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Structures in many environments experience both random and harmonic excitation. A 
variety of closed-form techniques has been used in the aerospace industry to combine the 
loads resulting from the two sources. The resulting combined loads are then used to design 
for both yield/ultimate strength and high-cycle fatigue capability. This paper examines the 
cumulative distribution function (CDF) percentiles obtained using each method by 
integrating the joint probability density function of the sine and random components. A new 
Microsoft® Excel spreadsheet macro that links with the software program Mathematica® is 
then used to calculate the combined value corresponding to any desired percentile along with 
a curve fit to this value. Another Excel macro is used to calculate the combination using a 
Monte Carlo simulation. Unlike the traditional techniques, these methods quantify the 
calculated load value with a consistent percentile. Using either of the presented methods can 
be extremely valuable in probabilistic design, which requires a statistical characterization of 
the loading. Also, since the CDF at high probability levels is very flat, the design value is 
extremely sensitive to the predetermined percentile; therefore, applying the new techniques 
can lower the design loading substantially without losing any of the identified structural 
reliability. 

Nomenclature 
A = amplitude 
Asin = amplitude of sine load  
F(z) = cumulative distribution function 
ε = very small value 
σran = RMS of random load 
σsin = RMS of sine load 
φ = phase relationship 
ω = frequency of signal 
 

I. Introduction 
 

any structural components in dynamic environments experience both sinusoidal and random loadings at the 
same time. One example of such a structure is a component of a rocket engine. There are several sources that 

produce the random component of the excitation, including the gas generator and main combustion chamber. 
Simultaneously, the turbomachinery in the engine generates large harmonic loads due to the unavoidable unbalance 
in their rotors. In general, the structural dynamic response analyses for the random and harmonic cases are 
performed separately, and the results are then combined to obtain a design load. These loads are used to determine a 
level of alternating stress in the component for design to both ultimate/yield strength and for high-cycle fatigue 
(HCF). The standard industrial practice has been to use one of several closed-form equations for combining these 
two loads, and the selection of the proper equation has been the subject of some dispute. In an effort to generate a 
combined load consistent with the statistical characterization of the random component, the first author implemented 
the Monte Carlo technique for calculating the load as detailed in a previous paper.1 The paper presented here 
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describes a more exact and easily implemented method for performing the calculation using a Microsoft® Excel 
macro to run a numerical integration technique in the software code Mathematica®. This study also evaluates the 
closed-form methodologies used in industry and presents accurate closed-form curve fits of commonly used 
cumulative distribution function (CDF) percentiles for easy implementation in a production loads process.  
 The closed-form methods presently used in industry are all based upon the method used for obtaining design 
loads for purely random environments. Although there have been studies suggesting that the extreme-value 
distribution should be used for limit load design,2 a widely accepted practice is to use three times the root mean 
square (RMS) of the random load, σran, for the design load, where the distribution is assumed to be Gaussian. This 
value will exceed the response 99.865% of the time. It has also been suggested that a value <99.865% is acceptable 
for HCF design, such as 97.725%, which is the percentile for 2 times the random RMS. 
 The most frequently used method for combining the two dynamic load components, referred to here as the 
standard method, simply uses the sum of the amplitude of the sine load, Asin, and 3×σran.

3

design load = Asin +3σ ran (1)  

 
This technique assumes the sine peak value always occurs simultaneously with the peak random value. Another 
frequently applied method is to multiply 3 by the square root of the sums of mean square values of both the sines 
and the random, called the 3×ssMS method.4

design load = 3 (σsin)2 + (σ ran)2 , (2)  

 

where σsin, the RMS of the sine wave, is equal to the sine amplitude divided by 2 . This method treats the sine as if 
it had a normal probability distribution, which has a much larger range than a sine function. The 3×ssMS approach is 
similar to equations written to combine loads on launch vehicles, which do not have a substantial harmonic 
component but do have random loads from several sources.5 A third approach, which is proposed by Steinberg,6 is to 
take the root sum square of the peak values (called the peak method).  
 

