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SUMMARY

The finite element (FE) method is a general method to model and simulate the physical
behavior of bodies with arbitrary shape. There is a desire to create and use FE models early in
the design process as well as to use the method detailing of complex artifacts. Modeling of the
dynamic behavior of a multi-body system (MBS) is characterized by a composition of rigid
bodies, interconnected by joints, springs, dampers, and actuators. The FE method is not
directly scalable and MBS modeling is often based on too crude approximations of the
properties of the bodies and their interaction. An obvious solution to this dilemma is to
integrate FE and MBS technology in a new type of software or to allow condensed elastic
submodels to be easily transferred from FE to MBS software and dynamic loads to be
transferred from MBS to FE software.

Different condensation methods have been developed in the last decades. They are basically
complementary. Three condensation methods are explained, exemplified, and compared
below. The technique currently used in the MBS software ADAMS to define flexible bodies
from imported condensed FE models is also briefly described and discussed.

The presented work was performed under the VISP research program. VISP is a collaborative
project on configuration, modeling, simulation, and visualization, between seven research
groups at Royal Institute of Technology, University of Skdvde, IVF, and Linkdping
University, in Sweden. The goal of VISP is to develop an efficient, flexible and industry
relevant modeling and simulation methodology, and an information framework aiding
integrated realization of customized, modular products- and product-program configured
production systems.
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1 INTRODUCTION

Engineering is a highly complex human cognitive activity. The increasing complexity of
technical systems offers unique challenges for engineers, and the rapid development of
computer-based tools provides new opportunities for engineers to solve engineering problems
with the aid of numerical modeling and simulation. A dilemma frequently encountered in
modeling of a non-trivial problem is the need to develop a simulation model that is as simple
as possible and at the same time as complex as necessary. This dilemma is sometimes
addressed by using different tools and classes of models for different problems. The main
drawback of such an approach is that islands of automation are created. From a process point
of view it is highly necessary to integrate these islands or to enable communication between
them.

The finite element (FE) method is a general method to model and simulate the physical
behavior of bodies with arbitrary shape. FE simulations have mainly been used as a tool for
detailing components, but there is a need to use the FE method in the earlier phases of the
design process. There is a trend to qualify detailed behavior of complex artifacts with FE
simulations assisted by reduced testing, see for example (Morris and Vignjevic, 1997). The
computer resources required for an FE solution grows exponentially with the size of the
model. The FE method is thus not directly scalable. This problem is addressed by several
modeling methods that are variations on the approach to synthesize models of complex
technical systems from condensed FE submodels.

Modeling of the dynamic behavior of a multi-body system (MBS) is characterized by a
composition of rigid bodies, interconnected by joints, springs, dampers, and actuators. Force
elements such as springs, dampers, and actuators acting at discrete attachment points results
in applied forces and torques on rigid bodies. Joints constrain the motion of the bodies in the
system. The most widely used software for MBS modeling and simulation is ADAMS from
MSC Software. The rigid body assumption is in many cases a too crude approximation.
Several MBS softwares have capabilities to import condensed FE models from one or several
of the most widely used FE softwares.

There are several complementary condensation methods available for generating a reduced FE
problem. The most widely known methods are static condensation and component mode
synthesis. The static condensation method and two different methods for component mode
synthesis are explained, exemplified, and compared below. The technique currently used in
ADAMS to define flexible bodies from imported condensed FE models is also briefly
described and discussed.



2 FE CONDENSATION METHODS

In finite element analysis of dynamic problems, the primary variable solved for is the
generalized displacement u" =|u, wu, ... u, | for all n nodal degrees of freedom (DOFs).

The set of equations to solve in a dynamic simulation is:
Mii + Cu + Ku = F(t) (1)
where M, C and K are the inertia, damping and stiffness matrices. The load vector F is in

general a function of time. If the any of the inertia, damping or stiffness matrices depend on
the computed state, the problem is referred to as a nonlinear dynamic problem.

In modeling and simulation of large and complex technical system there is a general desire to
develop models of subsystems in parallel, and to solve the dynamic problem for a reduced set
u, of m<n generalized DOFs, where u = Wu_ and W is a set of Ritz vectors that constitute a

reduced basis. The equations to solve in the reduced problem are:
M,i, +Cu, +Ku, =F 2)

where M, =W'MW, C, =W'CW K, =W'KW, F. =W'F are the reduced mass,
damping, stiffness, and load matrices, respectively.

There are several complementary methods available for generating the Ritz vectors. The static
condensation method and two different methods for component mode synthesis are explained
and exemplified below.

