An Alternative Method of Specifying Shock Test Criteria

Robin Ferebee/NASA MSFC J. Clayton and D. Alldredge/bd Systems, Inc. T. Irvine/Vibration Data, LLC.

June 10-12, 2008

Background

- Space Shuttle Solid Rocket Booster (SRB) water impact shock criteria have presented challenges to component qualification
- Integrated Electronics Assembly (IEA) case was broken while attempting to qualify for water impact shock
 - Shock Response Spectra (SRS) criteria were derived from flight measurements taken at input to the box
 - No margin was added above envelope of data
- Later attempt to test SRB battery also led to structural failure
- The only flight failures on this hardware were due to water pressure from plume impingement rather than impact shock
- bd Systems in Huntsville, AL was contracted to look into alternative means of shock testing

SRB IEA

- Two IEAs per SRB
- IEA is four feet long and weighs 200 lb.
- Aft IEA mounted to ET attach ring through rubber isolators
- Forward IEA mounted in forward skirt to ring
- Housing is cast aluminum
- Housing cracked at bracket
 interface

Forward IEA Installation

NA

Shock Test Criteria

 Water impact shock criteria based on measurements taken on five Shuttle flights
 IEA Shock Test Criteria

Background

- Two primary reasons why the IEA broke in test
 - Compliance of support hardware not accounted for
 - Time history of test shock input did not match actual measured data
 - Any number of time histories can produce the desired SRS
 - We suspected that the test time history was somehow inducing severe forces into the test article
 - We also questioned whether the internal component response was different with the different time histories
- First attempted fix was to use force-limiting for shock testing
 - Short duration of test precludes normal application of force-limiting, although that may be a future direction
- Joe Clayton suggested using wavelets to more precisely simulate the actual acceleration time history
 - Wavelets have the advantage of yielding zero net displacement and velocity

Example Shock Waveforms

Synthesizing a Single Time History

- An iterative approach, developed by Tom Irvine, was used to construct a synthesized time history composed of wavelets
- Using the well-documented wavelet equation, the following four parameters were iteratively adjusted to yield the lowest error
 - wavelet acceleration amplitude
 - wavelet frequency
 - number of half-sines
 - wavelet time delay
- The number of wavelets used will determine the accuracy of the final result
- The following synthesis is composed of 60 wavelets

Comparison of Time Histories

Maximum Expected Environment

- With SRS approach the maximum expected environment can be estimated by calculating the P95%/50% probability level of the spectra from different measurement locations, directions, and flights
 - This can't be done easily with time histories
- Tom Irvine developed a technique to calculate a composite waveform that "resembles" the desired time history
 - Each waveform is randomly multiplied by +1 or -1 and delayed by a random percentage of time
 - Waveforms are summed and mean-square value calculated
 - Optimum waveform has the highest mean-square value
- The composite pulse SRS is then scaled to the measured P95% SRS by trial and error

Measured Acceleration Time Histories

These four measurements were made at the same location in the same direction on different flights 100 - Signal 3 g 0-NAUMIN g -100 -100 g -100 -100 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 Time (sec) Time (sec)

Scaled Composite SRS

Velocity and Displacement of Scaled Composite Waveform

Result

- Result meets criteria
 - Falls within P95%/50% bounds
 - Resembles original time history
 - Net zero velocity
 - Net zero displacement
 - If the peak displacement is too high the wavelet synthesis program can be adjusted to start at a higher frequency
- Test specification would consist of a table of wavelets rather than an SRS

Shock Criteria Specified as Wavelet Table

Accel(G)	Freq(Hz)	NHS	Delay(sec)	Accel(G)	Freq(Hz)	NHS	Delay(sec)	Accel(G)	Freq(Hz)	NHS	Delay(sec)
-3.79	16.36	5	0.0048	-9.02	98.88	5	0.0902	8.85	345.89	7	0.1126
-1.89	19.78	5	0.001	-4.29	102.91	3	0.1354	-9.35	360.3	19	0.0777
-1.58	26.43	9	0.0166	-3.38	113.53	9	0.1584	-5.7	379.76	5	0.0934
2.33	35.77	3	0.1567	-10.55	124.46	19	0.0242	5.38	383.49	11	0.1214
-4.04	38.95	13	0.0125	-2.2	133.06	21	0.0495	-12.66	426.15	3	0.0332
-14.22	41.27	7	0.1072	-3.78	135.14	7	0.0046	7.24	434.76	13	0.0253
-23.19	44.74	3	0.0128	6.51	146.43	3	0.0478	3.37	469.06	21	0.043
2.99	45.05	3	0.0003	20.38	149.91	7	0.0159	4.87	532.84	23	0.0563
1.48	49.99	17	0.0166	-4.88	153.39	15	0.0776	4.64	593.45	27	0.0418
4.24	55.43	13	0.0789	6.99	153.87	11	0.0163	-10.63	609.62	13	0.0257
9.76	55.67	3	0.0086	-6.34	157.05	17	0.1399	8.64	627.99	9	0.0209
-4	57.68	5	0.016	10.44	168.46	7	0.0591	5.85	698.73	13	0.0862
-19.5	63.18	5	0.0285	5.93	230.17	17	0.025	7.61	765.69	7	0.0688
2.08	63.73	5	0.1576	2.29	263.19	13	0.0081	-5.34	865.48	13	0.0306
6.28	73.98	9	0.1353	-8.86	273.93	5	0.0826	5.74	992.92	11	0.0784
31.42	74.59	9	0.0119	2.83	282.84	11	0.0664	-6.43	1034.55	9	0.0936
24.41	80.76	17	0.0232	-4.42	290.23	7	0.1564	4.54	1334.48	27	0.0827
-5.6	83.75	19	0.0306	-6.26	312.02	3	0.1454	-4.39	1343.2	21	0.0406
-2.75	91.92	9	0.1496	-5.22	314.89	15	0.0263				
-4.06	93.69	7	0.056	12.22	325.26	9	0.062				
-3.96	97.17	9	0.152	-7.81	335.76	7	0.1347				

Conclusion

- Technique was developed to synthesize shock test criteria as a wavelet table
 - Synthesized shock meets maximum expected levels of flight measurements and resembles time histories so that forces generated are comparable to flight
 - Does not address mounting structure compliance
- Future Work
 - Address mounting structure compliance (Force-limiting?)
 - Brute-force synthesis method can be more efficient through convergence algorithms
 - Optimization of waveform to reduce peak displacement
 - Perform tests on dummy hardware to measure force differences between SRS and wavelet techniques

References

- Ferebee, et al. "An Alternative Method of Specifying Shock Test Criteria". NASA/TM-2008-215253, April 2008.
- The code used to generate the waveforms is available at Tom Irvine's web site (vibrationdata.com).

