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SUMMARY 
 

This paper describes the development and numerical verification of a test method to realistically simulate 
the seismic structural response of full-scale buildings. The result is a new field testing procedure referred 
to as the linear shaker seismic simulation (LSSS) testing method. This test method uses a linear shaker 
system in which a mass mounted on the structure is commanded to follow a specified acceleration 
response history, which in turn induces inertial forces in the structure. The inertia force of the moving 
mass is transferred as dynamic force excitation to the structure. The key issues associated with the LSSS 
method are (1) determining for a given ground motion displacement, xg, a linear shaker motion which 
induces a structural response that matches as closely as possible the response of the building if it had been 
excited at its base by xg (i.e., the motion transformation problem) and (2) correcting the linear shaker 
motion from Step 1 to compensate for control-structure interaction (CSI) effects associated with the fact 
that linear shaker systems cannot impart perfectly to the structure the specified forcing functions (i.e., the 
CSI problem). The motion transformation problem is solved using filters that modify xg both in the 
frequency domain using building transfer functions and in the time domain using a least squares 
approximation. The CSI problem, which is most important near the modal frequencies of the structural 
system, is solved for the example of a linear shaker system that is part of the nees@UCLA equipment 
site. 

INTRODUCTION 

Field performance data from full-scale structural systems have been a principal driving force behind 
advances in earthquake engineering practice since the early 20th century. For example, observations of 
structural collapse following the 1933 Long Beach earthquake led to some of the first formal 
recommendations on earthquake resistant design and retrofitting of existing structures [1]. More recently, 
observations of building performance following the 1971 San Fernando, 1989 Loma Prieta and 1994 
Northridge earthquakes provided the impetus for major building code revisions in the 1976, 1985, 1991 
and 1997 versions of the Uniform Building code. The weight given to field performance data stems from 
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a simple fact: it represents the “ground truth” information against which all analysis procedures, code 
provisions, and other tests results must be calibrated.  

Field performance data in structures can be generated either by seismic excitation or forced 
vibration testing. The focus here is on forced vibration testing of full scale structures. Advantages of field 
testing relative to laboratory testing include the lack of need for scaling, correct boundary conditions, and 
correct modeling of system interactions. However, several factors have limited the impact of field testing 
to date, including: 

1. The inability of artificial (forced) vibration sources to test structures at large amplitudes, in 
particular, into the nonlinear range. 

2. The inability of traditional vibration sources to excite structures in a manner that emulates 
realistic broadband seismic excitation. 

3. Practical difficulties associated with deploying a sufficiently dense sensor array such that detailed 
component behavior can be investigated. 

The NSF-funded George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) 
project at UCLA is addressing each of these issues by developing large capacity harmonic eccentric 
shakers, a linear shaker able to reproduce broadband seismic excitation, and a field data acquisition 
system with IP-based wireless telemetry that enables convenient deployment of large sensor arrays.  

This paper focuses on the second issue identified above: the development of a linear broadband 
shaker system to provide structural excitations that realistically simulate linear elastic structural seismic 
response. The theoretical framework for the proposed test method is developed and illustrated with a 
numerical example. The result is a new field testing procedure referred to as the linear shaker seismic 
simulation (LSSS) testing method. LSSS represents a fifth type of test method to investigate the dynamic 
response of structural systems; the other methods being quasi-static cyclic, pseudodynamic, shake table 
and effective force testing [2].  

DESCRIPTION OF THE LSSS METHOD 

During an earthquake, a building is subjected to inertial forces caused by a ground motion (xg). As shown 
in Fig. 1(a), the effect of base excitation on a building is equivalent to that of a set of effective earthquake 
lateral forces applied to the building on a stationary base. These effective earthquake forces depend on the 
building inertia properties and the earthquake ground acceleration. In contrast, force-vibration 
experiments are typically designed such that the mechanical shakers are anchored to the roof or some 
other level of the test structure. Consequently, vibrations induced during force-vibration experiments and 
earthquakes emanate from opposite locations – “top excitation” during force-vibration experiments and 
“base excitation” during earthquakes. Hence, the lateral force distributions induced during the two cases 
are different since the linear shaker can only apply an inertial force to the floor where it is attached. This 
difference can be described in terms of the influence vector, l, which defines the degrees-of-freedom 
affected by the external excitation as follows:  

f ( )    ( )at l x t= − M &&      (1) 

where, f(t) = effective lateral force vector, M = mass matrix of the building, l = (n × 1) influence vector, 
( )ax t&&  = applied acceleration history due to either the ground motion ( ( )ax t&& = ( )gx t&& ) or shaker excitation 

