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Abstract. In the present paper linear and nonlinear vibrations of circular cylindrical shells having different 
boundary conditions are analyzed by means of the Sanders-Koiter theory. Displacement fields are expanded in a 
mixed double series based on harmonic functions and Chebyshev polynomials. 

Simply supported and clamped-clamped boundary conditions are analyzed, as well as connection with rigid 
bodies; in the latter case experiments are carried out. Comparisons with experiments and finite element analyses 
show that the technique is computationally efficient and accurate in modelling linear vibrations of shells with 
different boundary conditions.  
An application to large amplitude of vibration shows that the technique is effective also in the case of nonlinear 
vibration: comparisons with the literature confirm the accuracy of the approach. 
 
1. INTRODUCTION 

The continuous growing of the commercial use of Space facilities lead to the development of new and more 
efficient aerospace vehicles; therefore, new and accurate studies on light-weight, thin-walled structures are needed. 
A wide part of the technical literature in the past century was focalized on the analysis of thin-walled structures and 
tried to investigate their behaviour in many different operating conditions, i.e. under static or dynamic loads, either 
in presence or absence of fluid-structure interaction. Both linear and nonlinear models have been developed to 
forecast the response of such structures. Many studies were concerned with cylindrical shells that constitute main 
parts of aircrafts, rockets, missiles and generally aerospace structures. 

The literature about vibration of shells is extremely wide and the reader can refer to Leissa [1] or more recently 
to Amabili and Païdoussis [2] for a comprehensive review of models and results present in literature. In the 
following some studies, strictly related to the present paper, are described. 

Liew et al. [3] analyzed linear vibrations of shallow conical shells using two-dimensional orthogonal 
polynomials and the Ritz procedure, for obtaining frequencies and modes of vibration: the approach was mesh-free, 
but able to handle complex geometries and boundary conditions. 

Bhaskar and Dumir [4] analyzed the dynamics of rectangular orthotropic plates, resting on a nonlinear elastic 
foundation: they used a discretization approach based on polynomials and orthogonal point collocation method, 
obtained from zeros of Legendre polynomials. The nonlinear dynamics was analyzed by means of the averaging 
method and backbone curves were obtained. 

Liew et al. [5] analyzed conical shells by means of a mesh free approach based on the Ritz method and a mixed 
Fourier and polynomial expansion. They considered both simply supported and clamped boundary conditions. The 
same authors used the same approach for analyzing laminated cylindrical panels [6]. 

Zhou et al. [7] developed an approach based on Chebyshev polynomials and Ritz method for evaluating natural 
frequencies of solid and hollow cylinders. Soldatos and Messina [8] used orthogonal polynomials for analyzing 
laminated circular cylinders. 

Nayfeh and Arafat [9] analyzed nonlinear axisymmetric vibrations of spherical shells, by means of Legendre 
polynomials for spatial discretizations, and multiple scale method for the dynamic scenario. 

A special comment deserves the work of Trotsenko and Trotsenko [10], who studied vibrations of circular 
cylindrical shells with attached rigid bodies, by means of an approach quite close to the present theory. In Ref.[10] 
the authors used a mixed expansion based on trigonometric functions and Legendre polynomials; they considered 
only linear vibrations. One of these authors published recently a paper on the same subject [11], in which results 
and theory present in Ref. [3] are reprinted (such work is reported for completeness). 

In the present paper, linear and nonlinear vibrations of circular cylindrical shells are analyzed. Sanders-Koiter 
theory is considered for shell modelling; in this theory, the shell deformation is described in terms of three 
displacements fields (longitudinal, circumferential and radial). Displacement fields are expanded by means of a 
double mixed series: harmonic functions for the circumferential variable; Chebyshev polynomials for the 
longitudinal variable. Then Lagrange equations are considered to obtain an ordinary differential equation system, 
from potential and kinetic energies and the virtual work of external forces.  
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Simply supported and clamped-clamped configurations are analyzed in detail, both comparing the present theory 
with exact solutions (for simply supported shells only) and finite elements. Moreover, a shell, clamped at the base 
and connected to a rigid body, is analyzed experimentally, analytically (present theory) and using standard finite 
elements models. The experimental setup is described as well as the experimental analysis, which includes 
frequency, damping and mode shape identification. 

Nonlinear vibrations, due to large amplitude of vibration, are analyzed in the case of simply supported shells; the 
present theory is compared with the literature. 
 

2. EQUATIONS OF MOTION 

In Figure 1 a circular cylindrical shell having radius R, 
length L and thickness h is represented; a cylindrical 
coordinate system (O; x, r, θ) is considered in order to 
take advantage from the axial symmetry of the 
structure, the origin of the reference system is located 
at the centre of one end of the shell. In Figure 1 three 
displacement fields are represented: axial u(x,θ, t), 
circumferential v(x,θ,t) and radial w(x, θ, t). 

Geometric imperfections can be considered in the 
theory by means of an initial radial displacement field 
w0(x,θ); however, in the numerical results, only perfect 
shells are considered. 

