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5. FREQUENCY RESPONSE FUNCTION MEASUREMENTS

5.1 Introduction

For current approaches to experimental modal analysis, the frequency response function is the

most important measurement to be made. When estimating frequency response functions, a

measurement model is needed that will allow the frequency response function to be estimated

from measured input and output data in the presence of noise (errors). Some of the errors are:

• Digital Signal Processing Errors (Leakage, Aliasing)

• Noise

• Equipment problem (Power supply noise)

• Cabling problems (RFI,EMI)

• Rattles, cable motion

• Calibration (operator error)

• Complete system calibration

• Transducer calibration

Since the frequency response function can be expressed in terms of system properties of mass,

stiffness, and damping, it is reasonable to conclude that in most realistic structures, the frequency

response functions are considered to be constants just like mass, stiffness, and damping. This

concept means that when formulating the frequency response function using H1, H2, or Hv

algorithms, the estimate of frequency response is intrinsically unique, as long as the system is

linear and the noise can be minimized or eliminated. The estimate of frequency response is valid

whether the input is stationary, non-stationary, or deterministic. Therefore, several important

points to remember before estimating frequency response functions are:

• The system (with the boundary conditions for that test) determines the frequency response

functions for the given input/output locations.

• It is important to eliminate or at least minimize all errors (aliasing, leakage, noise,

calibration, etc.) when collecting data.
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• If all noise terms are identically zero, the assumption concerning the source/location of the

noise does not matter ( H1 = H2 = Hv = Hs = H ). Therefore, concentrate on eliminating

the source of the noise.

• Since modal parameters are computed from estimated frequency response functions, the

modal parameters are only as accurate as the estimated frequency response functions.

There are at least four different testing configurations that can be compared. These different

testing conditions are largely a function of the number of acquisition channels or excitation

sources that are available to the test engineer. In general, the best testing situation is the multiple

input/multiple output configuration (MIMO) since the data is collected in the shortest possible

time with the fewest changes in the test conditions.

• Single input/single output. (SISO)

• Only option if 2 channel data acquisition system.

• Longest testing time. Roving inputs. Roving outputs.

• Time invariance problems between measurements.

• Single input/multiple output. (SIMO)

• Multiple channel system (3 or more). (One ADC channel for each response signal

to be measured plus one ADC channel for an input signal.)

• Shorter testing time than SISO. Transducers not necessarily moved.

• Consistent frequency and damping for data acquired simultaneously.

• Time invariance problems between measurements from different inputs.

• Multiple input/single output. (MISO)

• Multiple channel system required (3 or more.). (One ADC channel for each input

signal to be measured plus one ADC channel for a response signal.)

• Long testing time. Roving response transducer.

• More than one input location per measurement cycle.

• Detects repeated roots. Maxwell reciprocity checks are possible.
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• Time invariance problems between measurements from different responses.

• Multiple input/multiple output. (MIMO)

• Multiple channel system (up to 512 channels). Increased set-up time. Large amount

of data to be stored and organized.

• Shortest testing time.

• Consistent frequency and damping for all data acquired simultaneously.

• Detects repeated roots. Maxwell reciprocity checks are possible.

• Best overall testing scheme.

5.2 Frequency Response Function Estimation

Frequency response functions are normally used to describe the input-output (force-response)

relationships of any system. Most often, the system is assumed to be linear and time invariant

although this is not necessary. In the cases where assumptions of linearity and time invariance

are not valid, the measurement of frequency response functions are also dependent upon the

independent variables of time and input. In this way, a conditional frequency response function

is measured as a function of other independent variables in addition to frequency. Note that the

different possible formulations listed in Table 5-1 can all be considered frequency response

functions since each of these formulations can be numerically manipulated (synthetic

differentiation, integration, etc.) into the equivalent displacement over force relationship. This

assumes that initial conditions can be ignored.
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Displacement
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Dynamic Stiffness
Force

Displacement

TABLE 5-1. Frequency Response Function Formulations

The estimation of the frequency response function depends upon the transformation of data from

the time to frequency domain. The Fourier transform is used for this computation.

Unfortunately, though, the integral Fourier transform definition requires time histories from

negative infinity to positive infinity. Since this is not possible experimentally, the computation is

performed digitally using a fast Fourier transform (FFT) algorithm which is based upon only a

limited time history. In this way the theoretical advantages of the Fourier transform can be

implemented in a digital computation scheme. The frequency response function(s) satisfy the

following single and multiple input relationships:

Single Input Relationship

X p = H pq Fq (5.1)

(5-4)



+UC-SDRL-RJA CN-20-263-663/664 Revision: June 12, 2001 +

Multiple Input Relationship
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(5.2)

An example of a two input, two output case for Equation (5.2) is shown in Equation (5.3) and

Figure 5-1.
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Figure 5-1. Tw o Input, Two Output FRF Concept

5.2.1 Noise/Error Minimization

The most reasonable, and most common, approach to the estimation of frequency response

functions is by use of least squares (LS) or total least squares (TLS) techniques [1-3,6-7] .

This is a standard technique for estimating parameters in the presence of noise. Least squares

methods minimize the square of the magnitude error and, thus, compute the best estimate of the
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magnitude of the frequency response function but have little effect on the phase of the frequency

response function. The primary difference in the algorithms used to estimate frequency response

functions is in the assumption of where the noise enters the measurement problem. The different

assumptions of the source of the error is noted graphically in Figure 5-2.
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Figure 5-2. Least Squares Concept

Three algorithms, referred to as the H1, H2, and Hv algorithms, are commonly available for

estimating frequency response functions. Table 5-2 summarizes this characteristic for the three

methods that are widely used.
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Frequency Response Function Models

Technique Solution Assumed Location of Noise

Method Force Inputs Response

H1 LS no noise noise

H2 LS noise no noise

Hv TLS noise noise

TABLE 5-2. Summary of Frequency Response Function Estimation Models

Consider the case of Ni inputs and No outputs measured during a modal test. Based upon the

assumed location of the noise entering the estimation process, Eqs. (5.4) through (5.6) represent

the corresponding model for the H1, H2, and Hv estimation procedures.

H1 Technique

[H]No × Ni
{F }Ni × 1 = {X }No × 1 − {η}No × 1 (5.4)

H2 Technique

[H]No × Ni
{ {F}Ni × 1 − {υ}Ni × 1} = {X }No × 1 (5.5)

Hv Technique

[H]No × Ni
{ {F}Ni × 1 − {υ}Ni × 1} = {X }No × 1 − {η}No × 1 (5.6)

Note that in all methods, the inversion of a matrix is involved. Therefore, the inputs (references)

that are used must not be fully correlated so that the inverse will exist. Extensive evaluation tools

(using eigenvalue decomposition) have been developed in order to detect and avoid this condition
[8] .
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5.2.2 Single Input FRF Estimation

Figure 5.3 represents the model of the measurement situation for a single input, single output

frequency response function measurement.

H
System

F

+
F̂

υ

X

+

X̂

η

Figure 5-3. System Model: Single Input

With reference to Figure 5.3 for a case involving only one input and one output (input location q

and response location p), the equation that is used to represent the input-output relationship is:

X̂ p − η p = H pq
ˆ(Fq − υ q) (5.7)

where:

• F = F̂ − υ = Actual input

• X = X̂ − η = Actual output

(5-8)
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• X̂ = Spectrum of the p − th output, measured

• F̂ = Spectrum of the q − th input, measured

• H = Frequency response function

• υ = Spectrum of the noise part of the input

• η = Spectrum of the noise part of the output

• X = Spectrum of the p − th output, theoretical

• F = Spectrum of the q − th input, theoretical

If υ = η = 0, the theoretical (expected) frequency response function of the system is estimated. If

η ≠ 0 and/or υ ≠ 0, a least squares method is used to estimate a best frequency response function,

in the presence of noise.

In order to develop an estimation of the frequency response function, a number of averages Navg

is used to minimize the random errors (variance). This can be easily accomplished through use

of intermediate measurement of the auto and cross power spectrums. The estimate of the auto

and cross power spectrums for the model in Figure 5.3 can be defined as follows. Note that each

function is a function of frequency.

Cross Pow er Spectra

GXF pq =
Navg

1
Σ X p F*

q (5.8)

GFXqp =
Navg

1
Σ Fq X*

p (5.9)
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Auto Pow er Spectra

GFFqq =
Navg

1
Σ Fq F*

q (5.10)

GXX pp =
Navg

1
Σ X p X*

p (5.11)

where:

• F* = Complex conjugate of F(ω )

• X* = Complex conjugate of X(ω )

H1 Algorithm: Minimize Noise on Output (η)

The most common formulation of the frequency response function, often referred to as the H1

algorithm, tends to minimize the noise on the output. This formulation is shown in Eq. (5.12).

H pq =
GXF pq

GFFqq
(5.12)

H2 Algorithm: Minimize Noise on Input (υ)

Another formulation of the frequency response function, often referred to as the H2 algorithm,

tends to minimize the noise on the input. This formulation is shown in Eq. (5.13).

H pq =
GXX pp

GFXqp
(5.13)

In the H2 formulation, an auto power spectrum is divided by a cross power spectrum. This can

be a problem since the cross power spectrum can theoretically be zero at one or more

frequencies. In both formulations, the phase information is preserved in the cross-power

spectrum term.

Hv Algorithm: Minimize Noise on Input and Output (η and υ)
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The solution for H pq using the Hv algorithm is found by the eigenvalue decomposition of a

matrix of power spectrums. For the single input case, the following matrix involving the auto

and cross power spectrums can be defined:

[GFFX p] =




GFFqq

GXF pq

GFXqp

GXX pp



2 × 2

(5.14)

The solution for H pq is found by the eigenvalue decomposition of the [GFFX] matrix as follows:

[GFFX p] = [V ]  Λ  [V ]H (5.15)

where:

•  Λ  = diagonal matrix of eigenvalues

Solution for the H pq matrix is found from the eigenvector associated with the smallest

(minimum) eigenvalue (λ1). The size of the eigenvalue problem is second order resulting in

finding the roots of a quadratic equation. This eigenvalue solution must be repeated for each

frequency and that the complete solution process must be repeated for each response point X p.