( ( )ax t&& = ( )sax t&& , where ( )sax t&&  = absolute shaker acceleration), and n = number of dynamic degrees-of-
freedom in the building. The difference in the l vectors for the base and top excitation cases is illustrated 
in Fig. 1 for a 3-story building model with one translational degree-of-freedom per floor.   

In Fig. 1 and Eq. (1), xsa(t) is the absolute displacement of the moving mass ms of the linear 
shaker, and mi is the mass of floor level i in the building. The displacement xsa(t) is distinguished in Fig. 2 
from the displacement of the roof relative to the base xn(t) and the displacement of the shaker mass 
relative to the roof xs(t).   
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Fig. 1. Comparison of effective force distributions for earthquake excitation and shaker excitation  
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Fig. 2.  Coordinate system for linear shaker on a test structure 

 
Clearly, if the same acceleration history was applied for the base and top excitation cases (i.e., 

( ) ( )sa gx t x t=&& && ), different structural responses would be induced. Accordingly, the first major challenge 
associated with the development of the LSSS testing method is to determine for a given ground motion, 
xg(t), a linear shaker input motion which induces a structural response that matches as closely as possible 
(in the linear elastic range) the response of the building if it had been excited at its base by xg(t). Two 
alternative solutions to this motion transformation problem are presented. The first approach filters the 
ground motion xg(t) in the frequency domain using building transfer functions, while the second approach 
modifies the forcing function in the time domain using a least squares approximation. Both of the motion 
transformation methods assume that the linear shaker can reproduce the specified forcing function exactly 



(i.e., perfect control system). As shown later, this assumption is not always realistic. For example, 
experimental studies by Dyke et al. [3] and Dimig et al. [2] have shown that servo-hydraulic actuators 
attached to lightly damped structures are limited in their ability to apply forces near the test structure’s 
natural frequencies. Consequently, the second challenge in developing the LSSS test method is to account 
for imperfect hydraulic actuator control by pre-correcting the shaker input motion that would be obtained 
under the assumption of a perfect control system (i.e., the control-structure interaction problem). In the 
following sections, mathematical solutions to the motion transformation and control-structure interaction 
problems are described. 

THE MOTION TRANSFORMATION PROBLEM 

LSSS Transfer Function Method  

The equation of motion of an elastic n degrees-of-freedom building structure subjected to a lateral force 
vector f(t) can be expressed as 

x( ) + x( ) + x( ) = f( )t t tM C K&& & t     (2) 

where, x(t) = (n × 1) displacement vector relative to the base, M, C and, K = (n × n) mass, damping and 
stiffness matrices, respectively. Assuming zero initial conditions, the Laplace transformation of Eq. (2) 
yields, 

2[ +  + ] x( ) = f( )s s sM C K s      (3)
in which s denotes the Laplace domain parameter. The (n × n) transfer function matrix H(s) transforms 
the input forcing function f(s) into the output vector x(s), i.e.,  

x( ) = ( ) f( )s s sH       (4) 

A unique transfer function exists for the output (displacement) at the i-th DOF due to the input 
(force) at the j-th DOF, which is represented by the Hij(s) component of H(s). Using Eq. (4), the dynamic 
response of a linear elastic structure can be derived using the inverse Laplace transformation of x(s),  

-1 -1x( ) = {x( )} = { ( ) f( )}t L s L s sH      (5) 

Since the displacement response of the i-th floor (xi) is the superposition of the responses 
associated with inputs applied at each floor, displacement xi can be expressed by the sum of the transfer 
functions and inputs at each floor. Representing the input by equivalent lateral force vectors f(t) (e.g., Fig. 