 
Strain Energy 

The Sanders-Koiter theory is based on Love’s first 
approximation: (i) h<<R; (ii) strains are small; (iii) 
transverse normal stresses are small; and (iv) the 
normal to the undeformed middle surface remains 
straight and normal to the middle surface after 
deformation, no thickness stretching is present 
(Kirchhoff-Love kinematic hypothesis) [1,2,12]; (v) 
rotary inertia and shear deformations are neglected.  

Strain components xε , θε  and xθγ  at an arbitrary 
point of the shell are [1]: 

,0x x xr kε ε= + , ,0 r kθ θ θε ε= +  ,0x x xr kθ θ θγ γ= +    (1) 

where: ,0xε , ,0θε  and 
,0xθγ  are middle surface strains; xk , kθ  and xk θ  are curvature and torsion changes of the 

middle surface; and r is the distance of the arbitrary point of the shell from the middle surface (see Figure 1(b)).  
According to the Sanders-Koiter theory, middle surface strains and changes in the curvature and torsion are 

given by [1,2]: 
22
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where η=x/L is the nondimensional longitudinal coordinate. 
The elastic strain energy US of a circular cylindrical shell, neglecting the radial stress rσ  (Love’s first 

approximation), is given by [12] 
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Figure 1. Circular cylindrical shell: coordinate system and 
dimensions. (a) Complete shell; (b) cross-section of the shell surface 
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In the case of homogeneous and isotropic materials, stresses σx, σθ and τxθ are related to strains ( 0rσ = , case of 
plane stress) by [12] 

 ( )21x x
E

θσ ε ν ε
ν

= +
−

, ( )21 x
E

θ θσ ε ν ε
ν

= +
−

 
( )2 1x x

E
θ θτ γ
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+
   (4) 

where E is the Young’s modulus and ν is the Poisson’s ratio.  
Using equations (1, 3, 4), the following expression of the potential energy is obtained 

( )
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2 2 2 2 2 2 4
,0 ,0 ,0 ,0 ,02 2
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  (5) 

where O(h4) is a higher-order term in h according to the Sanders-Koiter theory.  
The first term of the right end side of equation (5) is the membrane energy (also referred to stretching) and the 

second one is the bending energy.  
The kinetic energy TS of a circular cylindrical shell (rotary inertia is neglected) is given by 

( )
2 1

2 2 2

0 0

1 d d
2S ST h L R u w

π

ρ η θ= + +∫ ∫ � ��v ,      (6) 

where ρ
S
 is the mass density of the shell, the overdot denotes a time derivative. 

The virtual work W done by the external forces is written as 

( )
2 1

0 0

d dx rW LR q u q q w
π

θ η θ= + +∫ ∫ v ,      (7) 

where qx, qθ and qr are the distributed forces per unit area acting in axial, circumferential and radial directions, 
respectively.  

In-plane forces and bending moments depend on the shell strain; in the following, only relationships used in 
applying boundary conditions are reported: 

( )
3

212(1 )x x
E hM k kθν

ν
= +

−
, ( ),0 ,021x x

E hN θε ν ε
ν

= +
−

    (8) 

 
3. LINEAR VIBRATION: MODAL ANALYSIS. 

In order to carry out a linear vibration analysis, in the present section linear Sanders-Koiter theory is considered, i.e. 
in equation (5), only quadratic terms are retained. 

The best basis for expanding displacement fields is the eigenfunction basis; only for special boundary conditions 
such basis can be found analytically; generally, eigenfunctions must be evaluated in approximate way. 

In order to attack the general problem of circular cylindrical shell vibration, displacement fields are expanded by 
means of a double series: the axial symmetry of the geometry and the periodicity of the deformation in the 
circumferential direction, leads to use harmonic functions; Chebyshev polynomials are considered in the axial 
direction. 

Let us now consider a modal vibration, i.e. a synchronous motion: 
u(η,θ,t)=U(η,θ) f(t) v(η,θ,t)=V(η,θ) f(t) w(η,θ,t)=W(η,θ) f(t)   (9) 

where: U(η,θ), V(η,θ) and W(η,θ) represent the modal shape. 
The modal shape is now expanded in a double series, in terms of Chebyshev polynomials ( )*

mT η , and 

harmonic functions: 
*

,
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where ( ) ( )* 2 1m mT Tη η= −  and Tm(⋅) is the m-th order Chebyshev polynomial [13]. 

Note that, in absence of imperfections, a linear mode has the following simplified expression: 
*
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Expansions (10) or (11) do not satisfy any particular boundary condition. 
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Boundary conditions 
Some of the coefficients ,m nU� , ,m nV�  and ,m nW�  of the equation (11) can be suitably chosen in order to satisfy 

boundary conditions. 
 