2.1 Static condensation

Condensation can employed to reduce the number of DOFs. Static condensation of the
stiffness matrix involves no further assumptions besides the ones imposed by the idealization
and discretization. Consider the static problem Ku = F and partition the matrices into master
and slave sub-matrices:

= 3)
KSWI KSS uS FS
where u,, are the master or retained DOFs and uy are the slave or removed DOFs.

This is equal to:
Ksmum +KSSuS = FS (5)
If we reformulate 5 we get for the slave DOFs:

If we substitute 6 into 4 we get for the reduced static problem, i.e. for the master DOFs:
|_K mm - KH‘ISKS_SIKS”I m = FIT[ - KmYK:S'l FS (7)

which also can be written K u, =F, . If we order the master DOFs first, the transformation
matrix W used in the static condensation procedure can be written as:



1
W[KK} ®

In Guyan reduction or eigenvalue economization, as independently proposed by Guyan
(1965) and Irons (1965, the mass matrix is reduced with the same transformation matrices as
in the static condensation of the stiffness matrix. Thus:

M, =M, +K, KM KK, | 9)

The principal assumption in this method is that for the lower frequency modes, inertia forces
on slave DOFs, i.e. those DOFs being reduced out, are much less important than elastic forces
transmitted by the master DOFs. The slave DOFs are thus assumed to move quasi-statically
with the master DOFs. Therefore , the total mass of the structure is appositioned among only
the master DOFs. This method introduces errors in the inertia terms but the reduced stiffness
matrix is exact. Two measures that quantifies the condensation error can be calculate from the
solutions to the eigenproblem of the reduced problem defined by (K, -AM, )D, =0 and the
full problem defined by (K - AM)D = 0. The relative error & in eigenvalue number i and the

error )/ in the error in the mode shape are defined as:

g =i i (10)

D.,D,
D, [D,]

y =1- (11)

By choosing the most suitable set of master DOFs, the condensation error can be minimized.
Henshell and Ong (1975) defined the relation &, /m, as a criterion for ranking the dynamic

DOFs as candidates for choosing as master DOFs. Their method is implemented in most
commercial FE codes as a tool for automatically selecting the most appropriate master DOFs.
Furthermore, Thomas (1982) defined a priori error bounds for the computed eigenvalues.

2.2 Component mode synthesis - the CMS1 methods

The component mode synthesis method (CMS), first proposed by Hurty (1965), has
significant condensation advantages, and it is well suited for modeling and simulation of large
and complex systems. The basic approach in CMS is to divide the system into k subsystems.
In one class of CMS methods, further on referred to as the CSM1 method, the » mode shapes
of the subsystems are used in a Raleigh-Ritz analysis to calculate approximate mode shapes of
the complete system with the following assumed load pattern:

‘D, 0 0
0 Icl,cZ 0
b, o o ..
R = (12)
0 0 IcZ,c3
D, 0 0 |




where 1, , 1s a unit matrix that has the effect of releasing the attachment DOFs. 1t is of
order equal to the connection DOFs between subsystems k-7 and k. The Ritz vectors, i.e. the
transformation matrix, is created by pre-multiplying the load matrix in 12 with the inverse of
the stiffness matrix for the assembled systems model as shown in equation 13

W =K'R (13)

cms1

In the CMS1 method, the transformation matrix W_ . that defines the reduced base contains

cmsl
thus n columns that correspond to the component normal modes and p attachment mode
shapes, where p is the total number of interface DOFs in the model.

2.3 Component mode synthesis - the CMS2 methods

In the Craig-Bampton method, further on referred to as the CSM2 method, the normal modes
of the component models, with the attachment DOFs fixed, are used directly as Ritz vectors
(Craigh and Bampton, 1968). These vectors are then complemented by constraint modes,
which are displacement shapes of the assembled model obtained by successively applying a
unit displacement to each interface DOF while keeping all other attachment DOFs fixed. For
each constraint mode, only the interior DOFs in the components that are directly related to the
displacement loaded interface DOF gets a non-zero value in the actual constraint shape. The
constraint modes can thus as the normal modes be created on the component level.

Dcl Ucl,cl,cZ 0
0 Icl,cZ 0
Wcmsz — DCZ UcZ,cl,cZ UcZ,cZ,c3 (14)
0 0 IcZ,c3
D, 0 0 |




3 ASIMPLE TECHNICAL SYSTEM

Consider axial vibration of the assembly shown in figure 1. It consists of two components of
different lengths and with different cross sections -A and 2A, respectively. The material in
the two components is linear elastic with the Young's modulus £ and the density p

AE, P 2AE, P
N N
I Y
|
< 2L 3L y

>y &
K »

Figure 1. A system composed of two components with different cross sections.

