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ABSTRACT
Consumer comfort is a top priority in today’s vehicle design.

Reduction of noise and vibration enhances comfort and improves
the overall quality of the vehicle.  Linear elastic vibration isolation
mounts are traditionally applied within complex structures to
combat noise and vibration.  Statistical Energy Analysis (SEA) is
becoming an established and tested noise and vibration modeling
methodology that is frequently used to model the flow of noise and
vibration in complex structures.  A SEA model of a linear elastic
vibration isolation mount is developed here which enables SEA
analysis of elastically isolated systems for the first time.

A vibration isolation mount model has been absent from SEA
models because of the lack of an SEA formulation.  Linear elastic
vibration isolation mount SEA equations are developed here for the
first time.  The basis of SEA theory is energy sharing among
vibrational mode groups.  Traditionally, vibration isolation mounts
were thought of as compliant elements with no modes suitable to
SEA analysis.  An example mount is defined and the number of
energy storage modes computed.  The results show that a linear
elastic vibration isolation mount should be modeled in SEA
analysis and provide the equations for a SEA isolation mount
model.  Also included is the analysis for three unique SEA
connectors, a mount to acoustic volume connector, a beam to
mount connector, and a mount to flat plate connector.

INTRODUCTION
The acoustic response of automobiles is a key property to the

perception of product quality.  Automotive vehicles are complex
structures where the consumer is configured in close proximity to
the power plant or drive train.  For this reason acoustic design has
become an integral part of the overall product design process.  The
implementation of acoustic modeling in the acoustic design process
is the most efficient and cost-effective method to assure product
quality.  Statistical Energy Analysis (SEA) is accepted as an
accurate and reliable noise and vibration transmission modeling
methodology for automotive vehicles (Elliot and Friberg, 1988 &
Fredo, 1988).  SEA is a useful tool for acoustic design predicting
the response of and power flow between model elements.

Linear elastic vibration isolation mount systems are common
components of complex structures that involve a source of noise
and vibration.  Typically configured between the noise and
vibration source and the rest of complex structure, the task of the

vibration isolation system is to reduce the flow of noise and
vibration (Pinnington and White, 1981).  For example, a linear
elastic engine mount in an automotive vehicle separates the engine
from the cradle of the car. Structural vibration through and sound
radiation from linear elastic mounts are significant vibro-acoustic
energy transmissions in complex structures.  Clearly, vibration
isolation systems are mechanisms for transferring noise and
vibration power.  This leads to the question of a linear elastic mount
vibration isolation system in SEA modeling.

SEA vibration isolation models are not included in SEA models
because a SEA model formulation is unavailable.  The impact that a
linear elastic vibration isolation mount will have on a SEA model
will be investigated by defining the system as a SEA element.  This
will be accomplished by a modal development of a mount.  In the
past, compliant vibration mounts and other linear elastic structures
were considered to have a zero mode count (Ricks, 1987).  Analysis
of actual non-zero mode count allows an SEA linear elastic
vibration isolation mount that enhances the overall effectiveness of
SEA for analytical vibro-acoustic modeling.

The key component of SEA elements is energy storage (Lyon and
DeJong, 1995).  The foundation of SEA theory is energy sharing
among resonators (elements), therefore, the elements in an SEA
model should have comparable energy storage.  SEA equations are
power balances of the coupled elemental energies.  Vibrational
modes are the mechanisms that characterize energy storage in a
resonator.  The number of modes or the modal density is the most
descriptive parameter of total energy storage in a SEA element.
The modal density of the vibration isolation system SEA element
relative magnitude to the modal density of other important SEA
elements determines the validity of the system as a SEA subsystem.
The modal density of a typical linear elastic mount vibration
isolation system will be compared with the modal density of a
typical SEA element to evaluate equivalent energy storage
capability and hence their ability to share energy.  Other SEA
parameters are the coupling loss factor and the internal loss factor.
Previously unavailable model equations for these relationships as
well as element energy dissipation are derived below.