Simply supported 
The following boundary conditions are imposed to the mode shape: 

w=0, v=0, 0xM = , 0xN =  for η=0,1    (12) 
which imply 

*
,

0 0

( , ) ( )cos 0
WM N

m n m
m n

W W T nη θ η θ
= =

= =∑∑ � ,   for η=0,1,  (13a) 

*
,

0 0

( , ) ( ) sin 0
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m n m
m n

V V T nη θ η θ
= =

= =∑∑ � ,   for η=0,1,   (13b) 

*
, , ,

0 0
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W W T nηη ηηη θ η θ
= =

= =∑∑ � ,  for η=0,1,   (13c) 
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U U T nη ηη θ η θ
= =

= =∑∑ � ,  for η=0,1.   (13d) 

where (⋅),η=∂(⋅)/∂η and (⋅),ηη=∂2(⋅)/∂η2. 
Such conditions are valid for any θ and n, therefore equations (13a-d) are modified as follows: 

*
,

0
( ) 0
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m n m
m

W T η
=

=∑ � ,  n=0,1,… , for η=0,1    (14a) 

*
,

0

( ) 0
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m n m
m

V T η
=

=∑ � ,   n=0,1,… , for η=0,1    (14b) 

*
, ,

0

( ) 0
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m n m
m

W T ηη η
=

=∑ � ,   n=0,1,… , for η=0,1    (14c) 

*
, ,

0
( ) 0

UM

m n m
m

U T η η
=

=∑ � ,   n=0,1,… , for η=0,1    (14d) 

The linear algebraic system of equations (14) is solved in terms of the coefficients: 
1, 2, 0, 1, 0, 1, 2, 3,, , , , , , ,n n n n n n n nU U V V W W W W� � � � � � � � , n=0,1,...; which can be obtained exactly in terms of the remaining 

unknown coefficients. In the present work the solution of system (14) is carried out by means of algebraic 
manipulation software. 

 
Clamped-Clamped 
The following boundary conditions are imposed to the mode shape: 

w=0, w,ηη=0, v=0, u=0, for η=0,1      (15) 
The procedure followed to respect boundary conditions is formally the same of simply supported boundary 

conditions; however, the resulting linear system is solved in terms of the following coefficients: 
0, 1, 0, 1,, , ,n n n nU U V V� � � � , 

0, 1, 2, 3,, , ,n n n nW W W W� � � � , n=0,1,... 

 
Clamped-disk-on-the-top 
In this case both theoretical, experimental and finite elements analyses are carried out; therefore, a particular system 
is considered, in Figure 2 the geometry of the system as well as the dimensions are represented.  

The shell is clamped at the bottom to a rigid support; therefore, for η=0 the boundary conditions are the same of 
the clamped-clamped case, equation (15). 
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Figure 2. Configuration and dimensions (millimiters) of the system analyzed experimentally. 

 
In order to impose boundary conditions to the top end of the shell, it is useful to consider the rigid body motion 

of the disk. Such a body has six degrees of freedom; however, in the present work torsional vibration is not 
considered; therefore, the number of degrees of freedom is reduced to five. Moreover, experiments evidenced that 
the rigid body motion presents extremely small amplitude; therefore, a linearized analysis of the disk motion will be 
performed in the following. Rigid body (disk) degrees of freedom are considered additional variables of the 
problem: in writing boundary conditions of the shell top-end, the rigid body motion is an imposed displacement. 

Let us consider a Cartesian reference system (O’, x’, y’, z’) having the origin located at the centre of the shell 
top-end (η=1), see Figure 4; note that, the origin of the circumferential coordinate θ (Figure 1) is set coincident with 
axis y’ (Figure 4). SDx, SDy, SDz are three displacement components of the origin (O’) motion, see Figure 4. The 
rotation is treated in a simplified way: the small amplitude of the body motion allows to linearize the analysis and to 
apply the superposition principle; the global rotation is assumed to be a superposition of three rotations about three 
axes (x’,y’,z’).  

Given an arbitrary and infinitesimal motion to the top-disk, Figure 4, and considering the shell clamped to the 
disk, one obtains the following boundary conditions: 

( , , ) ( ) sin ( ) cos ( )y z Dxu L t R t R t S tθ α θ α θ= − − +     (16a) 

( , , ) ( ) sin ( ) cos ( )Dy Dz xL t S t S t R tθ θ θ α= − − −v     (16b) 

( , , ) ( ) cos ( )sinDy Dzw L t S t S tθ θ θ= −      (16c) 

( )sin ( ) cosy zt tαθ α θ α θ= − −       (16d) 

where ( )( )1
x L

L wαθ η
=

= − ∂ ∂ . 

Note that equations (16) are in agreement with Ref. [10], where such conditions are obtained by means of a 
different approach. 

It is to note that, for n>1 boundary conditions given by the rigid body motion correspond to clamping (see 
equations 14); moreover, axisymmetric modes (n=0) are influenced by SDx only. 

 
Kinetic energy: disk on the top 
The kinetic energy of the shell is given by equation (6); when a rigid body is connected to one of the shell ends, its 
kinetic energy must be added to the system. 