3.1 A model of the system

An FE discretization of the system with five truss elements of equal length and six nodes is
shown in figure 2. Because of the inherent characteristic properties of the truss element, each
node in the model has one axial DOF.

et 2 e3 e4 ed

®n1 ® n2 ; $n3 +n4 +n5 nGE
v

« L 5 L 5 L oy L o, L o,
Figure 2. System modeled by five truss elements of equal length L.

The stiffness and lumped mass matrices for elements e/ and e3 are:

1 -1 1 0
Kel :£ > Mel :% (15)
L11-1 1 2 10 1
2 =2 2 0
K, =4 m, =P (16)
L|-2 2 2 (0 2

The stiffness and lumped matrices for the complete assembly with node 76 fixed are thus:

1 -1 0 0 1000 0
-1 2 -1 0 0 02000

K:%O -1 3 -2 0 ,M:%003 0 0 (17)
0 0 -2 4 -2 00040
(0 0 0 -2 4| 00 0 0 4]

The five eigenvalues and the corresponding eigenvectors, i.e. the solution to (K - /\M)D =0,
are:



A [0.0703

A, 0.3790
2F
N= A, =— 1.0000 (18)

PL
A 1.6210

A 1.9297

[0.5990 0.7274 -0.5774 —0.7274 —-0.5990 ]
0.5569 0.4517  0.0000 04517  0.5569
D=[D, D, D, D, DJ]=|04365 -0.1664 05774 0.1664 -0.4365| (19)
0.3303 —-0.3809 0.0000 -0.3809 0.3303
10.1776 -0.3066 —0.5774 03066 —0.1776

The five mode shapes in 19 have been normalized to a unith length. If the natural frequencies
in Hz are preferred, they are calculated from the eigenvalues f; = 2L\/I .

T
3.2 Static condensation - 1 master DOF

If we study the stiffness and mass matrices in 17, we find that k, /m, = 2E / pL* for all DOFs.
All DOFs are thus equally suitable candidates for choosing as dynamic master DOFs.

¢n1 ¢ n2 éné’ +n4 #nS n6%
v
3.

Figure 3. Truss assembly with a single master DOF at node n

If we choose the DOF at node n3 as the single master DOF as indicated in figure 3 and
rearrange the matrices we get the following reduced stiffness and mass matrices:

4 -2 0 0] |-2

L 0 0 1 -1/]0
0 -1 2| |-1
(20)
/3 1/6 0 0]-2
_AE| g 1. a6 3 0 o] o||_4e
_L[3][200 1]o 0 2 1] 0 _L[2/3]
0 0 1 1]-1



MV =Mmm +KmYK:S‘1MYVKY_YlKYm =

1/3 1/6 0 04 0 0 Of1/3 1/6 0 0|-2
/6 1/3 0 00 4 0 Of16 1/3 0 0| O
__A4 [B]+[-2 0 0 -] /oY /6y -
2 0O 0 2 10 0 1 0f0 0 21
0O 0 1 10 0 0 20 0 1 1]-1
= £[74/9]
2
21
The single eigenvalue of the reduced system defined by 20 and 21 is:
A= 2—EZO.0811 (22)
PL

The corresponding mode shape for the reduced model D! = [1] can be expanded to all five
unrestrained DOFs, according to equation 8:

D" =[1 1 1 2/3 V3] (23)

If we compare the eigenvalue in 22 and the corresponding mode shape in 23 to the first mode
of the full model, as given in 18 and 19, we get for the condensation errors as defined in 10
and 11:

£=0.1332 (24)
yi=0.0074 (25)

3.3 Static condensation - 3 master DOFs

‘ ni ¢ n2 éns’ +n4 * n5 n6%
v

Figure 4. Truss assembly with three evenly distributed master DOFs.

If we increase the reduced set to three master DOFs, evenly distributed in the geometric space
as shown in figure 4, we get the following solution to the reduced eigenvalue problem:

A 0.0728
2F
Ns= A, =—; 0.4434 (26)
PL
A, 1.0000

[0.7859  0.9017 —0.5774]
0.6793 03477  0.0000
D_,=[D, D, D,]=|05727 -02062 0.5774 27)
0.4029 -0.2932  0.0000
(02331 —0.3801 —0.5774]

The condensation errors for the three modes are:.

10



E..=[e & &]=[0.034 01452 0.000q (28)
.=, v, v,]=[0.0006 0.0210 0.000q (29)

Compared to the model with one master DOF, the condensation error is significantly reduced
for the first mode. The error in the second is also low and the third mode is by coincidence
equal to the third mode of the full FE model.

c3t ) c3b )
. nt ’nZ ‘InS +n4 + n5 né é (:3 ni ¢ n2 én\? # n4 + n5 n6<§
v v

L

Figure 5. Truss assembly with three distributed master DOFs in two variants labeled ¢3t and ¢3b.