MODEL DEVELOPMENT
Development of a Statistical Energy Analysis (SEA) noise

transmission model is dependent on the energy storage in the
structure and the type of coupling among the substructures.
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Vibration models contain substructures that are small and stiff
connected by point couplings with near zero energy storage.  SEA
models involve substructures that are large and compliant with
modal couplings and high energy storage.  A three element
vibration model and a three element SEA model are shown in
Figures 1 a) & 1 b), respectively.  M1 and M3 in Figure 1 a) are
rigid masses and K2 is the spring constant.  The motion of the
vibration model involves the movement of each rigid mass as a
whole.  In the case of the SEA model, the motion is internal via
waves within the physical substructures.  The groups of modes
created by this wave motion are considered the elements of the
SEA model.  These groups of modes (SEA elements) create the
energy that is shared throughout the model through modal
couplings to other groups of modes (SEA elements).  Figure 1 b)
illustrates the SEA power balance where E1, E2, and E3 are the
element internal energies, P12 and P23 are the power flow losses
due to the modal couplings, and P11, P22, and P33 are the power
flow losses due to internal damping.
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P11

P22

P33
FIGURE 1: VIBRATION & SEA MODEL COMPARISON

Internal vibrational modes within the physical substructures are
the mechanisms of energy storage.  The number of modes within a
substructure characterizes the capacity for energy storage in the
corresponding SEA element.  Energy storage is the essence of the
SEA method and modal density for each SEA element is a critical
component in SEA analysis.  The modal density, ni( f ) , is used
with element i modal energy, ei( f ) , to derive the element i total
energy, Ei( f ), at a frequency band center frequency band f

Ei( f ) = ni( f )ei ( f ) (1)

The total element energy is the used within a SEA power balance
relation between an element i and an element j.

1

2πf
Pi = ηijEi −η jiE j + ηiEi

(2)

Pi  is the input power to element i, ηij  & η ji  are the coupling loss
factors corresponding to modal couplings between elements, and ηi

is the internal loss factor corresponding to internal damping of
element i.

The derivation of a linear elastic vibration isolation mount system
modal density requires a modal development of its dynamic
behavior.  Figure 2 a) shows a linear elastic vibration isolation
mount system with N mounts configured between two flexible
substructures.  The SEA representation of the 3-element structure is
shown in Figure 2 b).  In the SEA model, the modes in all N
mounts are considered as one energy storing element with energy
Evis.  E1 and E2 are the total energies of the modes in flexible
substructures, 1 and 2 respectively.  Vibrational energy will flow
from the energy storing modes in the first substructure to the energy
storing modes in each mount of the vibration isolation system to the
modes in the second substructure.
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FIGURE 2: ELASTICALLY ISOLATED SYSTEMS & SEA
REPRESENTATION
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FIGURE 3: SINGLE MOUNT SCHEMATIC
Six degree of freedom (DOF) energy storing modes in each

mount are excited by the modes of the flexible substructures.  The
connecting substructures perturb a single three-dimensional mount
through mass-less rigid planar connections shown in the Figure 3.
Shear and bending waves will be present in both the x and y
directions (4 DOF) with longitudinal and torsion waves in the z
direction (2 DOF).  The waves are assumed to be uncoupled in this
formulation.  The modes present in each mount in the vibration
isolation system will be governed by the six wave equations
(Cremer, Heckl, and Ungar, 1973).
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∂z2
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∂ 2ulong z

∂t2
EJ

∂ 2utorsion z

∂z2
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E
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∂x2
= ρ 1+ υ( )

∂ 2ushearx

∂t2
E

∂2usheary

∂y2
= ρ 1+ υ( )

∂ 2usheary

∂t2

EIx

∂ 4ubending x

∂x4
= ρA

∂ 2ubending x

∂t2
EI y

∂ 4ubending y

∂y4
= ρA

∂ 2ubending y

∂t2

(3)

u is a displacement, E is Young's modulus, υ  is Poisson's ratio, A is
a mount cross-sectional area, Ix and Iy are the second moments of
area, J is the second polar moment of area, and ρ  is the density.
Figure 4 a) - f) illustrates the six energy storing modes defined by
the six equations in (3).
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FIGURE 4: ENERGY STORING MODES OF A MOUNT
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FIGURE 4: ENERGY STORING MODES OF A MOUNT
Six wave velocities results from solving (3)

clongz
= E

ρ
c torsionz

= EJ

ρ 1 +υ( )

cshearx
=

E

ρ 1+ υ( ) c sheary
=

E

ρ 1+ υ( )

cbendingx
=

EI x

ρA
4 2πf cbendingy

=
EI y

ρA
4 2πf

(4)

These velocities are found independent of boundary conditions and
type of structure.  The definition of mount wave velocities leads to
the derivation of a modal density for each mount which
characterizes its energy storage capability.