1), displacement responses xi and ix ′  for base and top excitation, respectively, are given by: 

Base excitation: 
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Top excitation: 
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where, fj and mj represent effective earthquake force and story mass at floor j,  ( )gx s&&  is the Laplace 

transformation of the ground motion, and jl ′  is the j-th components of influence vector l′ . For the 
special case of excitation applied only at the roof level (i.e., j = n only), Eq. (7) reduces to 

( ) ( ) ( )i in s sax s H s m x s′ = −  &&      (8) 

where,  is the transfer function between the shaker input on floor level n and the displacement 
response of the i-th floor. Equating Eqs. (6) and (8), the linear shaker input motion 

inH
( )sax s&&  that will 



induce an i-th floor response, ( )ix s′ , that will match ( )ix s  from the base excitation can be derived using 
a filter T(s) defined as 
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∑
      (9) 

Finally, the shaker input motion sax&&  is obtained using as 

{ } { }1 1( ) ( ) ( ) ( )sa sa gx t L x s L T s x s− −= =&& && &&     (10) 

In this approach, the shaker input motion ( )sax t&& is obtained through a filter defined as the ratio of 
two transfer functions such that the responses of the i-th floor due to the base excitation and top 
excitations will coincide. Note that T(s) depends on which aspect (DOF) of the response is being matched. 
This method can be extended to replicate alternative response quantities such as total base shear, story 
overturning moment, or inter-story drift. However, a shortcoming of this approach is its inability to match 
simultaneously the response of multiple DOFs (or multiple response quantities).  

LSSS Least Squares Method 

From the governing equation of the MDOF dynamic system response subjected to base excitation (Eq. 2), 
the discrete form of the solution can be found using the Newmark explicit method [4] as follows: 

21x( 1)  x( )   x( )   x( )
2

k k t k t+ = + ∆ + ∆& k&&     (11a) 

1x( 1)  x( )   [x( )  x( 1)]
2

k k t k k+ = + ∆ + +& & && &&     (11b) 

Substituting Eqs. (11) into Eq.(2), and introducing the structural response vector, z, results in the 
following discrete state equation [5]: 

z( 1)   z( )  L ( 1)gk k x k+ = +A && +                        (12) 

where  
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In the above equations,  is the constant time step, I is the (n × n) identity matrix,t∆ ( 1gx k )+&&  is 

the ground acceleration at discrete time t = (k+1)∆t, and 0 is an (n × 1) vector of zeros. Column vector 
z(k) is referred to as the structural response vector at discrete time t = k∆t and has length 3n, as 
does vector L. The response of the structure subjected to top excitation can be expressed similarly as  

z ( 1)   z ( )  L  ( 1)sak k x′ ′ ′+ = + +A && k          (14) 

where z ( 1)k′ +  and  represent the structural response vector and shaker acceleration at time 
k+1 in the case of top excitation, and 

( 1sax k +&& )
L′  is determined using the influence vector l′  instead of l in Eq. 

(13c). System matrix A has dimensions of 3n × 3n and is identical for both the base and top excitation 
cases. Since the response of the system at time N is the superposition of the responses to the individual 
inputs at time , the difference in the structural response between base and top excitation 
cases at time step t = N can be expressed as:  

0,1, ,t = L N
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sa sa saN N N N x x x Nε −′ ′ ′ ′⎡ ⎤= − = − + + +⎣ ⎦A L A L L&& && &&L          (15) 

The error vector ε%  is then introduced as:   
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  (16a) 

or 

sa  z   xε = − G% &&       (16b) 

where the dimensions of ε% , z, G, and sax&&  are (3nN × 1), (3nN × 1),  (3nN × Ν), and (N × 1), respectively. 
Therefore, the linear shaker input motion sax&& which minimizes the error between z and z' can be derived 
by minimizing the L2 norm of the errors from time t=1 to N. A closed form solution can be found using 
the least squares method.  

T -1 T
sa x  = ( )  zG G G&&       (17) 

The LSSS least squares method differs from the transfer function approach in that the least 
squares approach minimizes the error for the displacement, velocity, and acceleration responses at all 
DOFs simultaneously. Furthermore, the least squares method can be extended to nonlinear response 
problems provided that the nonlinear properties of the structure are known. However, applications to 
nonlinear systems are beyond the scope of this paper. 