Two other possible sets of master DOFs are shown in figure 5. If we solve the eigenvalue
problems for these two reduced sets, we get for the condensation error:

E,, =[0.0317 02495 0.4258],[, =[0.0013 0.0521 0.5693] (30)
E.,, =[0.0929 0.4459 0.3638],I ., =[0.0103 0.2664 0.6414] (31)

As expected, the condensation error depends strongly on the chosen set of master DOFs.

3.4 Component mode synthesis - method CMS1

Consider now the two components, referred to as ¢/ and c2 in figure 6, independently.
Component ¢/ has one mating feature where it may be connected to another component or to
ground. The unconnected component c2 has two mating features.

AE, P 2AE, P

NG A
' N\ ~ TN
| Component ¢1 | I Component ¢2 I
. 2L > < 3L .

Figure 6. Two components with three mating features.

In the following section, the Ritz vectors for the discretized component model ¢/ shown in the
left portion of figure 7 is first generated. The Ritz vectors for component model ¢2 shown in
the right portion of figure 7 is then calculated and the two sets of vectors are assembled.

el e4 eb

¢n1 = ¢n2 = ¢n3 +n3 +n4 +n5 n6+

« L 5 L 5 «L 5 L 5 L 5
Figure 7. Component model c7 (left) and c2 (right).

The stiffness and lumped mass matrices for component c/, which consists of elements one
and two, are:

PR
=45 o oM,
L

0 -1 1

1
_pdL

5 (32)

cl
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By fixing the attachment node #3, the matrices in 32 are reduced to:

1 -1 1 0
K, =2 M, =P (33)
Ll-1 2 2 (0 2

For component c/, the solution to the eigenproblem defined by (Kch. - AM_, )D =0 is:

At ]2

= o

cli

, D, =[D, DJ=[1 ) } (34)
1+1/42 1/\2 -1/\2

The Ritz vectors for the discretized component model ¢2 shown in the right portion of figure
7 is generated in the same way as described above for component model c/. In this model
there are though two mating features, that are represented by two attachment DOFs at nodes
n3 and n6. The stiffness and lumped mass matrices for ¢2, which consists of elements three,
four, and five, are:

2 -2 0 O 2.0 00
AE|-2 4 -2 0 AL|10 4 0 O
c2 = > MCZ = p_ (35)
L|0 -2 4 =2 2 10 0 40
0O 0 -2 2 0 0 0 2
By fixing the attachment nodes n6 and n3 in c2, 35 is reduced to:
4 =2 4 0
K. =20 M, =P (36)
L|-2 4 2 10 4
For component c2, the solution to the reduced eigenproblem is:
A 2E [1/2 1 1
No=| ! = , D, =|D, D,|= 37
2 |: A2i| pL2 |: 3/2 c2i [ 1 2] 1 _1 ( )

12



According to the CMS1 method, the matrix of Ritz vectors for all unrestrained DOFs is:

——1F

1 -1 0 0 O 1 1 0
-1 2 -1 0 0|12 -1/42 0
Wcmsl=K_‘R=L 0O -1 3 -2 0 0 0 1=
AE
0O 0 -2 4 -2 1 1 0
0O 0 0 -2 4 1 -1 0
_ L ¢ L : (38)
6.7678 2.2322 1.5000
5.7678 1.2322 1.5000
=ﬁ 4.0607 0.9393 1.5000
3.2071 0.7929 1.0000
| 1.8536  0.1464 0.5000
The reduced stiffness and mass matrices for the system are thus:
15.9069 4.0429 4.0607
K, =W KW _AE 4.0429 2.0074 0.9393 (39)
4.0467 0.9393 1.5000
216.6886 52.0221 62.2635
Mcmsl:WLfmlMWml:ﬂ 52.0221 13.2672 14.7365 (40)
62.2635 14.7365 18.5000
The eigenvalue solution to the reduced problem is:
[-4.5815 -0.5451 0.3108 |
0.0706 -4.1602 -0.1465 -0.1975
Nemsi= 2E; 0.7733 , D, =1-32973 03107 0.1166 (41)
L 1.3960 —2.4427 0.0604  0.0533
| —1.3775 0.0095 —0.2641 |
The condensation errors in the three modes of the reduce model are thus:
E..=[e, & &]=[0.0043 05099 02837 (42)
C..=lv, v, y,]=[0.0001 0.1651 0.9143 (43)

3.5 Component mode synthesis - method CMS2

In the CMS2 method, the component normal mode shapes, as given in 34 and 37, and the
constraint modes are used directly as Ritz vectors. There is one attachment DOF in

component model ¢/. The constraint mode shape u_, is obtained by solving K_u_ =F, for
a prescribed unit deflection at attachment node 73, i.e.:

13



1 -1 0w] JO
ZZ-1 2 -1fu, |=]0 (44)
0 -1 1|1] |A

The solution to equation 44 is:

u =[1 1 1] (45)

The matrix of Ritz vectors W, for component model c/ is created from the displacement

shapes in 34 for the full set of DOFs, i.e. Dil :ll 1/\/5 0] and Dfu I[l —1/\/5 0] ,
and the constraint mode shape defined by 45:

1 11
w, =|1/¥2 -1/¥2 1 (46)
0 0 1

The reduced stiffness and mass matrices for component ¢/ are:

1 1/4¥2 of1 -1 o7 1 11
Km:Wfchle:%l ~1/A2 o|-1 2 -1|1/\2 =142 1f=
1 1 1fo -1 1] o 0 1
(47)
2-v2 0 0
S S SN
L
0
i /42 of1 o of 1 11
Mcl,,=ijdwd:pTL1 ~1/\2 oo 2 of1/\2 -1/V2 1=
1 1 1fo o 1| o 0 1
(48)
2 0 1+42
“PAL 2 1-42
1+42 1-42 4

Since there are two attachment DOFs, there are also two constraint modes. The first mode
shape is obtained by solving for a prescribed unit deflection at attachment node #3, and fixing
the attachment node n6, i.e.:

2 =2 0 0|1 £
AE|-2 4 -2 0 |u 0
a2z = (49)

L|0 -2 4 -2|u 0
0 0 -2 210 fe

14



The solution to equation 49 is:

u’ =l 2/3 13 0] (50)

The second mode shape is obtained by solving for a prescribed unit deflection at attachment
node n6, and fixing the attachment node 3, i.e.:

2 -2 0 oJo] [£
AE|=2 4 =2 0 |u,| |0

= 51
L|0 -2 4 -2|u 0 D
0o 0 -2 2|1 S
The solution to equation 51 is:
u’ =[0 13 2/3 ] (52)

The Ritz vector W, for component model c2 is created from the displacement shapes in
equations 37, 50 and 52:

0 0 1 0
1 1 2/3 1/3
W, = /3 (53)
1 -1 13 2/3
0 0 O 1
In the CMS2 method, the reduced stiffness and mass matrices for component c2 are:
KcZ,r = WCZKCZWCZ =
o 1 1 o2 -2 0 ofJo o 1 O
_AE|0 1 -1 0-2 4 -2 01 1 2/3 13| (54)
L|1 23 13 0f0 -2 4 =21 -1 13 2/3
0 13 2/3 10 0 -2 2]0 0 O 1
4 0 0 0
_AE|0 120 0
L|0 0 2/3 -2/3
0 0 -2/3 2/3
0 1 1 02 0 0 0|0 O 1 0
0 1 -1 00 4 O Of1 1 2/3 13
Mch = WCTZMCZWCZ :ﬂ / / =
' 2 (1 2/3 13 0)0 0 4 0|1 -1 1/3 2/3
0 1/3 2/3 1/0 0 0 2j0 0 O
(55)

8 0 4 4
pAL|0 8  4/3 —4/3
4 43 38/9 16/9
4 -4/3 16/9 38/9

15



The matrix of Ritz vectors for the complete assembly is an aggregation of the vectors for the
components. For the present assembly we get a transformation matrix that consists of two
modal vectors and two constraint mode shapes:

1 1 1 0]

V2 =142 1 0
W= 0 0 1 0 (56)

o 1 1 2/3 1/3

1 -1 13 2/3

0 0 0 1|

The reduced stiffness and mass matrices for the unrestrained system are thus reduced two four
DOFs as shown in 57 and 58.

I -1 0 0 0
-1 2 -1 0 0
AE| 0O -1 3 =2 0 O
K, ,=W. K ., W =W/ 2= W, =
cms?2 cms2 7 cl+c2 cms?2 cms?2 L 0 0 _ 2 4 _ 2 0 cms?2
o 0 o0 -2 4 =2
0 0 0 0 -2 2| 7)
6-v2 0 0 0
AE| 0 14+42 0 0
L| o 0 2/3  -2/3
0 0 -2/3 2/3
1 0 0 0 0 O]
02 00 00
0 03 000
Mcva = Wc];nv2M61+02ch1v2 = Wc];m2 ﬂ Wcmvz =
‘ ‘ ‘ 210 0 0 400 ‘
00 00 40
0000 0 2] (58)
10 0 5442 4
_pdL| 0 10 ~J2+7/3 -4/3
2 |5+42 —\2+7/3 749 16/9
4 - 4/3 16/9  38/9