MODAL DENSITY, n
Defining a mount modal density results in a term that

characterizes its energy storage capacity.  Considering of the mount
modal density as an energy storage term, N mount modal densities
may be summed together to obtain an overall modal density of an
N-mount vibration isolation system.  The modal density of a mount
is the sum of longitudinal, torsion, two bending, and two shear
modal density components.

nmount = nlong z
+ ntorsionz

+ nshearx
+ nsheary

+ nbending x
+ nbendingy (5)

Each modal density component is twice the length over the wave
velocity (Lyon and DeJong, 1995).  Using this definition, the
results of (4), and choosing the length between connecting faces of
a rectangular mount as L, yields the longitudinal, shear, and
bending modal densities for a mount in the vibration isolation
system

nlong z
= 2L

ρ
E

ntorsionz
= 2L

ρ 1+ υ( )
EJ

nshearx
= 2L

ρ 1 + υ( )
E

nbendingx
=

2L

2πf

ρA

EI x

4

nsheary
= 2L

ρ 1 + υ( )
E

nbendingy
=

2L

2πf

ρA

EI y

4

(6)

Substituting the results of the above equation in (5), the total modal
density of a mount is

nmount = 2L
ρ
E

+ 4L
ρ 1 + υ( )

E

+ 2L
ρ 1 + υ( )

EJ
+

4L

2πf

ρA

EI x

+
ρA

EIy

4

(7)

nmount is the modal density of a mount in the vibration isolation
system.  The modal density of the system will be defined by the
mount modal density multiplied by the number of mounts, N,
present in the system.

nsystem = N × nmount (8)

Modes are the mechanisms of energy storage.  Modal density is a
characterization of the energy storage in a structure.  nsystem is the
energy storage characterization of a N-mount vibration isolation
system.

TYPICAL AUTOMOTIVE MOUNT MODAL DENSITY
The modal density of a typical linear elastic vibration isolation

mount system will be compared with the modal density of an
automotive structural component.  If the modal densities are
similar, it will indicate that there is an equivalent capability for
energy storage in the vibration isolation system as compared to
other automotive SEA elements, and the vibration isolation system
can be considered an important SEA element.  The number of
mounts will be taken as 4 (N = 4).  Figure 5 outlines the dimensions
of the example mount to be used in this study.

L = 2 in

h = 2 in

w = 2 in

ρ = 0.0405 lbm/in3

E = 355 psi
ν = 0.500

z

y

x

FIGURE 5: EXAMPLE MOUNT DIMENSIONS
The vibration isolation system modal density (8) is compared

with the modal density of a 48" X 16" steel flat plate with a 0.04"
thickness.  The dimensions of the steel flat plate are characteristic
of those for a typical body panel on a door or engine compartment
of an automotive vehicle.  A comparison of the number of modes
(bandwidth multiplied by the modal density) in the 1/3 Octave
Bandwidths at the eleven center frequencies from 500 Hz to 5000
Hz of these two elements is shown in Table 1.  This shows that a
four-mount vibration isolation system has capability for energy
storage comparable to other automotive structural components.