A rigid body motion, imposed to the shell top end, induces a motion of the top-disk; in particular, the motion of 
its centre of mass G depends both on the displacement of O’ and two rotations (see Figures 4 and 5). Assuming also 
infinitesimal rotations and linearizing all relationships, one easily obtains: 

( ) ( )G Dxx t S t=  ( ) ( ) ( )G Dy z Gy t S t t hα= +  ( ) ( ) ( )G Dz y Gz t S t t hα= −    (17) 

If one is not interested in torsional vibrations of the shell, the rotation about x’ axis can be neglected; therefore, 
the kinetic energy of the disk is given by: 

( ) ( )2 2 2 2 21 1 1 1 1
2 2 2 2 2D D Dy z G D Dz y G z z y y D DxT m S h m S h J J m Sα α α α= + + − + + +� � �� � � �    (18) 
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Figure 3. Experimental setup and excitation types. 
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Figure 4. Rigid body motion imposed at the top shell end (η=1). Figure 5. Displacement of the top disk centre of 

mass, due to a rigid body motion of the shell-top-end. 
 

Discretization: Lagrange equations 
Expansions (9) are introduced in the expressions of the kinetic and the potential energy (for the linear system); then 
a set of ordinary differential equations is obtained by using Lagrange equations. 

An intermediate step is the reordering of variables, in order to proceed in a systematic way. A vector containing 
all variables is built depending on the boundary conditions. 
Simply supported: 

0,0 3,0 4,0 0,1 3,1 4,1 2,0 3,0 2,1 3,1 4,0 5,0 4,1 5,1, , ,..., , , ,..., , ,..., , ,..., , ,..., , ,..., ( )U U U U U U V V V V W W W W f t⎡ ⎤= ⎣ ⎦q � � � � � � � � � � � � � �    (19) 

Clamped-clamped: 
2,0 3,0 2,1 3,1 2,0 3,0 2,1 3,1 4,0 5,0 4,1 5,1, ,..., , ,..., , ,..., , ,..., , ,..., , ,..., ( )U U U U V V V V W W W W f t⎡ ⎤= ⎣ ⎦q � � � � � � � � � � � �     (20) 

Rigid body connected to the shell: 

2,0 3,0 2,1 3,1 2,0 3,0 2,1 3,1 4,0 5,0 4,1 5,1, ,..., , ,..., , ,..., , ,..., , ,..., , ,..., , , , , ( )Dx Dy Dz y zU U U U V V V V W W W W S S S f tα α ⎤⎡= ⎣ ⎦q � � �� � � � � � � � � � � � � �  (21) 

where ( ) , ( )Dx Dx Dy DyS f t S S f t S= =� � , ( ) , ( )Dz Dz y yS f t S f tα α= =� � , ( )z zf tα α= � . 

Note that the torsional degree of freedom of the disk is neglected in the present paper; therefore, αx is not 
included in equation (21). Moreover, a unique time law f(t) is considered in order to impose a synchronous motion 
(modal vibration); such assumption will be relaxed in the case of nonlinear vibration. 

The maximum number of variables needed for describing a generic mode with n nodal diameters is: 
NP=MU+MV+MW-5 without connected rigid body and NP=MU+MV+MW with the rigid body. 

Lagrange equations for free vibrations are: 

max0 1,2,
i i

d L L i N
dt q q
⎛ ⎞∂ ∂

− = =⎜ ⎟∂ ∂⎝ ⎠
…

�
     (22) 

where L=T-US; T=TS+TD, Nmax=NP*N. 
Using equation (19) and considering an harmonic motion, f(t)=ejωt, one obtains: 

( )2ω− + =M K q 0        (23) 

which is the classical non-standard eigenvalue problem that furnishes frequencies and modes of vibration 

Base excitation for the  
second and third modes 

Excitation from the 
rigid top-disk 
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(eigenvalues and eigenvectors). 
A modal shape corresponding to the j-th mode is given by: 

( ) ( ) *
,

0 0

( , ) ( ) cos
UM N

j j
m n m

m n

U U T nη θ η θ
= =

= ∑∑ � , ( ) ( ) *
,

0 0

( , ) ( )sin
VM N

j j
m n m

m n

V V T nη θ η θ
= =

= ∑∑ �  ( ) ( ) *
,

0 0
( , ) ( ) cos

WM N
j j

m n m
m n

W W T nη θ η θ
= =

= ∑∑ �  (24) 

where ( )
,
j

m nU� , ( )
,
j

m nV�  and ( )
,
j

m nW�  are components of the j-th eigenvector of equation (23) and the vector function 

( ) ( ) ( )( ) ( ) ( ), , , , ,
Tj j jU x V x W xθ θ θ⎡ ⎤⎣ ⎦  is the j-th eigenfunction of the original problem. Expansions (24) can be reduced 

to simple series in m when perfectly axial symmetric shells are considered. 
A general motion can be expresses by expanding the displacement field using the modal basis: 

( ) ( )
max

( )

1

, , , ( )
N

j
j

j

u x t U x f tθ θ
=

= ∑  ( ) ( )
max

( )

