 

 

FQ̂KQ̂M                                                                                   (64) 

 

Premultiply by the transpose of the normalized eigenvector matrix. 
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FQ̂Q̂KQ̂Q̂MQ̂ TTT                                                                (65) 

 

 

The orthogonality relationships yield 

 

FQ̂I T                                                                                (66) 

 
For the sample problem, equation (66) becomes 
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Note that the two equations are decoupled in terms of the modal coordinate. 

 

Now assume modal damping by adding an uncoupled damping matrix. 
 

 

































































































y2m

y1m

22q̂12q̂

21q̂11q̂

2

1
2

20

02
1

2

1

2220

0112

2

1

10

01












 

                               

 (68) 

 

Equation (68) yields two equations 

 

  y2m21q̂1m11q̂1
2

11121                                                         (69) 

 

  y2m22q̂1m12q̂2
2

22222                                                    (70) 

 

 

Now assume a harmonic base input. 

 

 tjexpAy                                                                                                           (71) 

 

 

Assume a harmonic modal displacement. 

 

   tjexpii                                                                                                                       (72) 

 

   tjexpiiji                                                                                           (73) 
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  tjexpi
2

ii                                                                                         (74) 

 

 

By substitution, 

 

 

       tjexpA2m21q̂1m11q̂tjexp1
2

1112j2                     (75)  

 

       tjexpA2m22q̂1m12q̂tjexp2
2

2222j2                 (76)  

 

 

 

     tjexpA2m21q̂1m11q̂tjexp1112j22
1 














                   (77) 

 

     tjexpA2m22q̂1m12q̂tjexp2222j22
2 














              (78)                         
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                                (80) 

 

 

The modal velocity is 
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The modal acceleration is 

 

 
 tjexpA
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Recall 

2121111 q̂q̂yx                                                                 (85) 
 

2221212 q̂q̂yx                                                               (86) 
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(87)                                                                    
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(88)                                                                    

 

 

The Fourier transform equation is 

  

 





-
dttj-exp(t)ix=(f)iX̂                                                                                                      (89) 
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Take the Fourier transform of each side of equations (87) and (88). 
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APPENDIX A 

 

EXAMPLE 1 

 

 

Normal Modes Analysis 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1. 

 

 

A 5-lbm avionics component (m2) is mounted on a 2-lbm base plate (m1).  Each spring 

stiffness is 4.6e+04 lbf/in.  Analyze the energy transmitted to the avionics mass with and 

without the base plate stage. 

 

 

Table A-1.  Parameters 

Variable Value 

1m  2 lbm 

2m  5 lbm 

1k  4.6e+04 lbf/in 

2k  4.6e+04 lbf/in 
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Furthermore, assume that each mode has a damping value of 5%. 
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Solve for the acceleration response time histories.   The homogeneous, undamped problem is 

 

 
















































0

0

2z

1z

044.6e044.6e

044.6e-049.2e

2z

1z

5/3860

02/386




                                              

(A-2) 

 

 

The natural frequencies are 

 

Hz3.2011f                                                                                                  (A-3) 
 

Hz5.7062f                                                                                                 (A-4) 
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FRF Analysis  
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Figure A-2. 
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Figure A-3. 

 

 

 

The Single-Stage curve represents the avionics mass and its spring by themselves. 

 

The results are mixed.  The optimum design depends on the base excitation frequency. 
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APPENDIX B 

 

EXAMPLE 2 

 

 

 

Repeat the example from Appendix A but with the base plate and avionics mass both at 5 

lbm. 

 

 

Table B-1.  Parameters 

Variable Value 

1m  5 lbm 

2m  5 lbm 

1k  4.6e+04 lbf/in 

2k  4.6e+04 lbf/in 

 
 

 

The natural frequencies are 

 

1f  185.4 Hz                                                                                         (B-1) 
 

2f  485.3  Hz                                                                                       (B-2) 
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Figure B-2. 
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Figure B-3. 

  

 

 

The Single-Stage curve represents the avionics mass and its spring by themselves. 

 

Again, the results are mixed.  The optimum design depends on the base excitation 

frequency. 
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APPENDIX C 

 

EXAMPLE 3 

 

 

 

Repeat the example from Appendix A but with the base plate at 15 lbm. 

 

 

Table C-1.  Parameters 

Variable Value 

1m  15 lbm 

2m  5 lbm 

1k  4.6e+04 lbf/in 

2k  4.6e+04 lbf/in 

 
 

 

The natural frequencies are 

 

1f  144.6 Hz                                                                               (C-1) 
 

2f  359.2 Hz                                                                              (C-2) 
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Figure C-1. 
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Figure C-2. 

 
 

 

 

The Single-Stage curve represents the avionics mass and its spring by themselves. 

 

The Two-Stage design provides greater attenuation above an excitation frequency of 200 

Hz. 
 

 