design load = ( Asin)2 + (3σ ran)2 (3)  

 
Although it is stated in Ref. 6 that the standard method is too conservative and that it is convenient to use the 
suggested peak method, no mathematically rigorous justification is presented for using it for either ultimate/yield 
strength or HCF design. Finally, a major drawback of all of these closed-form methods is that none of them produce 
a design load that can be consistently associated with a particular probability level.  
 The integration technique described in this paper has been previously used by Schock,7 who was able to 
analytically calculate the joint cumulative density function for a single random load standard deviation of 1 and was 
able to generate curves of different CDF values corresponding to this value. Ferebee8 added to this work; however, 
the results do not appear to be consistent with the work presented below, and the methodology for performing the 
integration is not discussed.  

II. Loads Combination Using Probability Density Functions 
 Since a sine wave considered by itself is not a random signal, it has always been unclear how to combine 
harmonic analysis results with output from a random excitation analysis to obtain a design load. The harmonic 
signal can, however, be defined as a stationary random process when combined with an independent Gaussian 
random signal since its phase relationship, φ, with the random signal is random.9 If the harmonic signal is defined as 
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ysin = A(ωt +φ) , (4)  

 

where ω is the frequency of the signal and A is the amplitude, then the argument (ωt + φ) is therefore a random 
variable with a uniform distribution over the range – /2 to /2. The probability density function (PDF) of the sine 
function of this distribution is 
 

f ( y) = 1

πA 1− y
A

 
 
  

 
 
2

, (5)  

 
shown graphically in Fig. 1.10 

 

The equivalent event technique can now be used to calculate the CDF, F(z), of functions of random variables. 
For the function z = x + y, where x and y are random variables, the resultant F(z) is defined in terms of the PDFs fx

and fy as 
 

F(z) = fx x( )dx
−∞

z− y
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∫ f y y( )dy . (6)  

 
If x represents the random load, it can be characterized by a normal distribution with mean zero and standard 
deviation equal to the RMS from the random analysis. Substituting the normal PDF and the PDF shown in Eq. (5) 
into Eq. (6) results in 
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dy , (7)  

 

Figure 1: Probability density function f(y) for the 
sine function. 
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where the integral over y is only evaluated from –Asin to Asin since the function is undefined outside of that range. A 
closed-form solution for this integral cannot be obtained; however, recent improvements in the software code 
Mathematica® 4.1 have enabled it to be evaluated numerically for any value of A, z, and σran. The routine crashes if 
the integration is carried out over the range exactly from –A to A, so the limits are instead set at –A + ε to A – ε,
where ε is a very small value. The value of ε was obtained by performing a series of runs with decreasing ε until the 
solution converged; the final value obtained was × .

It is also of interest to obtain the solution for the inverse problem from that described above; i.e., what would the 
design load be that would yield a specific CDF value. In particular, if the 99.865% level has traditionally been 
chosen as an acceptable level of probability of excedance for designing to random loads, then it would be consistent 
to use that percentile to design for the combination of all dynamic loads. The Mathematica® Runge-Kutta FindRoot 
command can be implemented to calculate this load z given the probability F(z), Asin, and σran.

To facilitate ease of use, both the inverse-integration technique and the Monte Carlo technique discussed in the 
author’s previous paper are implemented as Microsoft® Visual Basic® macros launched from Excel. The listings are 
available in a NASA technical paper11 and in electronic format from the authors. In each case, any number of 
different combinations of random 1σ values and sine amplitudes are listed in columns; these columns, along with an 
adjacent blank column, are chosen and the macro is selected and launched. The inverse-integration technique 
automatically writes the input values to a text file and launches the Mathematica® kernel in the background that 
reads the data, performs the root search for the chosen probability level, and writes the result into a text file that is 
then read into the result column in Excel. This process takes ≈4.5 s for each combination on an Intel® Pentium® 4
1.8 GHz workstation with 500 MB RAM running Microsoft® Windows 2000.  