Number of Modes Number of Modes
Center

Frequency (Hz)
Vibration

Isolation System
Small

Body Panel
1/3 Octave
Bandwidth

4  Mounts
Rubber 2"X2"X 2"

Steel 48" X 16"
0.1" thick

500 6.593 4.025
630 8.039 5.110
800 9.694 6.405

1000 11.83 8.085
1250 14.45 10.18
1600 17.57 12.77
2000 21.63 16.13
2500 26.53 20.26
3150 32.71 25.55
4000 40.32 32.16
5000 49.81 40.46
TABLE 1: NUMBER OF MODES IN 1/3 OCTAVE

BANDWIDTH
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MOUNT INTERNAL LOSS FACTOR, ηi
The internal loss factor is the damping dissipation of the

SEA element.  It appears directly in the SEA power balance
equation (2).  SEA models consist of weakly coupled groups of
vibrational and acoustic modes.  The weak coupling implies that the
energy storage mechanisms of substructures are not changed when
they are connected.  SEA theory says that a coupling energy flow
exists between a set of ideal modes.  Weak couplings imply that the
dissipation energy flows in SEA elements is dominate.  Damping
domination places a great deal of importance on the identification
of the internal loss factors of the mode groups in the SEA models.
The internal loss factor is defined as twice of the damping ratio.
The simple relationship is presented in (9) (Lyon, 1987).  However,
the damping ratio, ζ, must be determined experimentally.

ηmount = 2ζmount (9)

Typical values of internal loss factor for rubber are 0.1 - 0.5.

MOUNT COUPLING LOSS FACTORS, ηij
The coupling loss factor is the SEA mechanism that characterizes

the dissipation of the modal energy through the modal energy
transfer between SEA elements.  The coupling loss factor appears
in the SEA power balance equation (2).  In this study, the systems
have the following characteristics: only the sources being
considered exist, the response and excitation are proportional and at
the same frequency, and the response changes in the same manner
as the excitation.  So, ηij has a reciprocal relationship with ηji,
specifically (Lyon, 1987)

ηij = η ji

n j

ni

 
 
  

 
 (10)

Two coupling losses are important to vibration isolation mount
modeling: a radiation loss of the mount structure to an acoustic
volume and a structural loss between the mount and other elements.

Radiation coupling loss of a structural subsystem as a result of a
modal coupling to an acoustic volume is given by

ηstruct −act =
Prad

ωMstruct v2

struct

(11)

where Prad  is the power radiated to the volume and ωMstruct v2

struct

is power in the structure (Lyon, 1987).  The power radiated by a
structure is defined by

Prad = v2 A( )
struct

ρc( )
act

σ rad (12)

where ρ  is the density of air, c is the speed of sound in air, A is the
structural surface area, and σ rad  is the radiation efficiency (Lyon,
1987).  Radiation efficiency is dependent on a parameter called the
critical frequency, given by

fc =
c2

2π
A

I

ρ
E

 
 
  

 
 

struct

(13)

where I is the second moment of area (Lyon, 1987).  fc  has the
units of Hertz per unit width.  Critical frequency is the frequency
where the bending wave speed in a structure equals the speed of
sound.  Free sound waves are radiated from a structure when the

dominate source of sound radiation, bending waves, travel through
a structure at the speed of sound.  The supersonic bending waves
create a radiation angle or a mach angle which can be related to the
critical frequency

sinθ =
fc

f
(14)

The structure velocity is equal to the wave front particle velocity,
p

ρc( )
act

, times the cosine of the Mach angle.  Using this relation, a

radiation impedance of structure velocity to the generated pressure
in the acoustic volume is given by

Zrad =
Astruct ρc( )

act

1− fc
f

(15)

So the radiation efficiency for supersonic bending waves in
structures is (Lyon, 1987)

σ rad =
1

1 − fc
f

(16)

Radiation loss in the subsonic case (below the critical frequency)
bending waves do not radiate until the wave incidents an obstacle
or a boundary.  The reaction force from this interaction can be
related to the sound pressure in the local sound field similarly to the
above analysis for supersonic waves.  This development is lengthy
and will not be presented here, however, the full analysis is given in
Lyon (1987, Chap. 5).  The radiation efficiency for the subsonic
bending waves is

σ rad =
2π
cact

CI

A2

E

ρ

 

 
  

 
 

act

sin−1 f

fc

 
 
  

 
 

1

2

(17)

where C is the perimeter of the structure.
The coupling loss factor for the mount to acoustic volume

connector is

ηmnt − act =

ρc( )act

2πf

A

M

 
 

 
 

mnt

1

1 − f c
f

f > fc

ρact

f

CI

MA

E

ρ

 

 
  

 
 

mnt

sin−1 f

fc

 
 