1

, , , ( )
N

j
j

j

x t V x f tθ θ
=

= ∑v  ( ) ( )
max

( )

1

, , , ( )
N

j
j

j

w x t W x f tθ θ
=

= ∑  (25) 

where fi(t) is the modal coordinate. 
Eigenfunctions are normalized by imposing that ( ) ( ) ( )( ) ( ) ( )max max , ,max , ,max , 1j j jU x V x W xθ θ θ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

; 

the physical meaning of such normalization is the following: the modal coordinate fi(t) represents the maximum 
amplitude of vibration referred to the dominant direction of a mode shape (radial w, circumferential v or 
longitudinal u). For example, in the case of radial dominant modes, in the eigenfunction vector 

( ) ( ) ( )( ) ( ) ( ), , , , ,
Tj j jU x V x W xθ θ θ⎡ ⎤⎣ ⎦  the third component will have a maximum amplitude much larger than the others; 

if we normalize the vector function in order to have such maximum equal to 1, then fi(t) will give the maximum 
amplitude of vibration in the radial direction. The present normalization is particularly useful in nonlinear analyses. 

 
4. NONLINEAR ANALYSIS 

In the nonlinear analysis the full expression of potential shell energy (5), containing terms up to fourth order 
(cubic nonlinearity), is considered. Displacement fields u(x,θ, t), v(x, θ, t) and w(x, θ, t) are expanded by using 
linear mode shapes obtained in the previous section: 

( ) ( )
max

( )
,

1
, , , ( )

N
j

u j
j

u x t U x f tθ θ
=

= ∑  ( ) ( )
max

( )
,

1
, , , ( )

N
j

j
j

x t V x f tθ θ
=

= ∑ vv  ( ) ( )
max

( )
,

1

, , , ( )
N

j
w j

j

w x t W x f tθ θ
=

= ∑  (26) 

Expansion (26a,b,c) respects boundary conditions, modal shapes U(j)(x,θ), V(j)(x,θ), W(j)(x,θ), are known 
functions expressed in terms of polynomials and harmonic functions. It is to note that, in equations (26) the time 
function is different for each displacement field; therefore expansion (26) is an extension of expansion (25) and 
apparently it increases the number of degrees of freedom of the system. Conversely, using expansion (26) one can 
select suitable shapes for each displacement field separately, improving the convergence speed, reducing the 
number of degrees of freedom and increasing the computational accuracy. 

Expansion (26) is put in the strain and kinetic energy (Eqs. (5), (6) or (15)) and in the virtual work expression 
(Eq. (7)) in the case of external excitation. Using Lagrange equations, a set of nonlinear ordinary differential 
equations is obtained; such system is then analyzed by using numerical continuation methods. 

 
5. LINEAR ANALYSIS: NUMERICAL RESULTS 

Numerical analyses are carried out on three test cases described below: 
Case A (steel). 

L = 0.2 m; R = 0.1m; h = 0.247×10-3m; ρ = 2796kg/m3; ν = 0.31; E = 71.02×109N/m2. 
Case B (aluminium alloy). 

L = 0.2m; R = 0.2m; h = R/20; ρ= 7850 kg/m3; ν =0.3; E = 2.1 1011N/m2; 
Case C (P.E.T.+ disk on the top) 

Shell: L=0.096m, R=0.044m, h=0.3×10-3m, ρ= 1366 kg/m3; ν =0.4.; E = 4.6 109 N/m2; 
Disk: m=0.82 kg, Jy=Jz=7.55×10-4 kg/m2, hG=0.01684 m. 

 
 

Simply supported shells. 
For   such   simple   case    eigenfunctions   are   known:    U(x, θ ) = uk,n,c cos nθ  cos kη;      V(x,θ)= vk,n,c sinnθ  sin 
kη; W(x, θ )= wk,n,c cos nθ  sin kη, where n is the number of nodal diameters and k is the number of longitudinal half 
waves; eigenfrequencies can be easily computed by solving a polynomial equation; as well as ratios wk,n,c /uk,n,c and 
wk,n,c /vk,n,c [1]. 

Analyses are carried out on Case A, the first 34 modes are evaluated by means of exact theory, present method 
(polynomials of degree 9) and the commercial software MSC Marc (480×50 elements, 480 in the circumferential 
and 50 in the longitudinal directions, element type CQUAD4).  

It is remarkable, that the shell exhibits a high modal density, 34 modes are within the frequency range (484.6-
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1808Hz), see Table 1; such high modal density is typical for cylindrical shells. The difference between exact theory 
and the present approach is negligible (beyond the fourth digit). The finite element model gives accurate results, the 
error is less than 1%; however, this result has been obtained by means of a huge system having about 140 000 
degrees of freedom; conversely, using the present approach, 22 dofs are needed, for obtaining one mode, when 
polynomials of degree 9 are used. Note that in Table 1 only four digits are used: this is the precision of MSC Marc 
output; therefore, for coherence, all results are reported with the same precision. Note that modes (k=3, n=10) and 
(k=2, n=6) are lost in the finite element analysis. 