Alternately, the solution for H pq is found by the eigenvalue decomposition of the following

matrix of auto and cross power spectrums:

[GXFF p] =




GXX pp

GFXqp

GXF pq
H

GFFqq



2 × 2

(5.16)

[GXFF p] = [V ]  Λ  [V ]H (5.17)

where:

•  Λ  = diagonal matrix of eigenvalues

The solution for H pq is again found from the eigenvector associated with the smallest (minimum)

(5-11)
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eigenvalue (λ1).

The frequency response function is found from the normalized eigenvector associated with the

smallest eigenvalue. If [GFFX p] is used, the eigenvector associated with the smallest eigenvalue

must be normalized as follows:

{V }λmin
=





H pq

−1





(5.18)

If [GXFF p] is used, the eigenvector associated with the smallest eigenvalue must be normalized

as follows:

{V }λmin
=





−1

H pq





(5.19)

One important consideration of the three formulations for frequency response function

estimation is the behavior of each formulation in the presence of a bias error such as leakage. In

all cases, the estimate differs from the expected value particularly in the region of a resonance

(magnitude maxima) or anti-resonance (magnitude minima). For example, H1 tends to

underestimate the value at resonance while H2 tends to overestimate the value at resonance. The

Hv algorithm gives an answer that is always bounded by the H1 and H2 values. The different

approaches are based upon minimizing the magnitude of the error but have no effect on the phase

characteristics.

In addition to the attractiveness of H1, H2 and Hv in terms of the minimization of the error, the

availability of auto and cross power spectra allows the determination of other important

functions. The quantity γ 2
pq is called the scalar or ordinary coherence function and is a

frequency dependent, real value between zero and one. The ordinary coherence function

indicates the degree of causality in a frequency response function. If the coherence is equal to

one at any specific frequency, the system is said to have perfect causality at that frequency. In

other words, the measured response power is caused totally by the measured input power (or by

sources which are coherent with the measured input power). A coherence value less than unity at

any frequency indicates that the measured response power is greater than that due to the

measured input. This is due to some extraneous noise also contributing to the output power. It
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should be emphasized, however, that low coherence does not necessarily imply poor estimates of

the frequency response function, but simply means that more averaging is needed for a reliable

result. The ordinary coherence function is computed as follows:

COH pq = γ 2
pq =

| GXF pq |2

GFFqq GXX pp
=

GXF pq GFXqp

GFFqq GXX pp
(5.20)

When the coherence is zero, the output is caused totally by sources other than the measured

input. In general, then, the coherence can be a measure of the degree of noise contamination in a

measurement. Thus, with more averaging, the estimate of coherence may contain less variance,

therefore giving a better estimate of the noise energy in a measured signal. This is not the case,

though, if the low coherence is due to bias errors such as nonlinearities, multiple inputs or

leakage. A typical ordinary coherence function is shown in Fig. 5.4 together with the

corresponding frequency response function magnitude. In Fig. 5.4, the frequencies where the

coherence is lowest is often the same frequencies where the frequency response function is at a

maxima in magnitude or at a minima in magnitude. This is often an indication of leakage since

the frequency response function is most sensitive to the leakage error at the lightly damped peaks

corresponding to the maxima. At the minima, where there is little response from the system, the

leakage error, even though it is small, may still be significant.

(5-13)
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Figure 5-4. FRF and Corresponding Ordinary Coherence Function

In all of these cases, the estimated coherence function will approach, in the limit, the expected

value of coherence at each frequency, dependent upon the type of noise present in the structure

and measurement system. Note that, with more averaging, the estimated value of coherence will
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not increase; the estimated value of coherence always approaches the expected value from the

upper side. This is described in Figure 5-4. Note that a high value of coherence (0.9) after 16

av erages has approximately the same possible variance of the frequency response function as a

low value of coherence (0.1) after 256 averages.

Figure 5-5. Ordinary Coherence Relationship - Averaging

Tw o special cases of low coherence are worth particular mention. The first situation occurs when

a leakage error occurs in one or both of the input and output measurements. This causes the

coherence in the area of the peaks of the frequency response to be less than unity. This error can
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be reduced by the use of weighting functions or by cyclic averaging. The second situation

occurs when a significant propagation time delay occurs between the input and output as may be

the case with acoustic measurements. If a propagation delay of length t is compared to a sample

function length of T , a low estimate of coherence will be estimated as a function of the ratio t/T .

This propagation delay causes a bias error in the frequency response and should be removed

prior to computation if possible.

5.2.3 Multiple Input FRF Estimation

Multiple input estimation of frequency response functions is desirable for several reasons. The

principal advantage is the increase in the accuracy of estimates of the frequency response

functions. During single input excitation of a system, there may exist large differences in the

amplitudes of vibratory motion at various locations because of the dissipation of the excitation

power within the structure. This is especially true when the structure has heavy damping. Small

nonlinearities in the structure will consequently cause errors in the measurement of the response.

With multiple input excitation, the vibratory amplitudes across the structure typically will be

more uniform, with a consequent decrease in the effect of nonlinearities.

A second reason for improved accuracy is the increase in consistency of the frequency response

functions compared to the single input method. When a number of exciter systems are used, the

elements from columns of the frequency response function matrix corresponding to those exciter

locations are being determined simultaneously. With the single input method, each column is

determined independently, and it is possible for small errors of measurement due to

nonlinearities and time dependent system characteristics to cause a change in resonance

frequencies, damping, or mode shapes among the measurements in the several columns. This is

particularly important for the polyreference modal parameter estimation algorithms that use

frequency response functions from multiple columns or rows of the frequency response function

matrix simultaneously.

An additional, significant advantage of the multiple input excitation is a reduction of the test

time. In general, using multiple input estimation of frequency response functions, frequency

response functions are obtained for all input locations in approximately the same time as required

for acquiring a set of frequency response functions for one of the input locations, using a single

(5-16)
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input estimation method.

Another potential advantage of the simultaneous measurement of a number of columns or rows

of the frequency response function matrix is the ability to use a linear combination of frequency

response functions in the same row of the matrix in order to enhance specific modes of the

system. This technique is analogous to the forced normal mode excitation experimental modal

analysis in which a structure is excited by a forcing vector which is proportional to the modal

vector of interest. For this analysis, the coefficients of a preliminary experimental modal analysis

are used to weight the frequency response functions, so that the sum emphasizes the modal

vector that is sought. The revised set of conditioned frequency response functions is analyzed to

improve the accuracy of the modal vector. A simple example of this approach for a structure

with approximate geometrical symmetry would be to excite at two symmetric locations. The

sum of the two frequency response functions at a specific response location should enhance the

symmetric modes. Likewise, the difference of the two functions should enhance the

antisymmetric modes.
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Multiple Input versus Single Input

Advantages

• Better energy distribution reduces nonlinearities at input

location.

• Better energy distribution excites the structure more evenly.

• Data collected simultaneously has consistent frequency and

damping information which is consistent with parameter

estimation

algorithms.

• Advances in hardware/software has kept data collection time

the same

for single input/multiple output.

More measurements per measurement cycle.

• Multiple input data permits the

detection of repeated or closely spaced roots.

Disadvantages:

• Inputs must not be correlated.

• More equipment required.

The theoretical basis of multiple-input frequency response function analysis is well documented

in a number of sources [1-3,18-27]. While much had been written about multiple input theory, the

application of multiple input theory to experimental modal analysis apparently had not been

seriously investigated prior to 1980 [18-27]. It also needs to be noted that this application of

multiple input-output theory represents a very special case of multiple-input, multiple-output

data analysis. For this case, everything about the inputs is known or can be controlled. The

number of inputs, the location of the inputs, and the characteristics of the inputs are controlled by

the test procedure. For the general case, none of these characteristics may be known.

Consider the case of Ni inputs and No outputs measured during a modal test on a dynamic

(5-18)
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system as shown in Figure 5-6. The model assumed for the dynamics is:

X̂ p − η p =
Ni

q=1
Σ H pq * ( F̂q − υ q) (5.21)

where:

• F = F̂ − υ = Actual input

• X = X̂ − η = Actual output

• X̂ p = Spectrum of the p − th output, measured

• F̂q = Spectrum of the q − th input, measured

• H pq = Frequency response function of output p with respect to input q

• υ q = Spectrum of the noise part of the input

• η p = Spectrum of the noise part of the output

• X p = Spectrum of the p − th output, theoretical

• Fq = Spectrum of the q − th input, theoretical

H

F2

+
F̂2

υ2

F1

+
F̂1

υ1

FNi

+
F̂Ni

υ Ni

X2

+

X̂2

η2

X1

+

X̂1

η1

XNo

+

X̂No

η No

Figure 5-6. System Model: Multiple Inputs
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In order to develop an estimation of the frequency response function for the multiple input case,

a number of averages Navg will be used to minimize the random errors (variance). This can be

easily accomplished through use of intermediate measurment of the auto and cross power

spectrums as defined in Equations (5.8) through (5.11). Additional matrices, constructed from

the auto and cross power spectrums need to be defined as follows. Note that each function and,

therefore, each resulting matrix is a function of frequency.

Input/Output Cross Spectra Matrix

[GXF] = {X }{F }H =





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.
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2 . . F*
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(5.22)

Input Cross Spectra Matrix

[GFF] = {F }{F }H =


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(5.23)

The frequency response functions can now be estimated for the three algorithms as follows:

H1 Algorithm: Minimize Noise on Output ( η )

[H]No × Ni
{F }Ni × 1 = {X }No × 1 − {η}No × 1 (5.24)

[H] {F } {F }H = {X } {F }H − {η} {F}H (5.25)
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[H]No × Ni
{F }Ni × 1 {F }H

1 × Ni
= {X }No × 1 {F }H

1 × Ni
(5.26)

The above relationship can be concisely stated as:

[H][GFF] = [GXF] (5.27)

[H] = [GXF][GFF]−1 (5.28)

where:

• [ ]H = Complex conjugate transpose (Hermitian Matrix)

In the experimental procedure, the input and response signals are measured, and the averaged

cross spectra and auto spectra necessary to create the [GXF] and [GFF] matrices are computed.