THE CONTOL-STRUCTURE INTERACTION PROBLEM 

Dyke et al. (1995) found that the natural velocity feedback loop that exists in hydraulic actuators can 
cause dynamic coupling between the test structure and actuator. This feedback loop results from the 
imperfect ability of the control system (e.g., controller, servo-valve, and actuator) to provide hydraulic 
fluid to the piston chamber as the piston displaces. This effect is accentuated when displacements of the 



piston are large, which occur near the natural frequencies of the test structure. Accordingly, this dynamic 
coupling effect, termed control-structure interaction (CSI), can restrict the ability of hydraulic actuators to 
apply forces near the natural frequencies of the structure. When CSI effects are uncompensated for, they 
can cause significant discrepancies between the desired and achieved system response [2].  

Linearized model of servo-hydraulic actuator and test structure 

A linearized model of both the servo-hydraulic actuator system and the structure to which it is attached 
was developed as shown in Fig. 3. While the model is fully general, it is customized here to simulate the 
performance of the UCLA NEES servo-hydraulic linear shaker attached to a test structure. Although 
servo-hydraulic actuation is an inherently nonlinear process, a linearized model was used since it has been 
shown to capture the salient features of the dynamic interactions of the overall system [6]. The block 
diagram in Fig. 3 includes an idealized uni-axial, displacement controlled linear shaker system along with 
a test structure. The overall system described in Fig. 3 consists of several subsystems that are subject to 
various types of feedback loops as follows:  
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Fig. 3. Block diagram model of structure-servo hydraulic shaker system  
 

• Natural velocity feedback: The structure displaces when a force is applied by the actuator. Since 
the actuator cylinder is fixed to the floor of the test building, the movement of the structure/floor 
results in additional relative displacement between the actuator cylinder and the actuator piston 
(see Fig. 2). This additional movement induces a volume change in both sides of the actuator 
chamber, thereby resulting in a change in the differential oil pressure across the piston from the 
command. This change in oil pressure, which causes a deviation of the achieved force and 
displacement from the target values, is referred to as natural velocity feedback. The natural 
velocity feedback is an inherent feature of the linear shaker-structure system, but is dependent on 
the control algorithm of the hydraulic system.  

• Position feedback: The actuator piston movement caused by the action of the combined 
controller-servovalve-actuator-structure system is monitored (as either a displacement, velocity, 
or acceleration) and is fed back to the controller so that adjustments can be made if the measured 
response (xs) does not match the commanded shaker input motion (xc). The natural velocity 
feedback is an important contributor to the difference between xs and xc.  

• Delta pressure feedback: The displacement of the piston relative to the actuator cylinder occurs 
due to the pressure differential across the piston. The pressure differential is measured and fed 
back to the controller, which adjusts the servovalve command signal based on both the position 



and delta pressure feedbacks. The delta pressure feedback is also used to limit the oil column 
resonance effects, thus explaining the common reference to the delta pressure gain as "numerical 
damping."  

We next turn to the modeling of the complete system response. Each of the subsystems with its 
governing equation is described below. 
1.  Controller:   [ ]( ) ( ) ( ) ( ) ( ) ( )c C c s dpV s H s x s x s H s P s= − − ∆                                    (18a) 

As indicated in Eq. (18a) and Fig. 3, the error between the commanded shaker input motion xc and the 
position feedback (the actual position of the moving mass, xs), as well as the delta pressure signal 
(pressure differential), are used by the controller to adjust the servovalve command signal Vc. Hc(s) and 
Hdp(s) denote the transfer functions of the controller and delta feedback loop, respectively.  

1

( )C p d
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= +

+
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sH s K

s p
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+
    (18b) 

Eq. (18b) represents a controller model that is referred to as the lead compensator approximation of a 
proportional-derivative (PD) conditioned control scheme [7]. The PD control is usually adopted to reduce 
the rise-time and the overshoot of the system response, but pure derivative control is not practical because 
of the amplification of sensor noise by differentiation and should be approximated by lead compensator 
form [7]. In Eq. (18b), the transfer function for the delta pressure loop is expressed as another lead 
compensator approximation for same reason as in the PD control. In Eqs. (18),  is the differential 
pressure across the actuator piston, and K

P∆
p, Kd, Kdp denote the proportional, derivative, and delta-pressure 

control gains, respectively. Kd and Kdp are not exactly identical to conventional derivative gain and delta 
pressure gain. The lead compensation approaches pure PD control when a large value is used for the 
constant p1 or p2. Constants p1 and p2 designate the pole location of each transfer function. These control 
gains and constants p1 and p2 affect the closed loop response of the system, and are generally determined 
by trial and error until the target performance criteria are achieved. 

