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Background 

• Space Shuttle Solid Rocket Booster (SRB) water impact shock criteria 

have presented challenges to component qualification 

• Integrated Electronics Assembly (IEA) case was broken while 

attempting to qualify for water impact shock 

– Shock Response Spectra (SRS) criteria were derived from flight 

measurements taken at input to the box 

– No margin was added above envelope of data 

• Later attempt to test SRB battery also led to structural failure 

• The only flight failures on this hardware were due to water pressure 

from plume impingement rather than impact shock 

• bd Systems in Huntsville, AL was contracted to look into alternative 

means of shock testing 
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SRB IEA 

• Two IEAs per SRB 

• IEA is four feet long and weighs 

200 lb. 

• Aft IEA mounted to ET attach ring 

through rubber isolators 

• Forward IEA mounted in forward 

skirt to ring 

• Housing is cast aluminum 

• Housing cracked at bracket 

interface 
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Forward IEA Installation 
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Shock Test Criteria 

• Water impact shock criteria based on measurements taken on five 

Shuttle flights IEA Shock Test Criteria
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Background 

• Two primary reasons why the IEA broke in test 

– Compliance of support hardware not accounted for 

– Time history of test shock input did not match actual measured data 

• Any number of time histories can produce the desired SRS 

• We suspected that the test time history was somehow inducing severe forces 

into the test article 

• We also questioned whether the internal component response was different 

with the different time histories 

• First attempted fix was to use force-limiting for shock testing 

– Short duration of test precludes normal application of force-limiting, 

although that may be a future direction 

• Joe Clayton suggested using wavelets to more precisely simulate the 

actual acceleration time history 

– Wavelets have the advantage of yielding zero net displacement and 

velocity  
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Example Shock Waveforms 

Test Time History 
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Synthesizing a Single Time History 

• An iterative approach, developed by Tom Irvine, was used to construct 

a synthesized time history composed of wavelets 

• Using the well-documented wavelet equation, the following four 

parameters were iteratively adjusted to yield the lowest error 

– wavelet acceleration amplitude 

– wavelet frequency 

– number of half-sines  

– wavelet time delay 

• The number of wavelets used will determine the accuracy of the final 

result 

• The following synthesis is composed of 60 wavelets 

 



 9  

Comparison of Time Histories 
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Maximum Expected Environment 

• With SRS approach the maximum expected environment can be 

estimated by calculating the P95%/50% probability level of the spectra 

from different measurement locations, directions, and flights 

– This can’t be done easily with time histories 

• Tom Irvine developed a technique to calculate a composite waveform 

that “resembles” the desired time history 

– Each waveform is randomly multiplied by +1 or -1 and delayed by a 

random percentage of time 

– Waveforms are summed and mean-square value calculated 

– Optimum waveform has the highest mean-square value 

• The composite pulse SRS is then scaled to the measured P95% SRS 

by trial and error 
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Measured Acceleration Time Histories 

These four measurements were made at the same location in the same 

direction on different flights 
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Scaled Composite SRS 

Shock response Spectra (Q=10)
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Velocity and Displacement of Scaled Composite Waveform 

Velocity Wavelet Synthesis of Composite Pulse Scaled to Meet 

P95/50 SRS
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Result 

• Result meets criteria 

– Falls within P95%/50% bounds 

– Resembles original time history 

– Net zero velocity 

– Net zero displacement 

• If the peak displacement is too high the wavelet synthesis program can be 

adjusted to start at a higher frequency 

• Test specification would consist of a table of wavelets rather than an 

SRS 
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Shock Criteria Specified as Wavelet Table 

Accel(G) Freq(Hz) NHS Delay(sec) Accel(G) Freq(Hz) NHS Delay(sec) Accel(G) Freq(Hz) NHS Delay(sec) 

-3.79 16.36 5 0.0048 -9.02 98.88 5 0.0902 8.85 345.89 7 0.1126 

-1.89 19.78 5 0.001 -4.29 102.91 3 0.1354 -9.35 360.3 19 0.0777 

-1.58 26.43 9 0.0166 -3.38 113.53 9 0.1584 -5.7 379.76 5 0.0934 

2.33 35.77 3 0.1567 -10.55 124.46 19 0.0242 5.38 383.49 11 0.1214 

-4.04 38.95 13 0.0125 -2.2 133.06 21 0.0495 -12.66 426.15 3 0.0332 

-14.22 41.27 7 0.1072 -3.78 135.14 7 0.0046 7.24 434.76 13 0.0253 

-23.19 44.74 3 0.0128 6.51 146.43 3 0.0478 3.37 469.06 21 0.043 

2.99 45.05 3 0.0003 20.38 149.91 7 0.0159 4.87 532.84 23 0.0563 

1.48 49.99 17 0.0166 -4.88 153.39 15 0.0776 4.64 593.45 27 0.0418 

4.24 55.43 13 0.0789 6.99 153.87 11 0.0163 -10.63 609.62 13 0.0257 

9.76 55.67 3 0.0086 -6.34 157.05 17 0.1399 8.64 627.99 9 0.0209 

-4 57.68 5 0.016 10.44 168.46 7 0.0591 5.85 698.73 13 0.0862 

-19.5 63.18 5 0.0285 5.93 230.17 17 0.025 7.61 765.69 7 0.0688 

2.08 63.73 5 0.1576 2.29 263.19 13 0.0081 -5.34 865.48 13 0.0306 

6.28 73.98 9 0.1353 -8.86 273.93 5 0.0826 5.74 992.92 11 0.0784 

31.42 74.59 9 0.0119 2.83 282.84 11 0.0664 -6.43 1034.55 9 0.0936 

24.41 80.76 17 0.0232 -4.42 290.23 7 0.1564 4.54 1334.48 27 0.0827 

-5.6 83.75 19 0.0306 -6.26 312.02 3 0.1454 -4.39 1343.2 21 0.0406 

-2.75 91.92 9 0.1496 -5.22 314.89 15 0.0263     

-4.06 93.69 7 0.056 12.22 325.26 9 0.062     

-3.96 97.17 9 0.152 -7.81 335.76 7 0.1347     
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Conclusion 

• Technique was developed to synthesize shock test criteria as a 

wavelet table 

– Synthesized shock meets maximum expected levels of flight 

measurements and resembles time histories so that forces generated are 

comparable to flight 

• Does not address mounting structure compliance 

• Future Work 

– Address mounting structure compliance (Force-limiting?) 

– Brute-force synthesis method can be more efficient through convergence 

algorithms 

– Optimization of waveform to reduce peak displacement 

– Perform tests on dummy hardware to measure force differences between 

SRS and wavelet techniques 
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