If the computation of ordinary, multiple, or partial coherence functions will be required, then the

diagonal elements of the output cross spectrum matrix [GXX] must be computed also.

Equation (5.27) is valid regardless of whether the various inputs are correlated. Unfortunately,

there are a number of situations where the input cross spectrum matrix [GFF] may be singular

for specific frequencies or frequency intervals. When this happens, the inverse of [GFF] will not

exist and Equation (5.28) cannot be used to solve for the frequency response function at those

frequencies or in those frequency intervals. A computational procedure that solves Equation

(5.28) for [H] should therefore monitor the rank the matrix [GFF] that is to be inverted, and

desirably provide direction on how to alter the input signals or use the available data when a

problem exists. The current approach for evaluating whether the inputs are sufficiently

uncorrelated at each frequency inv olves determining the principal/virtual forces using principal

component analysis [8]. This will be covered in a later section.

H2 Algorithm: Minimize Noise on Input ( υ )

[H]No × Ni
{ {F}Ni × 1 − {υ}Ni × 1} = {X }No × 1 (5.29)

[H] { {F} − {υ} } {X}H = {X } {X }H (5.30)

[H]No × Ni
{F }Ni × 1 {X }H

1 × No
= {X }No × 1 {X }H

1 × No
(5.31)
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One problem with using the H2 algorithm is that the solution for [H] can only be found directly

using an inverse when the number of inputs Ni and number of outputs No are equal. Then:

[ H ] [ GFX ] = [ GXX ] (5.32)

[ H ] = [ GXX ] [ GFX ]−1 (5.33)

Hv Algorithm: Minimize Noise on Input and Output ( υ and η )

[H]No × Ni
{ {F}Ni × 1 − {υ}Ni × 1} = {X }No × 1 − {η}No × 1 (5.34)

[H] { {F} − {υ} } = {X } − {η} (5.35)

The solution for [H] is found by the eigenvalue decomposition of one of the following two

matrices:

[GFFX p] =




[GFF]

[GXF p]

[GXF p]H

[GXX p]



(Ni+1) × (Ni+1)

(5.36)

[GXFF p] =




[GXX p]

[GXF p]H

[GXF p]

[GFF]



(Ni+1) × (Ni+1)

(5.37)

Therefore, the eigenvalue decomposition would be:

[GFFX p] = [V ]  Λ  [V ]H (5.38)

Or:

[GXFF p] = [V ]  Λ  [V ]H (5.39)

where:

•  Λ  = diagonal matrix of eigenvalues
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Solution for the p − th row of the [H] matrix is found from the eigenvector associated with the

smallest (minimum) eigenvalue. Note that the size of the eigenvalue problem is Ni + 1 and that

the eigenvalue solution must be repeated for each frequency. Note also that the complete

solution process must be repeated for each response point X p.

The frequency response functions associated with a single output p and all inputs is found by

normalizing the eigenvector associated with the smallest eigenvalue. If [GFFX p] is used, the

eigenvector associated with the smallest eigenvalue must be normalized as follows:

{V }λmin
=











H p1

H p2

.

.

H pNi

−1











(5.40)

If [GXFF p] is used, the eigenvector associated with the smallest eigenvalue must be normalized

as follows:

{V }λmin
=











−1

H p1

H p2

.

.

H pNi











(5.41)

The concept of the coherence function, as defined for single-input measurement, needs to be

expanded to include the variety of relationships that are possible for multiple inputs. Ordinary

coherence is defined in this general sense as the correlation coefficient describing the linear

relationship between any two spectra. This is consistent with the ordinary coherence function

that is defined for single input, single output measurements. Great care must be taken in the

interpretation of ordinary coherence when more than one input is present. The ordinary

coherence of an output with respect to an input can be much less than unity even though the
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linear relationship between inputs and outputs is valid, because of the influence of the other

inputs.

The ordinary coherence function can be formulated in terms of the elements of the matrices

defined previously. The ordinary coherence function between the pth output and the qth input

can be computed from the following formula:

Ordinary Coherence Function

COH pq = γ pq
2 =

|GXF pq |2

GFFqq GXX pp
(5.42)

where:

• GXX pp = Auto power spectrum of the output p

• GFFqq = Auto power spectrum of the input q

• GXF pq = Cross power spectrum between output p and input q

Partial coherence is defined as the ordinary coherence between a conditioned output and another

conditioned output, between a conditioned input and another conditioned input, or between a

conditioned input and a conditioned output. The output and input are conditioned by removing

contributions from other input(s). The removal of the effects of the other input(s) is formulated

on a linear least squares basis. The order of removal of the inputs during "conditioning" has a

definite effect upon the partial coherence if some of the input(s) are mutually correlated. There

will be a partial coherence function for every input/output, input/input and output/output

combination for all permutations of conditioning. The usefulness of partial coherence, especially

between inputs, for experimental modal analysis is of limited value.

Multiple coherence is defined as the correlation coefficient describing the linear relationship

between an output and all known inputs. There is a multiple coherence function for every output.

Multiple coherence can be used to evaluate the importance of unknown contributions to each

output. These unknown contributions can be measurement noise, nonlinearities, or unknown

inputs. Particularly, as in the evaluation of ordinary coherence, a low value of multiple
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coherence near a resonance will often mean that the "leakage" error is present in the frequency

response function. Unlike the ordinary coherence function, a low value of multiple coherence is

not expected at antiresonances. The antiresonances for different response locations occur at the

same frequency. Though one response signal may have a poor signal-to-noise ratio at its

antiresonance, other inputs will not at the same frequency.

The formulation of the equations for the multiple coherence functions can be simplified from the

normal computational approach to the following equation.

Multiple Coherence Function

MCOH p =
Ni

q=1
Σ

Ni

t=1
Σ

H pq GFFqt H*
pt

GXX pp
(5.43)

where:

• H pq = Frequency response function for output p and input q

• H pt = Frequency response function for output p and input t

• GFFqt = Cross power spectrum between output q and output t

• GXX pp = Auto power spectrum of output p

If the multiple coherence of the p − th output is near unity, then the p − th output is well

predicted from the set of inputs using the least squares frequency response functions.

Example: H1 Technique: Two Inputs/One Output Case

To begin to understand the size of the problem involved, start with the two input, one output case.

X̂ p − η p = H p1 F1 + H p2 F2 (5.44)
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H

F1 F2

X p

+

X̂ p

η p

Figure 5-7. Tw o Input, One Output Model

If more than one output is measured, the equations become:

{X p} [F*
1 F*

2] = [H p1 H p2]




F1

F2





[F*
1 F*

2] (5.45)

Therefore, for input locations 1 and 2, each output is used with the two inputs to compute two

frequency response functions. Therefore, there will be 2 × No frequency response functions to

be computed.










H11

H21

H31

.

.

HNo1

H12

H22

H32

.

.

HNo2










=










GXF11

GXF21

GXF31

.

.

GXFNo1

GXF12

GXF22

GXF32

.

.

GXFNo2














GFF11

GFF21

GFF12

GFF22





−1

(5.46)

For each output location, one formulation of the equations to be solved can be developed by

replacing the inverse of the [GFF] matrix with the equivalent adjoint of the [GFF] matrix

divided by the determinant of the [GFF] matrix. In this way, it is clear that the frequency

response functions can be found as long as the determinant of the [GFF] matrix is not zero.
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H p1 =
GXF p1 GFF22 − GXF p2 GFF21

det[GFF]
(5.47)

H p2 =
GXF p2 GFF11 − GXF p1 GFF12

det[GFF]
(5.48)

where:

• det[GFF] = Determinant of [GFF] matrix

• det[GFF] = GFF11 GFF22 − GFF21 GFF12

For the two input, one output case several possible coherence functions can be formulated.

While the ordinary coherence between the output and each input can be formulated, these

coherence functions may not provide useful information due to the possible interaction between

the two forces.

Ordinary Coherence (Output p and Input 1)

COH p1 =
|GXF p1|2

GFF11 GXX pp
(5.49)

Ordinary Coherence (Output p and Input 2)

COH p2 =
|GXF p2|2

GFF22 GXX pp
(5.50)

The ordinary coherence between the two inputs is a useful function since this is a measure of

whether the forces are correlated. If the forces are perfectly correlated at a frequency, the inverse

of the [GFF] matrix will not exist and the frequency response functions cannot be estimated at

that frequency. In this case, the ordinary coherence between the two forces cannot be unity,

although values from 0.0 to 0.99 are theoretically acceptable. The limit is determined by the

accuracy of the measured data and the numerical precision of the computation.

Ordinary Coherence (Input 1 and Input 2)
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COH12 =
|GFF12|2

GFF11 GFF22
(5.51)

Multiple coherence is always a good measure of whether the output response is caused by the

combination of the measured inputs. Multiple coherence is is used in multiple input situations in

the same way that ordinary coherence is used in the single input situations.

Multiple Coherence

MCOH p =
2

q=1
Σ

2

t=1
Σ

H pq GFFqt H*
pt

GXX pp
(5.52)
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Summary of Methods

H1 Technique:

• Underestimates amplitude at resonances. Causes damping to be

overestimated.

• Underestimates amplitude at anti-resonances.

H2 Technique:

• Overestimates amplitude at resonances. Causes damping to be

underestimated.

• Overestimates amplitude at anti-resonances.

Hv Technique:

• Best estimate of amplitude at resonances. Causes damping to

be estimated best.

• Best estimate of amplitude at anti-resonances.

• Phase characteristics not altered.