  

 
 

1

2

f < fc

 

 

 
 

 

 
 

(18)

Structural coupling loss due to modal coupling of two structural
subsystems requires the definition of some preliminary parameters.
The applied load forces and induced velocities within a structural
subsystem are related by an input and a transfer mobility (Lyon,
1987).  A mobility, Υ, is the ratio of complex velocity, v, over a
complex load force, l.

v = Υl (19)

The mean square response over a frequency bandwidth ∆f of a
single subsystem is defined as
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v2

∆f

l2

∆f

= Υ 2 =
G

ωηM
(20)

where G is the conductance, η is the internal loss factor, and M is
the mass.  Conductance is the real part of the complex mobility and
is a ratio of modal density to mass (Lyon, 1987).

G =
n

4M (21)

G represents the ability of the structure to absorb power.
Connecting subsystems requires the use of transfer and input

mobilities.  The transfer mobility, Υij, relates velocity at i to load

force at j on the subsystem.  The input mobility, Υii, relates velocity
at i to load force at i on the subsystem.  The mobilities of a
subsystem are collected into a mobility transfer matrix (Lyon,
1987)

vi

vj

 
 
  

 
 =

Υii Υij

Υij Υjj

 

  
 

  
li

lj

 
 
  

 
 

(22)

It is helpful to write connected subsystems in a two-port description
to easily obtain relations between the velocities and load forces of
the different subsystems.  Subsystems i and j are combined by a
two port bond graph method where there is compatibility at the
junctions (Karnopp and Rosenberg, 1975).  Each port of the bond
graph has a flow variable and an effort variable.  The connection of
two 2-port subsystems, i and j, at a junction M is shown in Figure
6.

l1

v1

i
l2

v2

M
l3

v3

j
l4

v4l2 = -l3
v2 = v3

Υ11   Υ12
Υ12   Υ22 i

Υ33   Υ34
Υ34   Υ44 j

Pii PjjPij

FIGURE 6: 2-PORT BOND GRAPH SUBSYSTEMS
CONNECTED AT A JUNCTION

It can be shown, using the 2-port bond graph method and the
transfer mobility matrices of subsystems i and j that the velocity v4
is related to the load force l1

v4 =
Υ12Υ34

Υ22 +Υ33

l1
(23)

Defining the structural coupling loss requires rewriting the
velocity at port four, v4, in terms of the mean square response of
structure j when structure i is driven by a band of noise of some
frequency interval ∆f.

v4
2

∆ f

l1
2

∆f

=
Υ12

2 Υ34

2

Υ22 + Υ33

2

(24)

In the above equation, l1 ∆ f

2  is the band of noise.  v2
2

∆f
 and

v4
2

∆ f
 are the free motions of the subsystems i and j and will be

renamed v i
2

∆f
= v2

2

∆f
 and v j

2

∆f
= v4

2

∆ f
.  This is done to

make the equations functions of the entire subsystems not the
internal ports.  Υ12

2
 may now be represented by v i

2

∆f
l1

2

∆f
 and

Υ34

2
 may be written as the mean square response of system j,

Gj ωη jM j .  Substituting, (24) may be rewritten as (the ∆f as been
dropped for convenience).

v j
2

l1
2

=
vi

2

l1
2

1

Υi +Υ j

2

Gj

ωη j M j
(25)

Υi and Υj are the structural mobilities at the coupling.  The above
equation will now be rewritten in terms of the modal energy per
frequency bandwidth.  The modal energies of systems i and j are

Mi vi
2

ni∆f  and 
M j v j

2

n j∆f  respectively.  Writing (25) in terms

of the system's modal energies requires both sides of the equation
to be multiplied by M jGi n j ∆f .

Gi

M j v j
2

n j∆f
=

vi
2

∆f

GiG j

Υi +Υ j

2

1

n jωη j
(26)

Set Gi on the left hand side of the above equation equal to ni/4Mi
and move it to the right hand side resulting in

M j v j
2

nj∆f
=

4

ωnj

GiG j

Υi +Υ j

2

 

 
 

 

 
 

1

η j

Mi vi
2

ni∆f
(27)

The above equation shows that the modal energy of system j is
equal to the source system i modal energy times a ratio of the
quantity in parentheses and the internal loss factor ηj.  The quantity
in parentheses is the coupling loss factor which is dependent on the
modal density of system j and the properties at the junction of
system i and j.