2. Servovalve:                      (19) ( ) ( )s
q cq s k e V sτ−=

Eq. (19) describes the oil flow rate into the actuator pressure chamber (q) that is generated by the 
servovalve in response to the servovalve command signal (Vc) [6]. A linear relationship between q and Vc 
is assumed, with the constant of proportionality being the flow gain coefficient (kq), which is a 
characteristic of the three-stage servovalve used. While a three-stage servovalve consists of both an outer 
and inner feedback loop, the inner control loop was neglected since servovalve control is significantly 
more accurate than that of the other subsystems [6]. The time delay (τ) in Eq. (19) is included to model 
the time necessary to overcome the mechanical and hydraulic inertia of the servovalve. 

3. Actuator:   ( ) ( ) ( ) ( )
4s le

Vq t Ax t k F t F t
Aβ

− = + &&               (20) 

Eq. (20) is the flow continuity equation that converts the oil flow rate (q) into piston motion ( sx& ) and 
actuator forces (F) [3, 6]. The oil flow rate (q) delivered through the servovalve produces a volume 
change in the actuator pressure chamber, thereby inducing piston movement. However, oil leakage 
through piston seals and oil compressibility result in additional oil volume changes that must be 
compensated for by the oil flow rate, thereby reducing the net flow rate as expressed by Eq. (20). In 
the above equation, F(t) is the force acting across the actuator, V is the effective volume of both 
chambers of the actuator cylinder, A is the effective piston area, β is the bulk modulus of the fluid, 
and kle is the leakage coefficient associated with the piston seals. 

 

4. Structure:  Equation of motion is Eq. (2) with external force vector taken as f'(t) in Fig. 1(b). 



From the above equations, the transfer function, HCSI(s), describing the overall system relationship 
between the commanded (input) position, xc, and the absolute actuator position achieved by the linear 
shaker, xsa, can be derived using the transfer function of the servovalve-actuator subsystem, Hs(s), and the 
transfer function of the MDOF test structure, HB(s). This transfer function is referred to herein as the total 
transfer function of the linear shaker–test structure system, and is given as, 
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Hs(s) describes the relationship between the servovalve output (flow rate, q) and the actuator relative 
displacement (xs); therefore it depends on actuator and structural parameters as,  
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The transfer function HB(s) is derived from the building's equations of motion, Eq. (2), taking the absolute 
displacement of the moving mass(xsa) as input and the roof displacement (xn) as output, assuming that the 
linear shaker is installed at the roof level. 
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where 
     inφ =  n-th (or roof) component of the i-th vibration mode shape 
     ,  ,  i iM iζ ω  = Modal mass, modal damping, and natural circular frequency of i-th mode. 

NUMERICAL EXAMPLE  

The two motion transformation solutions presented above (the transfer function and least squares 
methods) including the CSI effects are illustrated through a numerical example using the three-story, two-
bay planar frame shown in Fig. 4. The first three natural frequencies of the example building are 2.85Hz, 
9.26Hz and 16.4Hz, respectively. We assumed damping ratios of 5% for all the modes, and that the linear 
shaker was attached to the roof as shown in Fig. 4. The 1940 El Centro N-S acceleration  history, with 
acceleration values multiplied by 0.15, was used as the control motion. Amplitude scaling was performed 
to match the performance specifications of the UCLA NEES linear shaker, which has 22.25 kN (5 kips) 
moving mass and the dynamic actuator of the following nominal capacities: 66.75 kN (15 kips) maximum 
force, ± 38.1 cm (±15 inch) stroke, and 340.7 lpm (90 gpm) peak flow capacity. 