The stiffness matrix of the unrestrained system is not positive definite. In 57 we can also see
that the two last rows of the reduced stiffness matrix are not unique. With four DOFs, the
unrestrained system has eigenvalues including a rigid body mode, i.e. a zero-value
eigenvalue. Fixing the n6 DOF to ground can be done by excluding the second constraint
mode for component ¢2 or alternatively by removing the fourth column and row in the

16



reduced stiffness and mass matrices for component ¢2. We thus get the following reduced
stiffness and mass matrices for the restrained system:

. 6-+/2. 0 0
cms?2 :T 0 14+\/§ 0 (59)
0 0 2/3
» 10 0 5+42
=P 10 ~J2+7/3 (60)

5+2 -2+7/3 7409

The eigenvalue solution to the reduced model of the restrained system is:

0.0739
Nems2= 2E2 0.9854 (61)
o 1.6076
[ -1.1194 -0.0235 -0.8173]

0.1224 -0.7640 —0.3445 -1.0757  0.0232  0.7461
D_,=W_.10.0046 0.1037 -0.8567|=| —0.9925 0.6368  0.3839 (62)
0.9925 0.6368  0.3839 -0.7886 —0.2357 —0.9453

| —0.44865 —0.6555 0.6402 |

The condensation errors in the three modes of the reduced model are:

E..=[e, & &]=[0.0487 0.6154 0.378( (63)
C..=lv, v, v,]=[0.0054 08113 0.802( (64)

17



4 THE CONCEPT OF MATING FEATURE MODES

4.1 Ortogonalization of the constraint modes

In the CMS2 or the Craig-Bampton method rigid body motion is a linear combination of the
constraint modes. If we use the constraint mode to reduce the full stiffness and mass matrices
of the component ¢/ we get:

AE Lot AE
decm:T[l -1 2 -1 1:7[0] (65)
0 -1 1]1
1 0 oft1]
Mcum=ﬂ[1 1 1o 2 of1 :%[4] (66)
00 11

It can be observed that the reduced mass in 66 for the rigid body mode is equal to the mass of
component ¢/ . The solution to the eigenvalue problem for the mating feature DOF of
component c/ is:

Aclimf =0, Dflfmf = [1 1 1] (67)

If we perform the same operations for component ¢2 we get:

2 =2 0 o)1 O

K zﬂ[l 2/3 1/3 0}—2 4 =2 0 |2/3 13 :ﬂ{ 2/3 —2/3} (68)
Gem Lo 13 23 1) 0 -2 4 -=201/3 2/3| L|-2/3 2/3
0 0 -2 2J0 1
200 01 o
M =ﬂ{1 2/3 1/3 0}0 4 0 023 1/3 :ﬂ[38/9 16/9} (69)
G210 13 2/3 1)0 0 4 0|13 2/3] 2 |16/9 38/9
00020 1

If we add the rows in the reduced mass matrix in 69 we get the total mass of component c2
which is m_, =3pAL . The solution to the eigenvalue problem for the mating feature DOFs of

component c2 is:

A 2E [0
Nez =] = 70
= { AJ pLZ[ 0.5455} (70)

1 0 /N2 -1/42

b —w {1/\/5 —1/\/5}: 2/3 13 [1/\/5 —1/\/5}: N2 -1/342 1)
aom sl YNz | Y3 23Nz YNz | (N2 132
0 1 1\2 142

18



The modes in 67 and 71 are here referred to as mating feature modes. Mating feature modes
are orthogonal and they have eigenvalues associated to them. The number of DOFs per node
determines the number of rigid body mating feature modes for a component. In our example
where each node had one DOF, the first calculated mode is a rigid body mode.

19



5 COMPONENT MODES IN ADAMS

The first attempt of Mechanical Dynamics Inc. (MDI), the company that initially developed
Adams, to interface with FE software was a product called ADAMS/FEA. ADAMS/FEA
could import statically condensed stiffness and mass matrices from FE software, such as
ANSYS and MSC/NASTRAN. Each master node was represented by an ADAMS PART
element and the condensed stiffness matrices were captured correctly in by the ADAMS
NFORCE element. The requirement to represent the total mass, the center-of-gravity, the
moments of inertia, and the frequency content of the flexible component was often difficult to
satisfy with the condensed mass matrix.