 
Natural frequencies [Hz] Mode 

Present theory FEM 

k n 

Exact frequency 

Freq. Err. % Freq. Err. % 
1 7 484.6 484.6 0 484.9 0.1 
1 8 489.6 489.6 0 490.0 0.1 
1 9 546.2 546.2 0 546.9 0.1 
1 6 553.3 553.3 0 553.7 0.1 
1 10 636.8 636.8 0 637.9 0.2 
1 5 722.1 722.1 0 722.5 0.1 
1 11 750.7 750.7 0 752.3 0.2 
1 12 882.2 882.2 0 884.6 0.3 
2 10 968.1 968.1 0 970.5 0.2 
2 11 983.4 983.4 0 985.9 0.3 
2 9 1018 1018 0 1021 0.3 
1 13 1029 1029 0 1032 0.3 
1 4 1041 1041 0 1042 0.1 
2 12 1050 1050 0 1053 0.3 
2 8 1148 1148 0 1150 0.2 
2 13 1154 1154 0 1158 0.3 
1 14 1189 1189 0 1194 0.4 
2 14 1287 1287 0 1292 0.4 
1 15 1362 1362 0 1368 0.4 
2 7 1373 1373 0 1376 0.2 
2 15 1443 1443 0 1449 0.4 
3 12 1456 1456 0 1462 0.4 
3 13 1470 1470 0 1477 0.5 
3 11 1502 1502 0 1509 0.5 
3 14 1536 1536 0 1543 0.5 
1 16 1548 1548 0 1556 0.5 
2 16 1617 1617 0 1626 0.6 
3 10 1620 1620 0 - - 
1 3 1630 1630 0 1631 0.1 
3 15 1643 1643 0 1651 0.5 
2 6 1721 1721 0 - - 
1 17 1746 1746 0 1756 0.6 
3 16 1782 1782 0 1792 0.6 
2 17 1808 1808 0 1818 0.6 

Table 1. Simply supported shell, case A. Comparison of natural frequencies: present theory vs. exact and finite 
elements results. Polynomials of degree 9 for the present theory.  
 

Natural frequencies [Hz] Mode 
Present theory 

k n 
Exact 

frequency Frequency Error % 
1 0 4140.74 4140.77 0.001 
2 0 4788.34 4788.66 0.007 
3 0 6890.30 6891.43 0.016 
4 0 10655.3 10657.7 0.023 
5 0 15900.6 15904.7 0.026 
6 0 22497.1 22503.9 0.030 
7 0 30384.4 30446.1 0.203 
8 0 39533.9 39717.2 0.464 
9 0 49930.3 48126.2 3.613 
10 0 61563.5 64208.3 4.296 

Table 2. Simply supported shell, case B. Comparison of axisymmetric modes natural frequencies: present theory vs. 
exact theory (only radial modes, w dominant). Polynomials of degree 15 for the present theory. 

 
A second test is carried out on test case B, in order to check the accuracy of the polynomial expansion; in Table 

2 the first 10 natural frequencies of axisymmetric modes are reported. In this case, polynomials used in the 
approximate method have degree equal to 15 (MU=15, MV=15, MW=15, NP=MU+MV+MW-5=40). The accuracy is 
excellent up to the eighth mode, after such mode the number of longitudinal half waves (k=9, k=10 and so on) 
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cannot be approximated with great accuracy using polynomials of degree 15. However, also in the case of modes 9 
and 10 the error is below 5%. In Table 2 only modes having a radially dominant vibration are considered, in order 
to check the convergence of the polynomial expansion; indeed, modes having a large number of longitudinal half 
waves are more difficult to simulate with polynomials. 

For case B the fundamental mode is (k=1, n=4), the exact frequency is 2138,95 Hz; using polynomials of degree 
5 (i.e. 10 dofs), we obtain 2139,19 Hz, the error is about 0.01%.  

 
Clamped-clamped shells. 
The Case A shell is considered for this analysis; simulations are carried out by using the present theory 
(polynomials of degree 7) and the finite element model having the same elements of the model described in the 
previous section. No exact analytical results are available for such case. Modes up to 1260 Hz are analyzed, i.e. the 
first 15 modes; in Table 3 natural frequencies are presented for comparison, k means that a mode has k-1 nodal 
circumferences (the meaning is similar to the simply supported case, even though the longitudinal displacement 
cannot be described by harmonic functions) and n is the number of nodal diameters. The agreement is excellent; 
indeed, the difference is less or equal to 1%. The number of degrees of freedom needed for describing a mode, 
using the present theory, is now 16. 

Natural frequencies [Hz] Mode 

k n 

Finite elements Present theory Difference % 

1 9 685.4 687.7 0.3 
1 8 697.3 701.7 0.6 
1 10 727.2 727.9 0.1 
1 7 775.2 782 0.9 
1 11 809.7 809.2 0.1 
1 12 922.2 920.5 0.2 
1 6 930.1 939.6 1.0 
1 13 1057 1055 0.2 
2 11 1143 1144 0.1 
2 10 1169 1172 0.3 
2 12 1172 1172 0.0 
1 5 1181 1193 1.0 
1 14 1211 1207 0.3 
2 13 1247 1245 0.2 
2 9 1259 1264 0.4 

 
Table 3. Clamped-clamped shell, case A. Comparison of natural frequencies: present theory vs. exact and finite 
elements results. Polynomials of degree 7 for the present theory. 