 Using the transfer function method, four different motion transformations were performed to 
match the displacement responses of the first, second and third stories, as well as the inter-story drift 
between the second and third floors. From Eq. (9), filters for each response quantity match were derived. 
For example, filter T3(s), which equates the roof displacement response for base and top excitation cases 
can be expressed as, 
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The filters T1(s) and T2(s) to match the 1st and 2nd floor displacements, respectively, can be 
derived similarly. To match inter-story drift between roof floor and 2nd floor (i.e., 32 3 2x x∆ = − ), Eq. (9) 
was modified to,   
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Fig. 4.  Three-story, two-bay example building  
 
Fig. 5 shows the amplitude and phase spectra of filter T3(s). As shown in Fig. 6, the transfer 

function method yields excellent agreement (as expected) between the top and base excitation cases for 
the target response quantity and minor discrepancies for non-target response quantities such as the 1st and 
2nd story displacement. The discrepancy between the top and base excitation responses, herein termed the 
motion transformation error, can be quantified using a normalized root mean square (RMS) tracking error, 
defined as: 
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∑
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where the summation occurs over time and y and y' denotes generic response quantities for base and top 
excitations, respectively (e.g., y, y' = xn, xn' for roof displacement response).  

Table 1 presents a summary of normalized RMS tracking errors for motion transformations using 
the Transfer Function method and Least Squares method. For the transfer function method, the target 
floor response quantities should theoretically be a perfect match with the base excitation response (RMS 
error = 0); however, non-zero RMS errors were computed due to numerical errors associated with the 
discrete Fourier/Laplace transformations. Values in the parenthesis represent relative displacement or 
relative acceleration to its lower floor, i.e., Roof-2nd floor relative displacement, 2nd-1st floor relative 
displacement, etc. from the top. When a local response quantity such as inter-story drift is matched, 
relatively large discrepancies are observed on global response quantities (floor responses). For buildings 
with non-uniform mass or stiffness distributions, the non-target response quantity errors would likely be 
greater. The least squares procedure modifies the control motion such that the top-down and bottom-up 
responses are matched in an average sense in terms of displacement, velocity and acceleration at selected 
degrees-of-freedom. Using Eq. (17), a single transformation was performed for the example structure to 



modify the control motion to simultaneously match as closely as possible all three story displacement, 
velocity and acceleration responses. Fig. 7 shows the displacement responses obtained using the least 
squares method. The least squares method generally minimizes the RMS errors for any particular degree-
of-freedom as effectively as the transfer function method. However, the least squares method has the 
advantage of having consistently small tracking errors for all three degrees-of-freedom.  

 
Table 1. Normalized RMS tracking errors for each motion transformation 

 TFM 
(x1 match) 

TFM 
(x2  match) 

TFM 
(x3 match) 

TFM 
(∆32 match) 

Least Squares 
Method 

Roof Displ. 0.143 0.082 0.001 0.389(0.001) 0.043 
2nd Floor Displ. 0.077 0.042 0.126 0.528(0.442) 0.040 
1st Floor Displ. 0.042 0.108 0.246 0.636(0.636) 0.116 

Roof Accel. 0.913 0.510 0.002 1.094(0.009) 0.232 
2nd Floor Accel. 0.165 0.056 0.698 1.499(1.267) 0.138 
1st  Floor Accel. 0.074 0.801 1.292 1.700(1.700) 0.292 
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Fig. 5. Comparison of amplitude and phase spectra of filter that includes CSI effects (T3’) and that 

neglects CSI effect (T3), Transfer Function Method 
 
At this point, it is important to distinguish the different types of errors associated with applying 

the LSSS test method. The above motion transformation procedure illustrates how a control earthquake 
ground motion can be modified such that the LSSS testing method replicates the base excitation response 
with reasonable accuracy assuming perfect actuation. The difference between the base and top excitation 
responses can be termed the motion transformation error, and can be attributed to the different inertial 
force distributions between the base and top excitation cases. However, due to the CSI effects resulting 
from the dynamic coupling between the actuator and the test structure, the assumption of perfect actuation 
is not valid for most cases. The difference between the expected (command) and achieved force outputs in 
the piston is herein termed the actuation error. Unlike the motion transformation error, the actuation error 
can be pre-compensated for in the shaker command signal. The pre-compensation can be addressed using 
an analytical model, although model improvements based on forced-vibration testing could be 
implemented.  