η ji =
4

ωn j

GiG j

Υi +Υ j

2

(28)

TYPICAL AUTOMOTIVE MOUNT COUPLING
A typical automotive vibration isolation system is configured

between a beam and a flat plate is shown in Figure 7.  Any load
force perpendicular to the beam’s axis will result in bending energy
storage in the beam.  The vibration isolation mount will have
longitudinal, shear, and bending energy storage and the flat plate,
bending energy storage.

Lbeam

tplate

Lmount

FIGURE 7: TYPICAL AUTOMOTIVE MOUNT COUPLING
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The coupling locations, assuming that the substructures are
connected rigidly at their faces, for the beam-mount connection
with respect to the beam are (0, 0, Lbeam) and with respect to the
mount (0, 0, 0).  The mount-plate coupling locations with respect to
the mount are (0, 0, Lmount) and with respect to the plate (0, 0, 0).

The derivation of the mobilities will follow Goyder and White
(1980) for the three elements in the beam-mount-plate model and
requires the wave equations presented in (3).  As an example, the
longitudinal wave motion mobility of the mount in the beam-mount
connection will be derived.  The longitudinal wave equation in
equation (3) is rewritten with a harmonic complex load force.

  
ρ

∂ 2u

∂t2 = E
∂2u

∂z2 + Le− iωt

(29)

For a harmonic time dependence u = e− iωt

  

∂2u

∂z2 +ω 2 ρ
E

u = −
L
AE (30)

Spatial Fourier transforms and contour integration yields the
mobility (Goyder and White, 1980)

  
Υ =

v

L
=

iωu

L
=

1

2A ρE
e

iω
ρ
E

z

(31)

The beam-mount with respect to the mount coupling location, z,
can be substituted into (32) to obtain the longitudinal wave motion
mount mobility for the beam-mount connection.

Υmountlong beam −mount
=

1

2A ρE (32)

Similar equation manipulations may be applied to all wave
motions in the two connections (beam-to-mount, mount-to-plate).
The resulting four mobilities required for the two couplings beam-
to-mount and mount-to-plate are shown in equation (34).

Υbeam beam − mount
=

1

4Aρ ω
Aρ
EI

4 e
i ω ρA

EI
4 Lbeam

− ie
− ω ρA

EI
4 Lbeam

 

 
 

 

 
 

Υmount beam −mount
= 1

2A ρE
+ 1

2A ρE 1 + υ( )
+ 1 + i( ) ω

4EI

EI

Aρ
4

Υmount mount− plate
=

1

2A ρE
e

iω
ρ
E

Lmount

+
1

2A ρE 1+ υ( )
e

iω
ρ 1+υ( )

E
Lmount

+
ω

4EI

EI

Aρ
4 e

i ω
ρA

EI
4 Lmount

+ ie
− ω

ρA

EI
4 Lmount

 

 
 

 

 
 

Υplate mount− plate
=

1

16t2

3 1 −υ( )
ρE

(33)

The coupling loss factors for a beam-to-mount connector and a
mount-to-plate connector may now be obtained from (33), (21), (8),
(28), and with the modal densities of a plate and a beam.

ηbeam − mnt =

nmnt

2πf 4 Mmnt M beam( )

1

2 A ρE
+

1

2 A ρE 1 + υ( )
+

1 + i( ) ω

4EI

EI

A ρ
4

 

 

 
 
 
  

 

 

 
 
 
  

mnt

+
1

4 Aρ ω

Aρ

EI
4 e

i ω
ρA

EI
4 L beam
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(34)

CONCLUSIONS
A linear elastic vibration isolation mount system is an important

SEA element.  Linear elastic mounts have the capability to store a
comparable amount of energy as other automotive vehicle SEA
elements.  The modal density of a linear elastic engine mount is of
the same magnitude of common automotive vehicle SEA elements.
SEA equations have been developed for the linear elastic vibration
isolation mount system.
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