In 1995, MDI added modal flexibility support and a new inertia element, the FLEX BODY,
to the ADAMS/FEA version 8.1 software module as an alternative to the discrete flexibility
approach. The main assumption behind FLEX BODY is that only small, linear deformations
relative to a local frame of reference, that is undergoing large nonlinear global motion. With
release 8.2 modal flexibility was expanded to include constraint modes, resulting in an MBS-
FEA interface based on the Craig-Bampton approach to component mode synthesis. Today,
the discrete flexibility approach has been removed and the CMS2 method has been repacked
into a product called ADAMS/Flex. Since the ADAMS FLEX BODY element provides its
own large-motion DOF there is a need to disconnect the rigid body modes, which are
embedded in the constraint modes. This is the main reason for the present release of
ADAMS/Flex to utilize the Craig-Bampton, or CMS2, approach and mating feature modes,
i.e. orthogonalized constraint modes, which in ADAMS/Flex are referred to as boundary
eigenvectors (ADAMS, 1998). The natural and constraint modes are imported from a modal
neutral-format file (MNF). ANSYS, MSC/NASTRAN and I-DEAS Master Series can create
the binary MNF-files.

Figure 8. The position vector to a deformed point P’ on a flexible body,
relative to a local B and a global G reference frame.

The generalized coordinates of an ADAMS flexible body are:
& =[x ¢ q (72)

where x” = [x y z] is the position vector from the ground origin to the origin of the local
body reference frame, ¢’ = [¢ 2] qd is a body fixed set of Euler angles that define the

20



orientation of the local body reference frame with respect to ground, and
q’ :[q1 q, - qm] are the m modal coordinates of the flexible body.

The instantaneous location of an FE node P on a flexible body B expressed in the global or
ground coordinate system, as shown in figure 8, is:

r, =x+s,+u, (73)

where sp is the position vector from the local body frame of reference B to the point P,
expressed in the local body coordinate system and u, is the translational deformation vector

expressed in the local body coordinate system. The deformation vector is a modal
superposition:

u, =D,q (74)

where Dp is the part of modal matrix that corresponds to the translational DOFs of point P.
Expressed in global ground coordinates, equation 74 is:

r, =x+°A’(s, +u,) (75)

where “A” is the transformation matrix from the body fixed coordinate system B to the
global coordinate system G.

As the flexible body deforms, the flexible marker rotates through small angles relative to its
local reference frame. These small angles are also obtained from a modal superposition:

0, =D.,q (76)
where D), is the part of modal matrix that corresponds to the rotational DOFs of point P.

Translational velocities of flexible markers are obtained by differentiating 80 with respect to
time. from transformations of 74 and 75 the global reference frame. Rotational velocities of
flexible markers is the sum of the rotational velocities of body and the rotational velocity due
to deformation.

In the Craig-Bampton approach to component mode synthesis, the physical DOFs of a
flexible body is condensed to an set of physical DOFs that represent the external mating
features and a set of modal DOFs that represent the internal dynamic properties of the body.
The mating features of two component models that have been condensed with nthe CMS2
approach can thus be connected without any manipulation.

The position, velocity and acceleration of flexible markers, referred to as marker kinematics in
ADAMS (1998), are required to satisfy constraints, e.g. those imposed by joints, as well as to
project point forces applied at markers on generalized coordinates of the flexible body.
ADAMS does not, however, allow joints to be connected to flexible markers - joints must be
connected to rigid bodies. To overcome this restriction, the recommended method is to
connect a rigid "dummy"-body to a flexible marker, and then connect the joint to this rigid
body. The reason for the concept used in ADAMS to treat equations of motions for a system
of multiple bodies, which is embodied in the required properties of the ADAMS modal
neutral file. The required orthogonalization of the constraint modes makes all DOFs in the
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condensed model modal. The instantaneous position of any marker on a flexible body can
only be obtained from modal superposition.
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6 COMPARISON OF THE CONDENSATION METHODS

Condensation methods can be compared is several different ways. There can be a focus on the
accuracy of the methods. Conceptual similarities and differences between the methods can be
basis for another type of comparison. In the design context it is important to compare the
ability to treat models of large and complex systems, i.e. the scalability of the methods. With
the accuracy, similarity, and scalability of each method properly assessed, it is possible to
define the purpose of each method and to decide on if some methods are complementary or
not.

6.1 Similarities

If we use the CMS1 attachment and the CMS2 constraint modes as the only basis for
reduction, we get a model that is condensed to the interface DOF(s). For the present system
we get:

[1.5]

1.5
=[5 1.5 15 1 03]K|L.5 :%[1.5], MWLM:%

1

K [18.5] (77)

cmsli_ f

KcmsZ,iﬁf = %[l 1 1 2/3 1/3]K 1 = %[2/3] > Mcms2,i7f = ﬂ[74/9] (78)

23 2
| 1/3

Solving the two eigenvalue problems for the matrices in for 77 and 78 and expanding the
mode shape to all unrestrained DOF gives:

2F

c,m,l,l.ffzﬁo.ogn,DfmlU =[15 15 15 1 053] (79)
_2F r _
/\mzu-Eo.osnnmw =1 11 23 13 (80)

One observation is that the eigenvectors in 79 and 80 are equal to the attachment and
constraint mode shapes respectively. Another observation is that the condensed stiffness and
mass matrices in 67 are completely equal to the reduced matrices in the static condensation
case with one MDOF, see 20 and 21. A third observation is that the solutions in 79 and 80 are
equivalent to the result for the 1 DOF static condensation problem given in 22 and 23.