5.2.3.1 Multiple Input Force Analysis/Evaluation

Of the variety of situations that can cause difficulties in the computation of the frequency

response functions, the highest potential for trouble is the case of coherent inputs. If two of the

inputs are fully coherent at one of the analysis frequencies, then there are no unique frequency

response functions associated with those inputs at that analysis frequency. Unfortunately, there
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are a number of situations where the input cross spectrum matrix [GFF] may be singular at

specific frequencies or frequency intervals. When this happens, the inverse of [GFF] will not

exist and Equation (5.28) cannot be used to solve for the frequency response function at those

frequencies or in those frequency intervals. First, one of the input autospectra may be zero in

amplitude over some frequency interval. When this occurs, then all of the cross spectra in the

same row and column in the input cross spectrum matrix [GFF] will also be zero over that

frequency interval. Consequently, the input cross spectrum matrix [GFF] will be singular over

that frequency interval. Second, two or more of the input signals may be fully coherent over

some frequency interval. Although the signals used as inputs to the exciter systems must be

uncorrelated random inputs, the response of the structure at resonance, combined with the

inability to completely isolate the exciter systems from this response results in the ordinary or

conditioned partial coherence functions with values other than zero, particularly, at the system

poles. For example, for the two input case, as long as the coherence function between the inputs

is not unity at these frequencies, Equation (5.28) can be solved uniquely for the frequency

response functions. Note that the auto and cross spectra involved in the calculation of the

multiple input case for the estimation of frequency response functions should be computed from

analog time data that has been digitized simultaneously. If data is not processed in this manner,

many more averages are required to reduce the variance on each individual auto and cross

spectrum and the efficiency of the multiple input approach to the estimation of frequency

response functions will not be as attractive. Finally, numerical problems, which cause the

computation of the inverse to be inexact, may be present. This can happen when an

autospectrum is near zero in amplitude, when the cross spectra have large dynamic range with

respect to the precision of the computer, or when the matrix is ill-conditioned because of nearly

redundant input signals.

Due to the form of the equations that must be solved to compute frequency response functions in

the presence of multiple inputs, special care must be taken to assure that the input spectrum

matrix is not singular. Therefore, techniques have been investigated to evaluate the form of the

input spectrum matrix before taking any data. Singular, in this case, implies that:

• Input forces may not be coherent at any frequency.

• Independent, uncorrelated noise sources must be used. (Random, Random Transient,

Periodic Random)
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• The impedance of the structure at the input locations may tend to correlate the inputs

at resonance.

• There are no zero’s in the input spectrum matrix.

Ordinary and Partial Coherence Functions

The historical approach that was used to try to evaluate the correlation between the forces

utilized ordinary and partial coherence functions. The ordinary coherence function measures the

degree of linear dependence (or correlation) between the spectra of two signals. The partial

coherence function measures the degree of linear dependence between the spectra of two signals,

after eliminating in a least squares sense, the contribution of some other signals. Both functions

can be used in systematic procedure to verify that the forces are not correlated or that the input

cross spectra matrix [GFF] is not singular. For cases involving more than two inputs, this

approach is very difficult and requires considerable judgement. In reality, only the ordinary

coherence function, for the case of two inputs, is still used.

COHik =
| GFFik |2

GFFii GFFkk
(5.53)

where:

• GFFik = Cross power spectrum between inputs i and k

• GFFii = Auto power spectrum of input i

• GFFkk = Auto power spectrum of input k

Principal/Virtual Input Forces (Virtual Forces)

The current approach used to determine correlated inputs involves utilizing principal component

analysis to determine the number of contributing forces to the [GFF] matrix. In this approach,

the matrix that must be evaluated is:
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[GFF] =









GFF11

.

.

.

GFFNi1

.

.

.

.

.

.

GFF1Ni

.

.

.

GFFNi Ni









(5.54)

where:

• GFFik = GFF*
ki (Hermitian Matrix)

• GFFik = Σ Fi F
*
k

• GFF is the power spectrum of a given input.

Principal component analysis involves an eigenvalue decomposition of the [GFF] matrix [8].

Since the eigenvectors of such a decomposition are unitary, the eigenvalues should all be of

approximately the same size if each of the inputs is contributing. If one of the eigenvalues is

much smaller at a particular frequency, one of the inputs is not present or one of the inputs is

correlated with the other input(s).

[ GFF ] = [ V ] [ Λ ] [ V ]H (5.55)

Since the eigenvectors of such a decomposition are unitary, the eigenvalues should all be of

approximately the same size if each of the inputs is contributing. If one of the eigenvalues is

much smaller at a particular frequency, one of the inputs is not present or one of the inputs is

correlated with the other input(s). [ Λ ] represents the eigenvalues of the [GFF] matrix. If any

of the eigenvalues of the [GFF] matrix are zero or insignificant, then the [GFF] matrix is

singular. Therefore, for a three input test, the [GFF] matrix should have three eigenvalues. (The

number of eigenvalues is the number of uncorrelated inputs). This concept is shown graphically

in Figure 5-8 for the auto power spectra for a three input case. It is difficult to determine if the

inputs are mutually correlated from these plots. Figure 5-9 shows the principal force plots for the

same case. At the frequencies where the third principal/virtual force drops (lowest curve), this

indicates that the inputs are mutually correlated at those frequencies. This is not apparent from

Figure 5-8.
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Figure 5-8. AutoPower Spectrum of Input Forces
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Figure 5-9. Principal (Virtual) Force Spectrum

Optimum Number Of Inputs

The location and number of inputs has a direct effect on the quality of frequency response

functions that are estimated. This is an area that has not been researched completely and is still

being reviewed. It is clear that beyond some number of inputs, the return from the investment of

more equipment, in the form of inputs, is not warranted. Some considerations are:

• Tw o at symmetric locations. Frequency response functions can be added or subtracted to

enhance in phase or out of phase modes.

• To excite as many modes as possible in one test configuration.

(5-34)



+UC-SDRL-RJA CN-20-263-663/664 Revision: June 12, 2001 +

• Tw o vertical and one horizontal on a car.

• One on each wing and one on each horizontal stabilizer, all symmetric, on an aircraft

structure.

• To excite "operating" conditions.

5.3 Excitation

Excitation includes any form of input that is used to create a response in a mechanical system.

This can include environmental or operational inputs as well as the controlled force input(s) that

are used in a vibration or modal analysis test. In general, the following discussion will be limited

to the force inputs that can be measured and/or controlled in some rigorous way. With respect to

frequency response function measurements to be used in experimental modal analysis, the

excitation normally is applied using shakers or with impact devices (hammers). For those

excitation signals that require the use of a shaker, Figure 5-10 shows a typical test configuration;

Figure 5-11 shows a typical test configuration when an impact form of excitation is to be used.
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Figure 5-10. Typical Test Configuration: Shaker
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Figure 5-11. Typical Test Configuration: Impact Hammer

Single and multiple input estimation of frequency response functions (FRFs) via shaker

excitation has become the mainstay of most mechanical structure measurements, particularly in

the automotive and aircraft industries. While there are appropriate occasions for the use of

deterministic excitation signals (sinusoids), the majority of these measurements are made using

broadband (random) excitation signals. These signals work well for moderate to heavily damped

mechanical structures which exhibit linear characteristics. When the mechanical structures are

very lightly damped, care must be taken to minimize the leakage error so that accurate frequency

response function (FRF) data can be estimated in the vicinity of the modal frequencies of the

system. Frequently, when random excitation methods are compared to deterministic methods

(sinusoids), the comparisons are questionable since proper procedures for eliminating the leakage

error have not been followed.

Historically, a number of random excitation signals have been utilized, together with appropriate
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digital signal processing techniques [1-5], to obtain accurate FRF data. The most common

random signal that is used in this situation is the pure random signal together with a Hann

window. This signal is normally generated by the data acquisition system utilizing built-in

random signal generator(s) or via external random signal generator(s). While this approach does

not eliminate the source of leakage and the effect of applying the Hann window must be

considered, this approach is normally considered as a baseline random excitation method for

estimating FRF measurements since this method is available with almost any data acquisition

system.

Other forms of random signals (pseudo random, periodic random, burst random, etc.) utilize

more control or frequency shaping of the excitation signal(s) and generally require digital-to-

analog (DAC) converter(s). For this reason, some of these alternate methods are infrequently

available and therefore not used. This is unfortunate since these methods often yield a superior

FRF measurement in less total testing time.

When FRFs are measured on lightly damped systems, great care must be taken to eliminate the

leakage error. Reg ardless of the type of excitation signal hardware involved (random signal

generator or DAC), there are random excitation methods that can nearly eliminate the leakage

error. In some cases, one approach will be superior on the basis of minimizing the total test time

but on the basis of accurate, leakage-free FRFs, one of the methods will always work if test time

can be sacrificed. Note that these alternate forms of random excitation focus on eliminating the

source of leakage by customizing the random signal to match the requirements of fast Fourier

transform (FFT) that is used in converting from the time to frequency domain. The FFT requires

that the time domain signal must either be totally observed in the observation period (T) or be

periodic in the observation period (T). For leakage free FRF measurements, all of the input and

output signals must match one of these two requirements. Burst random excitation is an attempt

to match the first requirement; pseudo and periodic random excitations are attempts to match the

second requirement.

5.3.1 Excitation Assumptions

The primary assumption concerning the excitation of a linear structure is that the excitation is

observable. Whenever the excitation is measured, this assumption simply implies that the

measured characteristic properly describes the actual input characteristics. For the case of

multiple inputs, the different inputs must often be uncorrelated for the computational procedures
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to yield a solution. In most cases this means only that the multiple inputs must not be perfectly

correlated at any frequency. As long as the excitation is measured, the validity of these limited

assumptions can be evaluated.

Currently, there are a number of techniques that can be used to estimate modal characteristics

from response measurements with no measurement of the excitation. If this approach is used,

the excitation assumptions are much more imposing. Obviously, if the excitation is not

measured, estimates of modal scaling (modal mass, modal A, residues, etc.) cannot be

generated. Even under the assumption that the estimation of these parameters is not required, all

of these techniques have one further restriction: an assumption has to be made concerning the

characteristics of the excitation of the system. Usually, one assumes that the autospectrum of

the excitation signal is sufficiently smooth over the frequency interval of interest.

In particular, the following assumptions about the excitation signal can be used:

• The excitation is impulsive. The autospectrum of a short pulse (time duration much

smaller than the period of the greatest frequency of interest) is nearly uniform, or constant

in amplitude, and largely independent of the shape of the pulse.