 



Each of the filters, which were previously derived using the transfer function method assuming 
perfect actuation (e.g., T1, T3, T32), were pre-corrected for CSI effects using HCSI(s). For example, T3

'(s) is 
the CSI-corrected filter that will compensate for the actuation error: 

   [ ] 1'
3 ( ) ( ) ( )CSIT s H s T s−= 3       (27) 

Fig. 5 shows the amplitude and phase spectra of the uncorrected filter T3(s) and CSI-corrected filter T3
'(s). 

Similarly, the shaker input motion derived using the least squares method, Eq. (17), can also be corrected 
in the frequency domain using HCSI(s). Fig. 5 was plotted using control gains determined for the UCLA 
NEES linear shaker system installed on a stationary base.5
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Fig. 6. Comparison of base and top excitation roof displacement responses using the Transfer 

Function Method (using T3(s)) ; assuming perfect actuation 
 

The building displacement response from the input derived using the transfer function filter T3 
without correcting for CSI effects are compared with the target responses (base excitation, dashed lines) 
in Fig. 8. As shown in the figures, the errors due to the neglect of CSI effects consist largely of phase 
differences, although some amplitude differences are also present. The observed differences between the 
achieved and target building responses in Fig. 8 result from the imperfect actuation and motion 
transformation. When the shaker input motion is corrected for CSI effects, the top excitation responses 
(solid lines) in Fig. 8 are the same as the top excitation responses (solid lines) in Fig. 6. Since the 
actuation error can be pre-compensated to the extent that the linearized model is valid, any remaining 
discrepancies between the top and base excitation cases would be associated with the motion 
transformation and epistemic errors (due to modeling uncertainty associated with the shaker and structural 
systems) once the input motion is CSI-corrected. 

                                                 
5 Optimal control gains are case-dependent, since the total transfer function of the linear shaker-structure system 
[HCSI(s)] is dependent on the hydraulic system parameters as well as the structural parameters of test structure. 
Values of the control gains and constants used in this paper are as following; Kp = 0.472 V/cm (1.2 V/in), Kd  = 
0.591 V/s/cm (1.5V/s/in),  Kdp = 3.231×10-2 V/MPa (2.229×10-4 V/psi), p1 = 1/0.02 rad/s,  p2 = 1/0.07 rad/s. The 
time delay and leakage coefficients were not considered, since the simulation model ignoring these terms shows 
good results when compared to the test data. The time delay(τ) and leakage coefficient(kle) were set to zero in this 
model. 
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Fig. 7. Comparison of base and top excitation displacement responses using the Least Squares 

Method; assuming perfect actuation 
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Fig. 8. Comparison of base and top excitation roof displacement responses using the Transfer 
Function Method (using T3(s)) from uncorrected (for CSI effects) input 

DESCRIPTION OF THE NEES@UCLA LINEAR INERTIAL SHAKER 

The nees@UCLA Linear Inertial Shaker is driven by a hydraulic actuation system capable of moving a 
nominal weight of 22.25 kN (5 kips) with a peak force of 66.75 kN (15 kips) through a stroke of ± 38.1 
cm (±15 inch).  The system utilizes two 10-gallon accumulators in the pressure-side charged to 3000 psi 
and two return-side accumulators charged to 150 psi. The flow through the actuator is varied using a 



three-stage MTS servovalve (model no: 256.09.A02) with 340.7 lpm (90 gpm) peak flow capacity and a 3 
dB roll-off at approximately 90 Hz. 

The linear shaker has two operational modes, namely, a displacement mode and an acceleration 
mode. A Baluff sensor with a  ±10V output for a displacement range of ± 40.64 cm (±16 inches) provides 
displacement feedback, while a PCB accelerometer (model no. 3703G2FD3G) with a sensitivity of 1 g/V 
and a range of 5g mounted on the side of the base of the moving mass provides acceleration feedback. In 
addition, a delta-pressure sensor is used to close a differential pressure loop to damp out the oil-column 
resonance for displacement control as described in the previous section. The system also has a load cell to 
measure the force transmitted to the structure and a GPS module to provide time stamping for 
synchronization with external data acquisition systems.  