 
6. EXPERIMENTAL AND THEORETICAL RESULTS: DISK ON THE TOP 

The system under investigation is described in Figures 2 and 3. A circular cylindrical shell, made of a polymeric 
material (P.E.T., case C) is clamped at the base by gluing its bottom to a rigid support (a disk that is rigidly bolted to 
a shaker, such disk is technically called “fixture”); the connection is on the lateral surface of the shell, in order to 
increase the gluing surface, see Figure 2. A similar connection is carried out on the top; in this case the shell is 
connected to a disk made of aluminium alloy, such a disk is not externally constrained; therefore, it induces a rigid 
body motion to the top shell end.  

The use of P.E.T. is due to reasons that are beyond the purpose of the present paper. Indeed, the same setup is 
used to perform experiments on dynamic instability, which gives rise to high amplitude of oscillation; in order to 
avoid plasticity for such high amplitudes the PET polymer is considered. This polymer showed a good linear 
behaviour, both from elastic and dissipation point of view, as proven by excellent curve fittings obtained from 
experimental data. Material characteristics are measured (E and ρ) or found in literature (ν). 

The fixture is bolted to a high power shaker (LDS V806, 9000N peak force, 100g maximum acceleration, 300kg 
payload, 1-3000Hz band frequency); such shaker is used to excite the shell from the base or to provide a stiff 
support when the excitation is provided with different devices. 

When the shell excitation is not furnished from the base, two kinds of excitation sources are applied: a micro 
shaker (TIRAVIB, 10N peak force, see Figure 3a) or a micro hammer. 

As mentioned in the theoretical description, such case is much more complex than previous cases; the system 
exhibits both beam-like modes and shell-like modes (axisymmetric and asymmetric). 

Experiments have been carried out by using different kind of excitation; indeed, the system characteristics 
makes difficult to excite all modes together. The first beam like mode is excited using a shaker connected to the top 
disk, see Figure 3a, this kind of excitation allows to transfer energy to the shell through the rigid body motion of the 
top disk; the energy path will excite only modes having a rigid body motion of the top-disk orthogonal to the shell 
axis, i.e. mainly beam modes. A second type of excitation is provided by exciting the shell from the base motion 
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(Figure 3b); it was observed experimentally that such kind of excitation pumped energy to the first axisymmetric 
mode and the second beam like mode; other modes were scarcely excited. The third kind of excitation was carried 
out by means of a micro-hammer; such kind of excitation allowed to furnish energy directly to shell modes having 
n>1. It is to note that the use of a micro hammer allows to furnish a small amount of energy to the system; therefore, 
all modes for which the motion of the top disk is present (n=0 or 1) are not excited, because the energy pumped in 
the system is not enough to induce a disk motion detectable from sensors (accelerometers). The combination of 
three types of excitation allowed to identify all modes within the frequency range of interest. 

 
Natural frequencies [Hz] Mode 

Present theory Finite elements 
k n 

Experimental 
frequency Frequency Error % Frequency Error% 

first beam like mode n=1 95 96 1.1 93 2.1 
1 0 314 322 2.5 314 0 

second beam like mode 
n=1 

438 432 2.5 424 3.2 

1 6 791 797 0.8 782 1.1 
1 7 816 802 1.7 802 1.7 
1 5 890 888 0.2 885 0.6 
1 8 950 926 2.5 918 3.4 
1 9 1069 1016 5.0 1103 3.2 

Table 4. Disk on the top, case C: comparison of natural frequencies: present theory vs. finite elements and 
experiments. Polynomials of degree 9 for the present theory.  
 

 

 
Figure 6. Mode shape comparisons: a), d), g), l) o) experiments; b) e) h) m) p) present theory; c) f) i) n) q) finite 
elements. a) b) c) first beam like mode n=1 (95Hz); d) e) f) mode (1,0) (314Hz); g) h) i) second beam-like mode n=1 
(438Hz); l) m) n) mode (1,6) (791Hz); o) p) q) mode (1,7) (816Hz). Mode shape a) is reprinted from Ref. [19]. 

 
In Table 4 experimental, analytical and finite element results are presented: k means that the mode has k-1 nodal 
circumferences; n is the number of nodal diameters (beam modes can be considered n=1); FEM results are obtained 
by discretizing the shell similarly to the previous section, the top disk is discretized using brick elements in order to 
check possible disk structural vibration. All modes are identified experimentally by using curve fitting techniques, 
present in LMS CADA-X, that give: frequency, modal damping ratio, and modal shape. A 3D geometry of the 
system has been created before measurements, in order to associate each measurement to the corresponding point 
(and degree of freedom) on the geometry. The mode shape identification is of crucial importance in the case of 
shells; indeed, the high modal density makes difficult to compare experimental and teoretical/numerical modes 
using natural frequencies only; therefore, the visualization of modes is mandatory. Comparisons reported in Table 4 
show that there is an excellent agreement among experiments, theory and finite elements. It is worthwhile to 
underline that finite element results have been obtained after a heavy computation both from time computing and 
memory usage points of view. 