• The excitation is white noise. White noise has an autospectrum that is uniform over the

bandwidth of the signal.

• The excitation signal is a step. A step signal has an autospectrum that decreases in

amplitude in proportion to the reciprocal of frequency. The step signal can be viewed as

the integral of an impulsive signal.

• There is no excitation. This is called the free response or free decay situation. The

structure is excited to a condition of nonzero displacement, or nonzero velocity, or both.

Then the excitation is removed, and the response is measured during free decay. This kind

of response can be modeled as the response of the structure to an excitation signal that is a

linear combination of impulsive and step signals.

When the excitation autospectrum is uniform, the autospectrum of the response signal is

proportional to the square of the modulus of the frequency response function. Using the notation

of a pole-zero model, the poles of the response spectrum are the poles of the frequency response,

which are the parameters of the system resonances. If the autospectrum is not uniform, then the
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excitation spectrum can be modeled as an analytic function, to a precision comparable to typical

experimental error in the measurement of spectra. In this model, the excitation spectrum has

poles that account for the nonuniformity of the spectrum amplitude. The response signal,

therefore, can be modeled by a spectrum that contains zeros at the zeros of the excitation and the

zeros of the frequency response, and contains poles at the poles of the excitation and at the poles

of the frequency response. It is obviously important that the force spectrum should have no poles

or zeros which coincide with poles of the frequency response.

For transient inputs, such as an impact or step relaxation, the assumption of smooth excitation

spectra is generally true, but for operating inputs or inputs generated by an exciter system, care

must be taken to insure the input force spectrum is smooth. This is especially true for tests

performed using a hydraulic or an electro-mechanical exciter, because the system being analyzed

may "load" the exciter system (the structure’s impedance is so low that the desired force level

cannot be achieved within the constraint of small motion), and this causes a nonuniformity in the

input force spectrum.

To determine the characteristics of the system from the response, it is necessary that the response

have the same poles as the frequency response, or that the analysis process corrects for the zeros

and poles of the excitation. If the force input spectrum has a zero in the frequency range of

interest, the pole location measured from the response spectrum will not match that of the

frequency response. This potential problem is demonstrated in Figure 5-12 for the typical case

of shaker excitation. The top figure is the magnitude of the frequency response function. The

middle figure is the auto power spectrum of the input and the lower figure is the auto power

spectrum of the response. Note that the estimates of modal parameters that would be derived

from the auto power spectrum of the response would be quite different from those derived from

the frequency response function.
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Figure 5-12. Input Spectrum Example

Presently, there is a great deal of interest in determining modal parameters from measured

response data taken on operating systems (for example: turbulent flow over an airfoil, road inputs

to automobiles, and environmental inputs to proposed large space structures). For these cases,
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care must be taken not to confuse poles that are system resonances with those that exist in the

output spectrum due to inputs.

In general, the poles of the response include those of the frequency response and of the input

spectrum. Therefore, if the force is not measured, it is not possible without some prior

knowledge about the input to determine if the poles of the response are truly system

characteristics. If no poles or zeros exist in the force spectrum in the frequency range of interest,

then any poles in the response in this range must be a result of the system characteristics.

Obviously, when the excitation can be measured, it is prudent to do so.

5.3.2 Terminology and Nomenclature

Historically, a number of terminology and nomenclature issues have not been rigorously defined

when excitation methods have been described.

The following terminology is important to the explanation of different excitation methods

together with the associated digital signal processing requirements.

Signal Type - Signal type refers to the basic form of the signal, such as random, impact,

sinusoidal or chirp.

Frequency Shaping - Frequency shaping refers to any frequency domain constraint or

characteristic that is applied to the specific signal type. With respect to random excitation, a

common frequency shaping is pseudo random. Other frequency shaping is commonly applied to

sinusoids and chirps via the rate at which the change of frequency and/or amplitude occurs.

Impact excitation is commonly frequency shaped by controlling the tip characteristic of the

hammer.

Delay Blocks - The number of contiguous blocks of excitation that take place without the

associated input and output data being acquired are referred to as the delay blocks (Nd ). This is

normally associated with a excitation technique that is periodic in nature. The delay blocks are

needed in order to give the transient response to any start or change in the periodic excitation to

decay out of the response signal(s) so that both the input(s) and output(s) are periodic with

respect to any observation period (T). It is this requirement that makes swept sinusoidal

excitation methods (analog swept or digitally stepped) so time consuming, particularly on lightly
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damped systems. Each delay block is equal in length to the observation period (T) and the

number of delay blocks is normally chosen as an integer. The number of delay blocks does not

have to be an integer for all excitation methods but, for the purposes of this paper and in common

usage, is normally chosen as an integer. The delay blocks are not recorded and are not used in

the estimation of the FRFs.

Capture Blocks - The number of capture blocks refers to the number of contiguous blocks of

time data (excitation (input) and response (output)) that are recorded or captured for each average

(Nc). The number of capture blocks is also the number of cyclic averages that will be used to

reduce the leakage error. Each group of contiguous capture blocks (Nc) is used as the time

domain data contributing to one power spectral average that contributes to the estimate of the

FRF measurements.

Window Function - The window function refers to the digital signal processing, time domain

window that is applied to the capture blocks. The application of the window function to the

capture blocks is on the basis of the group of contiguous capture blocks not on each capture

block individually.

Av erage (Ensemble) - The average or ensemble refers to the total collection of contiguous time

blocks that contribute to each power spectral average. The total time of each average is equal to

the sum of the number of delay blocks (Nd ) plus the number of capture blocks (Nc) times the

observation period (T) which is the same for all delay and capture blocks. The number of

av erages (Navg) refers to the number of these contiguous collections of time blocks and is,

therefore, the same as the number of power spectral averages. The number of capture blocks can

also be thought of as the number of cyclic averages (Nc). Cyclic signal averaging is often used

with excitation characteristics in order to better match the time domain input and output signals

to the requirements of the FFT prior to the application of the FFT. Cyclic signal averaging

essentially digitally comb filters the time domain data to reduce the amount of information in the

data that is not periodic with the observation period (T). This type of averaging reduces the

effects of the leakage error. As long as the Nc successive blocks of data are contiguous, the

blocks of time domain data can be averaged together, with or without windows, to achieve the

benefit of leakage reduction [9-10].

Periodic - If the excitation signal is repeated for each delay and capture block, the signal is

referred to as periodic. This classification is consistent with the definition of a periodic function

and includes typical examples of sinusoids and chirps as well as a random signal that is repeated

on the basis of the observation period (T). The periodic classification does not define whether
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the same signal is repeated for each successive group of contiguous delay and capture blocks.

Burst Length - Burst length is the percentage (0 to 100%) of the average or ensemble time that

the excitation signal is present. Burst length is normally adjusted in order to achieve a signal that

is a totally observed transient. The decay of the signal is a function of the system damping and

the characteristics of the excitation hardware. Burst length can be defined as the percentage of

the total number of contiguous delay and capture blocks or of a percentage of just the capture

blocks. For the purpose of this paper, the burst length refers to the percentage of the total

number of contiguous delay and capture blocks.

Po wer Spectral Averages - The number of power spectral averages (Navg or Na) is the number

of auto and cross spectra that are averaged together to estimate the FRF measurements. The

actual amount of test time contributing to each power spectral average is a function of the

number of contiguous delay and capture blocks. The purpose of power spectral averages is to

eliminate the noise that is random with respect to the averaging procedure in order to reduce the

variance on the resulting FRF estimate. This type of averaging does not reduce the effects of

bias errors like the leakage error.

In order to clarify the preceding terminology, Figure 5-13 is a schematic representation of the

number of contiguous blocks of time domain data contributing to one power spectral average. In

this example, the two blocks marked "D" represent delay blocks and the four blocks marked "C"

represent capture blocks. The total time for each power spectral average is, therefore, six

contiguous blocks of time data (6 × T seconds of data).
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Figure 5-13. Total Contiguous Time Per Power Spectral Average (Ensemble)

5.3.3 Classification of Excitation

Inputs which can be used to excite a system in order to determine frequency response functions

belong to one of two classifications. The first classification is that of a random signal. Signals of

this form can only be defined by their statistical properties over some time period. Any subset of

the total time period is unique and no explicit mathematical relationship can be formulated to

describe the signal. Random signals can be further classified as stationary or non-stationary.

Stationary random signals are a special case where the statistical properties of the random signals

do not vary with respect to translations with time. Finally, stationary random signals can be

classified as ergodic or non-ergodic. A stationary random signal is ergodic when a time average

on any particular subset of the signal is the same for any arbitrary subset of the random signal.

All random signals which are commonly used as input signals fall into the category of ergodic,

stationary random signals.

The second classification of inputs which can be used to excite a system in order to determine

frequency response functions is that of a deterministic signal. Signals of this form can be

represented in an explicit mathematical relationship. Deterministic signals are further divided

into periodic and non-periodic classifications. The most common inputs in the periodic

deterministic signal designation are sinusoidal in nature while the most common inputs in the
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non-periodic deterministic designation are transient in form.

The choice of input to be used to excite a system in order to determine frequency response

functions depends upon the characteristics of the system, upon the characteristics of the

parameter estimation, and upon the expected utilization of the data. The characterization of the

system is primarily concerned with the linearity of the system. As long as the system is linear,

all input forms should give the same expected value. Naturally, though, all real systems have

some degree of nonlinearity. Deterministic input signals result in frequency response functions

that are dependent upon the signal level and type. A set of frequency response functions for

different signal levels can be used to document the nonlinear characteristics of the system.

Random input signals, in the presence of nonlinearities, result in a frequency response function

that represents the best linear representation of the nonlinear characteristics for a given lev el of

random signal input. For small nonlinearities, use of a random input will not differ greatly from

the use of a deterministic input.

