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HISTORICAL BACKGROUND

Ernst Chladni (1756-1827) was a German physicist who performed experimental studies
of vibrating plates.  Specifically, he spread fine sand over metal or glass plates.  He then
excited the fundamental natural frequency of the plate by stroking a violin bow across
one of its edges.

As a result, a standing wave formed in the plate.  A standing wave has "anti-nodes"
where the maximum displacement occurs.  A standing wave also has "nodes" where no
displacement occurs.  For a vibrating plate, the nodes occur along "nodal lines."

In Chladni's experiment, the sand grains responded to the excitation by migrating to the
nodal lines of the plates.  The grains thus traced the nodal line pattern.

Sophie Germain (1776-1831) derived mathematical equations to describe Chladni's
experiments.  She published these equations in Memoir on the Vibrations of Elastic
Plates.

Jules Lissajous (1822-1880) performed further vibration research using Chladni's test
methods.

THEORY

Elastic plates have numerous natural frequencies.  The lowest natural frequency is called
the fundamental natural frequency.   The fundamental frequency is usually the dominant
frequency.

Each natural frequency has a corresponding "mode."  The mode is defined in terms of its
nodal line pattern.  Each mode has a unique pattern.

Points on opposite sides of a nodal line vibrate "180 degrees out-of-phase."

Stroking a plate with a violin bow may excite several natural frequencies, thus
complicating the experiment.  Again, the response will usually be dominated by the
fundamental mode.
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The higher modes can be individually excited, to some extent, by stroking the plate at
different edge locations.  In addition, mechanical constraints can be added to hinder the
formation of other modes.

TEST SETUP

The purpose of this experiment is to determine the natural frequencies and mode shapes
for a common baking pan, using Chladni patterns.  The pan had a thickness of 0.5 mm
and a diameter of 0.229 m.  The material was stainless steel.  The bottom of the pan
represented a circular plate.

Instead of a violin bow, an electromagnetic shaker was used to excite the bottom of the
pan.  Note that an electromagnetic shaker is similar to a loudspeaker.  A sine function
generator was used to drive the shaker, as shown in Figure 1.  The frequency of the sine
function was varied until mode shapes formed.  Salt particles were used to trace the nodal
lines for each mode shape.

The experimental results are shown in Figures 2 through 8.  Note that considerable trial-
and-error was required.

The circular plate boundary condition was irregular, but can be approximated as a
clamped boundary along the outer circumference.  The theoretical results are compared to
the experimental results in Appendix A.

Figure 1.
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RESULTS

Figure 2.  First Bending Mode, "Oil Can Mode,"
110 Hz

Figure 3.  Second Bending Mode, One Diameteral
Nodal Line, 230 Hz

Figure 4.  Third Bending Mode, Two Diameteral
Nodal Lines, 400 Hz
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Figure 5.  Fourth Bending Mode, One Circular
Nodal Line, 495 Hz

Figure 6.  Fifth Bending Mode, Three Diameteral
Nodal Lines, 600 Hz

Figure 7.  Sixth Bending Mode, One Circular and
One Diameteral Nodal Line, 720 Hz

Figure 8.  Eighth Bending Mode, One Circular and
Two Diameteral Nodal Lines, 980 Hz

Note:  The seventh bending mode, which should have four diameteral nodal lines, was
not recorded.
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APPENDIX A

The plate dimensions and properties are given in Table A-1.

Table A-1.  Plate Parameters
Parameter Value
Boundary Condition Fixed
Diameter 0.229 m  ( 9 inch)
Radius 0.115 m
Thickness 0.00051 m
Skin Elasticity 205 (10^9) N/m^2
Mass Density 7700 kg/m^3
Poisson's Ratio 0.3

The following theoretical equations are taken from Reference 1.

The plate stiffness factor D is given by
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where

E = elastic modulus
h = plate thickness
µ  = Poisson's ratio
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The natural frequency f n is
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where

2λ  is a constant which depends on the boundary condition,

ρ   is the mass density,

a is the radius.
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A comparison between the theoretical and experimental natural frequencies is given in
Table A-2.

Table A-2.  First Four Bending Mode Frequencies

Mode 2λ Theoretical
fn (Hz)

Experimental
fn (Hz)

1 10.22 98 110
2 21.26 203 230
3 34.88 334 400
4 39.77 381 495

The 2λ values are taken from Reference 1.

Again, the theoretical natural frequencies assumed a clamped boundary condition.  In
reality, the boundary condition was complex.

The frequency agreement for the first two modes is good.  Thereafter, the agreement is
poor.

Note that the rubber pads in Figure 1 acted as springs.  A spring-mass mode occurred
below 50 Hz, but is not shown in this report.