In Figure 6 mode shapes are reported both from experiments, theory and finite elements. The first mode 
(reprinted from Ref. [19]) is a beam-like mode; such kind of modes show doth displacement and rotation of the top-
disk. The rotation is lost in the experiments because accelerometers are located radially in this first set of 
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measurements. In Ref. [19] beam modes were both experimentally and theoretically, using a simplified approach for 
solving Sanders-Koiter equations; such approach did not give accurate results for higher order modes. The second 
mode is axisymmetric, in this case the disk undergoes to a pure translation motion. In the theoretical description of 
the second mode, some longitudinal ripples are visible, which are due to the accuracy used in computations. Indeed, 
the sharp variation of curvature at the ends is an edge effect particularly evident for the first axisymmetric mode; 
this induces some convergence problems in the polynomial expansion. However, such shape inaccuracy does not 
affect the frequency estimation. A final note is needed for shell like modes (n>1): a micro hammer and a micro 
accelerometer have been used, the latter one is extremely light (0.25 10-3 kg); however, it induces a mass effect 
which causes an increasing of the radial deformation where the accelerometer is located. 

Results and comparisons presented in this section show that the analytical approach developed in the present 
work is capable to predict, with good accuracy, linear vibrations of circular cylindrical shells having different and 
complex boundary conditions. 

 
7. NONLINEAR ANALYSIS: NUMERICAL RESULTS AND COMPARISONS 

Large amplitude of oscillations are analyzed for Case A shell; such geometry was deeply investigated in the 
past, see Refs. [14-17]. The shell is excited by means of a modal distributed force 

1,6 sin( ) cos(6 ) cos( )rq f tη θ= Ω  

(see also equation (7)) having amplitude equal to 2 2
1,6 1,60.0012f h ρω=  and frequency close to the (k=1,n=6) mode 

frequency: Ω≅ω1,6=2π×553.3 rad/s; the modal damping ratio considered in the calculations is 0.0005. 
In the expansions (26) the following modes having k longitudinal half waves and n nodal diameters, identified 

by (k,m), are selected: longitudinal displacement field, (1,0), (3,0), (1,6); circumferential displacement field, (1,6), 
(1,12), (3,12); radial displacement field, (1,0), (3,0), (1,6). After selecting such modes, each expansion present in 
equations (16) is reduced to a three-terms expansion; the resulting dynamical system has 9 degrees of freedom. 

In Figure 7 the amplitude frequency curve 
is shown: this figure represents the maximum 
amplitude of vibration vs. the excitation 
frequency. Numerical results are obtained by 
means of the continuation software AUTO 
[18] that allows to find and follow periodic 
solutions of ordinary differential equations 
systems.  

The response is slightly softening as 
confirmed by comparisons with Refs. [14-17]: 
the present model shows nonlinearity very 
close to Ref. [14], Refs.[15-17] predict larger 
nonlinear softening behaviour. It is to note 
that in Refs. [16,17] Donnell’s nonlinear 
shallow shell theory is considered: this theory 
is less accurate than Sanders-Koiter theory, 
the static condensation of in-plane 
displacements and simplified kinematics 
reduce the accuracy; generally the Donnell’s 
nonlinear shallow shell theory magnifies the 
softening behaviour. 

It is worthwhile to stress that, in the past, 
several theoretical and numerical studies failed in predicting the correct nonlinear behaviour: often, spurious 
hardening behaviours were found. Recently, it was clarified that circular cylindrical shells generally show a 
softening behaviour [17]: only very short or very thick shells can have hardening behaviour. Therefore, the analysis 
presented is Figure 7 is an important benchmark for evaluating the accuracy of the method. 

Note that the companion mode analysis has not been included in the model, because such deeper analysis is 
beyond the purposes of the present work. 

 
8. CONCLUDING REMARKS 

In this work both theoretical and experimental analyses have been carried out on shells vibration. Linear and 
nonlinear vibrations of circular cylindrical shells are analyzed by means of Sanders-Koiter theory. The proposed 
method is based on a mixed expansion including both harmonic functions and orthogonal polynomials. The 
approach is effective in respecting complex boundary conditions as confirmed by several comparisons with 
experiments and finite element methods. Such approach gives a general framework that allows to respect boundary 
conditions in a systematic way. Comparisons between theory and experiments are carried out both on natural 
frequencies and mode shapes. 
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Figure 7. Nonlinear response. ‘▬ ▬’present theory; ‘–○–‘ Ref. 
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The method has been tested in the case of large amplitude of vibration; also in this case the comparison with 
authoritative literature shows a good accuracy. 
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