The characterization of the parameter estimation is primarily concerned with the type of

mathematical model being used to represent the frequency response function. Generally, the

model is a linear summation based upon the modal parameters of the system. Unless the

mathematical representation of all nonlinearities is known, the parameter estimation process

cannot properly weight the frequency response function data to include nonlinear effects. For

this reason, random input signals are prevalently used to obtain the best linear estimate of the

frequency response function when a parameter estimation process using a linear model is to be

utilized.

The expected utilization of the data is concerned with the degree of detailed information required

by any post-processing task. For experimental modal analysis, this can range from implicit

modal vectors needed for trouble-shooting to explicit modal vectors used in an orthogonality

check. As more detail is required, input signals, both random and deterministic, will need to

match the system characteristics and parameter estimation characteristics more closely. In all

possible uses of frequency response function data, the conflicting requirements of the need for

accuracy, equipment availability, testing time, and testing cost will normally reduce the possible

choices of input signal.

With respect to the reduction of the variance and bias errors of the frequency response function,
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random or deterministic signals can be utilized most effectively if the signals are periodic with

respect to the sample period or totally observable with respect to the sample period. If either of

these criteria are satisfied, regardless of signal type, the predominant bias error, leakage, will be

eliminated. If these criteria are not satisfied, the leakage error may become significant. In either

case, the variance error will be a function of the signal-to-noise ratio and the amount of

av eraging.

5.3.4 Random Excitation Methods

Inputs which can be used to excite a system in order to determine frequency response functions

(FRFs) belong to one of two classifications, random or deterministic [6-8]. Random signals are

widely utilized for general single-input and multiple-input shaker testing when evaluating

structures that are essentially linear. Signals of this form can only be defined by their statistical

properties over some time period. Any subset of the total time period is unique and no explicit

mathematical relationship can be formulated to describe the signal. Random signals can be

further classified as stationary or non-stationary. Stationary random signals are a special case

where the statistical properties of the random signals do not vary with respect to translations with

time. Finally, stationary random signals can be classified as ergodic or non-ergodic. A

stationary random signal is ergodic when a time average on any particular subset of the signal is

the same for any arbitrary subset of the random signal. All random signals which are commonly

used as input signals fall into the category of ergodic, stationary random signals. Deterministic

signals can be characterized directly by mathematical formula and the characteristic of the

excitation signal can be computed for any instance in time. While this is true for the theoretical

signal sent to the exciter, it is only approximately true for the actual excitation signal due to the

amplifier/shaker/structure interaction that is a function of the impedances of these electro-

mechanical systems. Deterministic signals can, nevertheless, be controlled more precisely and

are frequently utilized in the characterization of nonlinear systems for this reason. The random

classification of excitation signals is the only signal type discussed in this paper.

The choice of input to be used to excite a system in order to determine frequency response

functions depends upon the characteristics of the system, upon the characteristics of the modal

parameter estimation, and upon the expected utilization of the data. The characterization of the

system is primarily concerned with the linearity of the system. As long as the system is linear,

all input forms should give the same expected value. Naturally, though, all real systems have

some degree of nonlinearity. Deterministic input signals result in frequency response functions
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that are dependent upon the signal level and type. A set of frequency response functions for

different signal levels can be used to document the nonlinear characteristics of the system.

Random input signals, in the presence of nonlinearities, result in a frequency response function

that represents the best linear representation of the nonlinear characteristics for a given RMS

level of random signal input. For systems with small nonlinearities, use of a random input will

not differ greatly from the use of a deterministic input.

The characterization of the modal parameter estimation is primarily concerned with the type of

mathematical model being used to represent the frequency response function. Generally, the

model is a linear summation based upon the modal parameters of the system. Unless the

mathematical representation of all nonlinearities is known, the parameter estimation process

cannot properly weight the frequency response function data to include nonlinear effects. For

this reason, random input signals are prevalently used to obtain the best linear estimate of the

frequency response function when a parameter estimation process using a linear model is to be

utilized.

The expected utilization of the data is concerned with the degree of detailed information required

by any post-processing task. For experimental modal analysis, this can range from implicit

modal vectors needed for trouble-shooting to explicit modal vectors used in an orthogonality

check. As more detail is required, input signals, both random and deterministic, will need to

match the system characteristics and parameter estimation characteristics more closely. In all

possible uses of frequency response function data, the conflicting requirements of the need for

accuracy, equipment availability, testing time, and testing cost will normally reduce the possible

choices of input signal.

With respect to the reduction of the variance and bias errors of the frequency response function,

random or deterministic signals can be utilized most effectively if the signals are periodic with

respect to the sample period or totally observable with respect to the sample period. If either of

these criteria are satisfied, regardless of signal type, the predominant bias error, leakage, will be

minimized. If these criteria are not satisfied, the leakage error may become significant. In either

case, the variance error will be a function of the signal-to-noise ratio and the amount of

av eraging.

Many signals are appropriate for use in experimental modal analysis. Some of the most

commonly used random signals, used with single and multiple input shaker testing, are described

in the following sections.
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Pure Random - The pure random signal is an ergodic, stationary random signal which has a

Gaussian probability distribution. In general, the frequency content of the signal contains energy

at all frequencies (not just integer multiples of the FFT frequency increment (∆ f = 1/T )). This

characteristic is shown in Figure 5-14. This is undesirable since the frequency information

between the FFT frequencies is the cause of the leakage error. The pure random signal may be

filtered (Fmin to Fmax) to include only information in a frequency band of interest. The measured

input spectrum of the pure random signal, as with all random signals, will be altered by any

impedance mismatch between the system and the exciter. The number of power spectral

av erages used in the pure random excitation approach is a function of the reduction of the

variance error and the need to have a significant number of averages to be certain that all

frequencies have been adequately excited.
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Figure 5-14. Signal Energy Content - Pure Random

Pseudo Random - The pseudo random signal is an ergodic, stationary random signal consisting

of energy content only at integer multiples of the FFT frequency increment (∆ f ). The frequency

spectrum of this signal is shaped to have a constant amplitude with random phase. This

characteristic is shown in Figure 5-15. If sufficient delay time is allowed in the measurement

procedure for any transient response to the initiation of the signal to decay (number of delay

blocks), the resultant input and output histories are periodic with respect to the sample period.

The number of power spectral averages used in the pseudo random excitation approach is a

function of the reduction of the variance error. In a noise free environment, only one average

(per input) may be necessary.
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Figure 5-15. Signal Energy Content - Pseudo Random

Periodic Random - The periodic random signal is an ergodic, stationary random signal

consisting only of integer multiples of the FFT frequency increment. The frequency spectrum of

this signal has random amplitude and random phase distribution. This characteristic is shown in

Figure 5-16. For each average, input signal(s) are created with random amplitude and random

phase. The system is excited with these input(s) in a repetitive cycle until the transient response

to the change in excitation signal decays (number of delay blocks). The input and response

histories should then be periodic with respect to the observation time (T) and are recorded as one

power spectral average in the total process. With each new average, a new history, random with

respect to previous input signals, is generated so that the resulting measurement will be

completely randomized. The number of power spectral averages used in the periodic random

excitation approach is a function of the reduction of the variance error and the need to have a

significant number of averages to be certain that all frequencies have been adequately excited.
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Figure 5-16. Signal Energy Content - Periodic Random
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Burst Random (Random Transient) - The burst random signal is neither a completely transient

deterministic signal nor a completely ergodic, stationary random signal but contains properties of

both signal types. The frequency spectrum of this signal has random amplitude and random

phase distribution and contains energy throughout the frequency spectrum. This characteristic is

shown in Figure 5-17. The difference between this signal and the random signal is that the

random transient history is truncated to zero after some percentage of the observation time (T).

Normally, an acceptable percentage is fifty to eighty percent. The measurement procedure

duplicates the random procedure but without the need to utilize a window to reduce the leakage

problem as long as both the input and output decays to zero in the observation time (T ).
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Figure 5-17. Signal Energy Content - Burst Random

The burst length (0-100%) is chosen so that the response history decays to zero within the

observation time (T). For moderate to heavily damped systems, the response history will decay

to zero very quickly due to the damping provided by the system being tested. These systems do

not cause a leakage error in the first place.

For lightly damped cases, burst random will force the response to decay to zero in the

observation time (T ) primarily due to the exciter system characteristics. Exciter systems,

particularly electromagnetic, attempt to match the excitation signal to some physical

characteristic of the exciter. Typically, this means that the displacement, velocity or acceleration

of the armature of the shaker will attempt to match the excitation signal. (Note that this is

normally an open loop control process; no attempt is made to exactly match the excitation

signal.) Electromagnetic shaker systems work either in a voltage or current feedback

configuration in order to control the shaker according to the desired input signal. Voltage

feedback refers to the type of amplifier in the exciter system that attempt to match the voltage
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supplied to the shaker to the excitation signal. This effectively means that the displacement of

the armature will follow the excitation signal. Therefore, if a zero voltage signal is sent to the

exciter system, the exciter will attempt to prevent the armature from moving. This damping

force, provided by the exciter/amplifier system, is often overlooked in the analysis of the

characteristics of this signal type. Since this measured input, although not part of the generated

signal, includes the variation of the input during the decay of the response history, the input and

response histories are totally observable within the sample period and the system damping that

will be computed from the measured FRF data is unaffected.

Current feedback refers to the type of amplifier in the exciter system that attempt to match the

current supplied to the shaker to the excitation signal. This effectively means that the

acceleration of the armature will follow the excitation signal. Therefore, if a zero voltage signal

is sent to the exciter system, the exciter will allow the armature to move, preventing any force to

be applied by the exciter system. The characteristic of a voltage feedback exciter system for a

burst random exciation is shown in the following figures. Note the difference between the

desired burst random signal and the actual force measured.
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Figure 5-18. Burst Random - Signal to Shaker
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Figure 5-19. Burst Random - Signal from Load Cell (Voltage Feedback)
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Figure 5-20. Burst Random - Signal from Accelerometer

For very lightly damped systems, the burst length may have to be shortened below 20 percent.

This may yield an unacceptable signal to noise ratio (SNR). The number of power spectral

av erages used in the burst random excitation approach is a function of the reduction of the

variance error and the need to have a significant number of averages to be certain that all

frequencies have been adequately excited. plus the exciter/amplifier system trying to maintain the

input at zero (voltage feedback amplifier in the excitation system).