Using the constraint modes as the only Ritz vectors is thus in fact a static condensation, with
the interface DOFs as the masters and all internal DOFs as the slaves.
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6.2 Accuracy

The numerical accuracy in terms of the errors in the eigenvalues and in the mode shapes of
the different condensation methods are collected in tables 1 and 2. It can be seen that static
condensation has the potential to model the dynamic behavior of a system of submodels with
good accuracy. The quality of the condensed systems model is although pathologically
sensitive to the master degrees of freedom (MDOFs) selected. The CMSI1 method is also
slightly more accurate than the CMS2 method. The component modes used by ADAMS are
equaivalent with models condensed with the CMS2 method.

Table 1. Condensation errors in the calculated eigenvalues.

Model &1 & &3 & &
Full model (5 MDOFs) 0 0 0 0 O
Static condensation (1 MDOF) 0.1332 - - - -
Cmsl (1 MDOF) 0.1332 - - - -
Cms2 (1 MDOF) 0.1332 - - - -
Static condensation (3 MDOFs)  0.0034-0.0929 0.1452-0.4459 0.0000-0.4258 - -
Cmsl (3 MDOFs) 0.0043 0.5099 0.2837 - -
Cms2 (3 MDOFs) 0.0487 0.6154 0.3780 - -
ADAMS/Flex (3 MDOFs) 0.0487 0.6154 0.3780 - -

Table 2. Condensation errors in the calculated eigenvectors.

Model Vi Yo VZi a_ V5
Full model (5 MDOFs) 0 0 0 0 O
Static condensation (1 MDOF) 0.0074 - - -
Cmsl (1 MDOF) 0.0074 - - - -
Cms2 (1 MDOF) 0.0074 - - - -
Static condensation (3 MDOFs)  0.0006-0.0103 0.0210-0.2664 0.0000-0.6414 - -
Cmsl (3 MDOFs) 0.0001 0.1651 0.9143 - -
Cms2 (3 MDOFs) 0.0054 0.8113 0.8020 - -
ADAMS/Flex (3 MDOFs) 0.0054 0.8113 0.8020 - -
6.3 Scalability

The scalability of a modeling method is here viewed as the multidimensional ability to deal
with complexity in the model. The first dimension referred to as spatial scalability in table 3,
is the ability to handle models composed from many components. The multiphysics
scalability dimension is the ability to expand the number of physical domains, e.g. from a
model in the mechanical domain to a thermomechanical model. The capability to model a
detailed contact condition is treated here as the third dimension.
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Table 3. Scalability of models for different methods.

Model spatial multiphysics  contact
Full model low high high
Static condensation high some high
Component mode synthesis (Cmsl) medium low high
Component mode synthesis (Cms2) high low high
ADAMS/Flex (modified Cms2) medium low low

The scalability differs considerably between the methods. A full FE model can treat
multiphysics behavior and detailed contact conditions, but a large model in terms of the
number of DOFs easily outgrows the computer resources that are available. Static
condensation allows systems models to be synthesized from very compact submodels. Static
condensation may be performed for other physical matrices than stiffness and mass, e.g.
conductivity and specific heat matrices. Some limited multiphysics modeling may be
performed by overlapping condensed models that represent different physical domains.
Complex contact regions can be defined between statically condensed models, as long as the
DOFs on the interacting surfaces as retained as master DOFs in the condensed models.
Component mode synthesis is targeted for dynamic simulations in the mechanical domain.
The two CMS methods are thus not suitable for treating other physical domains. Since all
master DOFs at the mating surfaces are treated as ordinary translational and rotational DOFs,
the both CMS methods has the same capability as the static condensation method to model
contact between complex regions on the systems level. The CMSI method requires an
inversion of the stiffness matrix of the system to calculate the attachment modes, whereas the
CMS2 method allows complete submodels to be created on the component level. The CMS2
method is thus highly spatially scalable and the CMS1 method is far less scalable in the
spatial domain. The modified CMS2 method used by ADAMS/Flex has exactly the same
accuracy as the CMS2 method, but since all DOFs retained at the mating surfaces are
converted to modal DOFs, all interaction between interacting submodels require a
transformation from modal DOFs to physical DOFs. This limits the spatial scalability as well
as it severely limits the ability to treat contact interaction between flexible surfaces.
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