III. Evaluation of Closed-Form Methods 
 The integration method was used to evaluate the actual CDF values using each of the three closed-form methods. 
The sine and random inputs for this evaluation were chosen from the MC–1 rocket engine developed at Marshall 
Space Flight Center, as well as for hypothetical cases with the ratio x = σran/Asin ranging from 0.02 to 10. A 
representative subset of the CDF results are shown in Table 1. The combination load values are also compared with 
loads obtained for a 99.865% probability level using the inverse-integration method and the Monte Carlo method, 
with the inverse-integration method being chosen as the baseline. There are several methods available for choosing a 
sample size that will result in accurate answers for Monte Carlo; but for conservatism, a study was performed for 
this research that showed that load combinations converged using 400,000 samples (a value much higher than that 
obtained using the closed-form sample size determination methods). These Monte Carlo results are in very close 
agreement with the inverse-integration technique. As expected from their derivation, both the standard and the 
3×ssMS methods always exceed the baseline value by varying amounts. The “peak” method always yields a value 
less than the baseline. The standard and 3×ssMS results are shown in Fig. 2, which is a plot of the percentage 
overshoot over the baseline versus the ratio x = σran/Asin for each method.  
 

The functional relationships identified in figure 2 were examined for various values of the parameters and were 
seen to be only a function of the ratio described above. This independent functional relationship identified the 
possibility of creating a closed-form equation that would exactly match the values obtained using the inverse-
integration method for a specific probability level. The Mathematica® 4.1 curve-fit routine was used to examine 
different categories of functions for fitting the overshoot, resulting in Eq. (8), with the comparison of the function 
with the data shown in Fig. 3.  
 

overshoot = 0.0323928e−x − 0.00257298

x5
+ 0.0722376

x4
− 0.715841

x3
+ 2.64516

x2
+ 1.24289

x

 

 
 

 

 
 (8) 
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Table 1: Comparison of all methods. 
 

Figure 2: Percent overshoot from baseline using 
traditional methods. 

Figure 3: Curve fit of overshoot of 3ussMS method 
over CDF of 99.865%. 
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The desired closed-form equation is therefore 
 

design load =
3 Asin

2

2
+σ ran

2

1+overshoot
. (9)  

 

A comparison of the baseline values with those obtained using this new closed-form solution shows the agreement 
to be excellent, with only one of the points showing an overshoot of >1%. This equation can be directly 
implemented into a spreadsheet for easy application in the production loads process. A similar equation has been 
generated that can be used to obtain a desired combined percentile of 97.725% for the design load, which, as noted 
earlier, has been suggested as a more appropriate value for HCF calculations.  
 

design load97.725% =
2

Asin
2

2
+σ ran

2

1+ exp −2.0115x1.15( ) 5.003×10−7

x 5
−

3.0689×10−5

x 4
+

9.304 ×10−4

x 3
−

0.01469

x 2
+

0.1177

x

 

 
  

 

 
  

(10) 

IV. Conclusion and Areas of Future Work 
 The probability values associated with several widely used methods for combining harmonic and random loads 
have been determined. In addition, two new Excel macros have been written that calculate the combined load value 
for any specified probability level. Because of the speed of desktop computers, these macros can be executed 
extremely easily and quickly. Closed-form solutions approximating the probabilistic percentiles of 99.865% and 
97.725% have also been determined. The results presented in this paper can assist the analyst in choosing a method 
for combining these loads; obtaining an accurate value can be critical for the design of weight-sensitive aerospace 
structures. One avenue of future work in this area is incorporating the effect of the correlation of the sine loads for 
harmonics of a single rotating shaft. Another will be to implement the methodology discussed here to the extreme 
value distribution, which may be more accurate for HCF calculations.  
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