Slow Random - The slow random signal is an ergodic, stationary random signal consisting only

of integer multiples of the FFT frequency increment. This signal behaves just like the pseudo

random signal but without the frequency shaping of the amplitude. The slow random signal is

generated by cyclic averaging a random signal in order to produce digitally comb filtered

excitation signal(s) with the proper characteristics.
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MOOZ Random - The MOOZ random signal is an ergodic, stationary random signal consisting

only of integer multiples of the FFT frequency increment frequency band limited to the

frequency band of a ZOOM fast Fourier transform (FFT)(Fmin to Fmax). The MOOZ (ZOOM

spelled backwards) random signal requires synchronization between the data acquisition and the

digital-to-analog converter (DAC). The MOOZ random signal is essentially a slow random

excitation signal adjusted to accommodate the frequencies of a ZOOM FFT.

The relationship between delay blocks and averages for some of the most commonly used

random excitation methods are summarized in Table 5-3.

TABLE 5-3. Excitation Characteristics
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Hybrid Random Excitation Methods

Several random excitation methods have recently been demonstrated that are hybrid methods

involving combinations of burst random and pseudo random, burst random and periodic random

together with cyclic averaging.

Burst Pseudo Random - Figure 5-21 shows the energy content of a hybrid excitation method

that combines pseudo random with burst random. This excitation signal would be combined

with cyclic averaging.
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Figure 5-21. Signal Energy Content - Burst Pseudo Random

Burst Periodic Random - Figure 5-22 shows the energy content of a hybrid excitation method

that combines periodic random with burst random. This excitation signal would be combined

with cyclic averaging.
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Figure 5-22. Signal Energy Content - Burst Periodic Random
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5.3.5 Deterministic Excitation Methods

Slow Swept Sine - The slow swept sine signal is a periodic deterministic signal with a

frequency that is an integer multiple of the FFT frequency increment. Sufficient time is allowed

in the measurement procedure for any transient response to the changes in frequency to decay so

that the resultant input and response histories will be periodic with respect to the sample period.

Therefore, the total time needed to compute an entire frequency response function will be a

function of the number of frequency increments required and the system damping.

Periodic Chirp - The periodic chirp is a deterministic signal where a sinusoid is rapidly swept

from Fmin to Fmax within a single observation period (T). This signal is then repeated in a

periodic fashion. While this signal is not random in characteristic, it is often included in

discussions of random excitation since it has similar properties as pseudo random.
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Figure 5-23. Typical Chirp Signal - Time Domain
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Figure 5-24. Typical Chirp Signal - Frequency Domain

Impact (Impulse) - The impact signal is a transient deterministic signal which is formed by

applying an input pulse to a system lasting only a very small part of the sample period. The

width, height, and shape of this pulse will determine the usable spectrum of the impact. Briefly,

the width of the pulse will determine the frequency spectrum while the height and shape of the

pulse will control the level of the spectrum. Impact signals have proven to be quite popular due

to the freedom of applying the input with some form of an instrumented hammer. While the

concept is straight forward, the effective utilization of an impact signal is very involved

[33,34,37].
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Step Relaxation - The step relaxation signal is a transient deterministic signal which is formed

by releasing a previously applied static input. The sample period begins at the instant that the

release occurs. This signal is normally generated by the application of a static force through a

cable. The cable is then cut or allowed to release through a shear pin arrangement [39] .

Table 5-4 summarizes the advantages and disadvantages for the most commonly used excitation

signals.

Excitation Signal Characteristics

Steady Pure Pseudo Periodic Fast Impact Burst Burst

State Random Random Random Sine Sine Random

Sine

Minimize Leakage No No Yes Yes Yes Yes Yes Yes

Signal-to-Noise Ratio Very Fair Fair Fair High Low High Fair

High

RMS-to-Peak Ratio High Fair Fair Fair High Low High Fair

Test Measurement Time Very Good Very Fair Fair Very Very Very

Long Short Short Short Short

Controlled Frequency Content Yes Yes Yes Yes Yes No Yes Yes

* * * * * *

Controlled Amplitude Content Yes No Yes No Yes No Yes No

* * *

Removes Distortion No Yes No Yes No No No Yes

Characterize Nonlinearity Yes No No No Yes No Yes No

* Special Hardware Required

TABLE 5-4. Summary of Excitation Signals
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5.3.6 Excitation Example - H-Frame

The following example presents a single FRF measurement on an H-frame test structure in a test

lab environment as a representative example. The configuration of the test involved two shaker

locations (inputs) and eight response accelerometers (outputs). The test results are representative

of all data taken on the H-frame structure. This H-frame test structure is very lightly damped and

has been the subject of many previous studies.

For all FRF measurement cases, the same test configuration was used. Sensors were installed

and left in place; no additions or changes were made to the test configuration other than altering

the excitation, averaging and digital signal processing parameters. Therefore, any changes in the

FRF measurements are assumed to be due to the change in measurement technique and not due

to a test set-up variation. The test results were repeated to be certain that the results are

representative.

All FRF measurements are estimated using the H1 estimation algorithm using 1024 spectral

(frequency) lines of information. The frequency bandwidth is from 0 to 250 Hertz for the 1024

spectral lines; only the first 80 % of the spectral lines (0 to 200 Hertz) are displayed in order to

exclude the data affected by the anti-aliasing filters.

The FRF data is plotted with phase above log magnitude. The log magnitude portion of the plot

also contains the relevant multiple coherence plotted on a linear scale in the background. The

log magnitude scaling is annotated on the left side of the plot and the multiple coherence scaling

is annotated on the right side of the plot.

Fourteen representative cases were measured on this structure. The relevant excitation and

digital signal processing characteristics of each case are shown in Table 5-5.
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Case Signal Frequency Periodic Burst Window Nd Nc Navg Total

Type Shaping Function Length Function Blocks

Case 1 Random No No No Hann 0 1 20 20

Case 2 Random No No No Hann 0 5 4  20

Case 3 Random No No Yes (75%) Uniform 0 5 4  20

Case 4 Random Pseudo No No Uniform 4 1 4  20

Case 5 Random No Yes No Uniform 4 1 4  20

Case 6 Random Pseudo No No Uniform 3 1 5  20

Case 7 Random No Yes No Uniform 3 1 5  20

Case 8 Random Pseudo No Yes (75%) Uniform 0 5 4  20

Case 9 Random No Yes Yes (75%) Uniform 0 5 4  20

Case 10 Random No No Yes (75%) Uniform 0 8 12 20

Case 11 Random No No No Hann 0 1 96 96

Case 12 Random No No No Hann 0 8 12 96

Case 13 Random Pseudo No No Uniform 3 2 4  20

Case 14 Random No Yes No Uniform 3 2 4  20

TABLE 5-5. Test Cases - Excitation/Averaging/DSP Parameters

Case 1 (Figure 5-25) is considered a baseline case since this a very popular method for making a

FRF measurement and it can be easily made on all data acquisition equipment. However, it is

clear that in this measurement situation, there is a significant drop in the multiple coherence

function at frequencies consistent with the peaks in the FRF measurement. This characteristic

drop in multiple (or ordinary) coherence is often an indication of a leakage problem. This can be

confirmed if a leakage reduction method reduces or eliminates the problem when the

measurement is repeated. In all subsequent cases, the test configuration was not altered in any

way - data was acquired simply using different excitation, averaging and digital signal processing

combinations.

Case 2 (Figure 5-26) demonstrates an improvement over Case 1 when the same total

measurement time is used but cyclic averaging is used to reduce the leakage error. Case 3

(Figure 5-27) further demonstrates that burst random with cyclic averaging improves the

measurement further. Again the total measurement time remains the same.

Cases 4 through 7 (Figures 5-28 through 5-31) demonstrate the quality of FRF measurements

(5-61)



+UC-SDRL-RJA CN-20-263-663/664 Revision: June 12, 2001 +

that can be achieved with pseudo and periodic random excitation methods with very few power

spectral averages.

Cases 8 and 9 (Figures (5-32 through 5-33) are hybrid techniques involving the combination of

burst random with pseudo and periodic random excitation together with cyclic averaging.

Case 10 (Figure 5-34) demonstrates that Case 3 can be marginally improved with more averages,

both cyclic and power spectral averages. However, Case 11 (Figure 5-35) demonstrates that Case

1 (Random with Hann Window) cannot be improved by adding power spectral averages. This is

a popular misconception that adding power spectral averages will improve the FRF estimate.

This is clearly not true for this case.

Case 12 (Figure 36) demonstrates that additional cyclic averages, together with power spectral

av erages, is an improvement over Case 2 but the improvement is not significant considering the

additional measurement time.

Finally, Cases 13 and 14 (Figures 5-37 through 5-38) demonstrate that, when pseudo and

periodic random excitation is coupled with cyclic averaging, a nearly perfect FRF measurement

results. Note also that in almost every case where high quality FRF measurements have been

been achieved, window functions are not required so correction for the window characteristics is

unnecessary.
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Figure 5-25. Case 1: Random Excitation with Hann Window
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Figure 5-26. Case 2: Random Excitation with Hann Window and Cyclic Averaging
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Figure 5-27. Case 3: Burst Random Excitation with Cyclic Averaging
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Figure 5-28. Case 4: Pseudo Random Excitation
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Figure 5-29. Case 5: Periodic Random Excitation
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Figure 5-30. Case 6: Pseudo Random Excitation
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Figure 5-31. Case 7: Periodic Random Excitation
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Figure 5-32. Case 8: Burst Pseudo Random Excitation with Cyclic Averaging
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Figure 5-33. Case 9: Burst Periodic Random Excitation with Cyclic Averaging
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Figure 5-34. Case 10: Burst Random Excitation with Cyclic Averaging
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Figure 5-35. Case 11: Random Excitation with Hann Window
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Figure 5-36. Case 12: Random Excitation with Hann Window and Cyclic Averaging
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Figure 5-37. Case 13: Pseudo Random Excitation with Cyclic Averaging
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Figure 5-38. Case 14: Periodic Random Excitation with Cyclic Averaging
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It is clear that in many of the measurement cases, the multiple coherence can be improved

dramatically using simple excitation, averaging and digital signal processing methods. Note that,

as the multiple coherence improves, dramatic changes in the FRF magnitude accompany the

improvement (factors of 2 to more than 10). When estimating modal parameters, the frequency

and mode shape would probably be estimated reasonably in all cases. However, the damping and

modal scaling would be distorted (over estimating damping and under estimating modal scaling).