In the displacement mode, the user can choose one of three control algorithms: PD, Optimal 
(LQG) and Adaptive (ARMARKOV tracking). The PD control algorithm is of a standard form described 
in the previous section and the nominal transfer function of the controller as given by Eqs (18). The 
optimal control algorithm uses the Linear-Quadratic-Gaussian (LQG) design approach [8]. The system is 
represented in linear state-space form and a quadratic cost function based on the tracking error and the 
control signal is minimized with respect to the controller parameters. The state space representation of the 
system is obtained using a subspace based system identification approach known as N4SID [9], and the 
states of the system are estimated from the sensor measurements using a Kalman filter [8]. The optimal 
control algorithm provides a flat frequency response over a larger bandwidth than the PD controller. The 
adaptive controller [10] compensates for gain and phase errors in sinusoidal tracking by pre-
compensating the command to the PD controller. Tracking errors of less than 2% for earthquake profiles 
are typical in the displacement mode. 

In the acceleration mode, the user can choose to use the optimal controller with or without 
adaptive pre-compensation. The design approach for the optimal and adaptive controllers is the same as 
for displacement control. The tracking errors in the acceleration mode are higher than in the displacement 
mode because of friction and the excitation of structural modes of the shaker. 

The control algorithms are implemented on a fully digital dSPACE real-time system based on a 
DS1103 controller board. The board uses a Power PC 604e 400 MHz processor and has 16 16-bit analog-
to-digital (A/D) converters, 4 12-bit A/Ds, 8 14-bit digital-to-analog (D/A) converters, 32 bits of digital 
inputs/outputs, and other I/O features. The sensor signals are fed to the 16-bit A/Ds through integrated 
anti-aliasing signal conditioning and the current command is sent to the servovalve driver from a D/A 
channel. All inputs and outputs are optically isolated to protect the control system from voltage spikes 
induced by operating in a potentially noisy environment.  The control algorithms are run at a sample rate 
of 5 KHz and are implemented as Simulink models.  With the dSPACE interface to Simulink, the Real-
Time Interface (RTI), code is automatically generated for the model, built, and implemented on the real-
time hardware.  Simulink is the graphical simulation environment of Matlab.  

The user operates the system using a Graphical User Interface (GUI) built in dSPACE’s 
ControlDesk environment and is able to perform all tasks in preparing, running, and monitoring the test.  
Some of these tasks are selecting control modes, controller types, reference commands, safety checks, 
monitoring GPS operation status, and acquiring data for post processing. A requirement for testing is to 
import recorded earthquake data, preview the time history, scale the signal appropriately and play it as a 
reference profile for the table to track.  This is accomplished using test automation features in the 
ControlDesk environment.  These automation features also allow the user to generate complete test 
reports containing user identification, test location, test profiles, controller selection, GPS timestamps, 
acquired sensor data and various other signals.  The system architecture is thus well suited to replicate the 
reference time histories generated by the LSSS method for the purpose of experimental validation.  



CONCLUSIONS 

The linear shaker seismic simulation (LSSS) method is a new method for forced-vibration testing of 
structures to induce seismic excitation demands that are consistent with earthquake induced shaking at the 
structure base. This paper addresses two challenges associated with implementation of the LSSS method 
in the context of linear elastic seismic response for structures. These challenges consist of (a) identifying 
a linear shaker input motion which produces a structural response similar to that of the building shaken 
from the base by an actual earthquake, and (b) pre-correcting the input motion to account for control-
structure interaction effects. Procedures for making these corrections have been presented that allow the 
structural response associated with any particular ground motion response history to be reproduced with 
top down excitation through a linear shaker accounting for motion transformation and CSI effects. 

The potential usefulness of the LSSS method was investigated using numerical simulations of the 
nees@UCLA linear shaker attached to the roof of a generic three-story test structure. For motion 
transformation, the 1940 El Centro ground motion was filtered in the frequency domain using the LSSS 
transfer function approach, as well as in the time domain using the LSSS least squares approach. Analysis 
results showed that the linear elastic seismic response of low-rise buildings can be replicated with good 
accuracy once the filtered shaker input motions are pre-compensated for control-structure interaction 
effects. However, future experimental studies are required to validate this new test method in 
consideration of unmodeled epistemic and aleatoric uncertainties associated with material properties, 
servo-hydraulic parameters, and modeling of structural and servo-hydraulic shaker systems. Furthermore, 
the LSSS testing method should be investigated in the context of nonlinear (material and geometric) 
seismic response of structures. 
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