Using these results for model prediction or FE correction would bias the predicted results.

The most important conclusion that can be drawn from the results of this measurement exercise

on a lightly damped mechanical system is that accurate data is an indirect function of

measurement time or number of averages but is a direct function of measurement technique. The

leakage problem associated with utilizing fast Fourier transform (FFT) methodology to estimate

frequency response functions on a mechanical system with light damping is a serious problem

that can be managed with proper measurement techniques, like periodic and pseudo random

excitation or cyclic averaging with burst random excitation. Hybrid techniques demonstrated in

this paper clearly show that a number of measurement techniques are acceptable but some

commonly used techniques are clearly unacceptable.

It is also important to note that while ordinary/multiple coherence can indicate a variety of

input/output problems, a drop in the ordinary/multiple coherence function, at the same frequency

as a lightly damped peak in the frequency response function, is often a direct indicator of a

leakage problem. Frequently, comparisons are made between results obtained with narrowband

(sinusoid) excitation and broadband (random) excitation when the ordinary/multiple coherence

function clearly indicates a potential leakage problem. It is important that good measurement

technique be an integral part of such comparisons.

5.3.7 Impact Excitation

Impact testing is an attempt to match the input and output data to the requirement of the discrete

or fast Fourier transform that the data be a totally observed transient in the observation time (T ).

While the impact is almost always totally observable, the response for lightly damped systems

may not be. Special windows are often used for impact testing that accommodate the

characteristics of the transient input and the response of the system to a transient input.
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Impact excitation is widely used due to the minimal equipment required, portability and low cost

of the impact devices and broad applicability to both small, medium and large size structures.

However, impact testing also suffers from limitations imposed by the human control of the

impact. Repeatability and consistency of the impact (force and direction) cannot be guaranteed,

particularly as the test becomes long and repetitious. Care must be taken to ensure that the

impact and response is not too small, not too large (overload) and that there is only one impact

per observation period.

When impact testing is used, windows are generally required on both the force and response data

in order to minimize different errors. The force window is used to eliminate the signal coming

from the impact device after the short duration impact is over. This eliminates electrical noise

and spurious output from the hammer during data acquisition that is caused by motion of the

impact device that does not put force into the system. The response (exponential) window is

used to force the response closer to zero by the end of the observation period (T ) and should be

used carefully. If the response is already near zero at time T , no response window should be

added. To be theoretically correct and to allow for the effects of this response window to be

accounted for, the decay rate of the exponential must be recorded and the same window should

also be applied to the input data, in addition to the force window.

Force Window

Force windows are used to improve the signal-to-noise problem caused by the noise on the input

channel measured after the impact is completed. Note that the exponential window used on the

response should also be applied to the input in addition to the force window.
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Figure 5-39. Typical Force Windows

Response (Exponential) Windows

Response (exponential) windows are used to minimize the leakage error for lightly damped

systems by attenuating the response so that it decays to zero within the observation period.

Normally, for lightly damped systems, a window that attenuates to 1-5 percent at the end of the

response is appropriate. For heavily damped systems, a window that is similar to the decay of

the system will attenuate any noise.
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Figure 5-40. Typical Response Windows
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Response (Exponential) Windows Correction

The windows that are added to the force and response signals must be corrected. Primarily, the

response (exponential) window may add significant damping to the resultant frequency response

function. This can only be corrected after the modal damping for each mode is found.

• h pq(t) =
2N

r=1
Σ Apqr eλ r t

• eβ t h pq(t) = eβ t
2N

r=1
Σ Apqr eλ r t

• eβ t h pq(t) =
2N

r=1
Σ Apqr eβ t eλ r t

• eβ t h pq(t) =
2N

r=1
Σ Apqr e(λ r+β )t =

2N

r=1
Σ Apqr eλ̂ r t

• λ̂ r = σ̂ r + j ω̂ r = (σ r + β ) + j ω r

• σ̂ r = σ r + β

• σ r = σ̂ r − β

• ω r = ω̂ r

5.4 Structural Testing Conditions

The test condition for any modal analysis test involves several environmental factors as well as

appropriate boundary conditions. First of all, the temperature, humidity, vacuum, and gravity

effects must be properly considered to match with previous analysis models or to allow the

experimentally determined model to properly reflect the system.

In addition to the environmental concerns, the boundary conditions of the system under test are

very important. Traditionally, modal analysis tests have been performed under the assumption

that the test boundary conditions can be made to conform to one of four conditions:
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• Free-free boundary conditions (Impedance is zero).

• Fixed boundary conditions (Impedance is infinite)

• Operating boundary conditions (Impedance is correct).

• Arbitrary boundary conditions (Impedance is known).

It should be obvious that, except in very special situations, none of these boundary conditions

can be practically achieved. Instead, practical guidelines are normally used to evaluate the

appropriateness of the chosen boundary conditions. For example, if a free-free boundary is

chosen, the desired frequency of the highest rigid body mode should be a factor of ten below the

first deformation mode of the system under test. Likewise, for the fixed boundary test, the

desired interface stiffness should be a factor of ten greater than the local stiffness of the system

under test. While either of these practical guidelines can be achieved for small test objects, a

large class of flight vehicle systems can not be acceptably tested in either configuration.

Arguments have been made that the impedance of a support system can be defined (via test and

/or analysis) and the effects of such a support system can be eliminated from the measured data.

This technique is theoretically sound but, due to significant dynamics in the support system and

limited measurement dynamics, this approach has not been uniformly applicable.

In response to this problem, many alternate structural testing concepts have been proposed and

are under current evaluation. Active, or combinations of active and passive, suspension systems

are being evaluated, particularly for application to very flexible space structures. Active inert gas

suspension systems have been used in the past for the testing of smaller commercial and military

aircraft and, in general, such approaches are formulated to better match the requirements of a

free-free boundary condition.

Another alternate test procedure is to define a series of relatively conventional tests with various

boundary conditions. The various boundary conditions are chosen in such a way that each

perturbed boundary condition can be accurately modeled (for example, the addition of a large

mass at interface boundaries). Therefore, as the experimental model is acquired for each

configuration and used to validate and correct the associated analytical model, the underlying

model will be validated and corrected accordingly. This procedure has the added benefit of

adding the influence of modes of vibration that would normally occur above the maximum

frequency of the test into the validation of the model. For example, the inertial effect of the
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addition of a mass at an interface will cause a downward shift in frequency of any mode that is

active at the interface (modes that are not affected by the interface dynamics will not be shifted).

Since this shift is measured and the analytical model can accurately define the dynamics of the

added mass, any inaccuracy in the analytical prediction of the frequency shifts as well as the

corresponding effects on the modal vectors will be due to the lack of fidelity of the underlying

analytical model.

Recently, other researchers have proposed multiple configurations of test conditions as a

methodology of utilizing practical test configurations in the testing of flight vehicle systems. In a

related research area, work is progressing on using constrained testing together with direct

parameter estimation methods to define the characteristics of the unconstrained structure. In this

test procedure, the excitation forces and the constraint forces are measured together with

appropriate response information. The direct parameter estimation method produces a general

matrix model that describes the unconstrained (free-free) structural system. All of these newer

methods will increase the cost (time, financial, technical) of performing structural tests with the

attendant incremental increase in the accuracy of the test results.

5.5 Practical Measurement Considerations

There are several factors that contribute to the quality of actual measured frequency response

function estimates. Some of the most common sources of error are due to measurement

mistakes. With a proper measurement approach, most of this type of error, such as overloading

the input, extraneous signal pick-up via ground loops or strong electric or magnetic fields nearby,

etc., can be avoided. Violation of test assumptions are often the source of another inaccuracy and

can be viewed as a measurement mistake. For example, frequency response and coherence

functions have been defined as parameters of a linear system. Nonlinearities will generally shift

energy from one frequency to many new frequencies, in a way which may be difficult to

recognize. The result will be a distortion in the estimates of the system parameters, which may

not be apparent unless the excitation is changed. One way to reduce the effect of nonlinearities is

to randomize these contributions by choosing a randomly different input signal for each of the n

measurements. Subsequent av eraging will reduce these contributions in the same manner that

random noise is reduced. Another example involves control of the system input. One of the

most obvious requirements is to excite the system with energy at all frequencies for which
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measurements are expected. It is important to be sure that the input signal spectrum does not

have "holes" where little energy exist. Otherwise, coherence will be very low, and the variance

on the frequency response function will be large.

Assuming that the system is linear, the excitation is proper, and obvious measurement mistakes

are avoided, some amount of error (noise) will be present in the measurement process. Five

different approaches can be used to reduce the error involved in frequency response function

measurements in current fast Fourier transform (FFT) analyzers. First of all, the use of different

frequency response function estimation algorithms (Hv compared to H1) will reduce the effect

of the leakage error on the estimation of the frequency response function computation. The use

of averaging can significantly reduce errors of both variance and bias and is probably the most

general technique in the reduction of errors in frequency response function measurement.

Selective excitation is often used to verify nonlinearities or randomize characteristics. In this

way, bias errors due to system sources can be reduced or controlled. The increase of frequency

resolution through the zoom fast Fourier transform can improve the frequency response function

estimate primarily by reduction of the leakage bias error due to the use of a longer time sample.

The zoom fast Fourier transform by itself is a linear process and does not involve any specific

error reduction characteristics compared to a baseband fast Fourier transform(FFT). Finally, the

use of weighting functions(windows) is widespread and much has been written about their

value [1-3,40-41]. Primarily, weighting functions compensate for the bias error (leakage) caused

by the analysis procedure.
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