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Preface

This monograph is the second in a series dedicated to the organization and

summarization of knowledge existing in the field of continuum vibrations. The

first monograph, entitled Vibration of Plates, was published in 1969, also by the
National Aeronautics and Space Administration.

The objectives of the present work are the same as those of the previous one,
namely, to provide

(1) A comprehensive presentation of available results for free vibration

frequencies and mode shapes which can be used by the design or development
engineer.

(2) A summary of known results for the researcher, facilitating comparison

of future theoretical and experimental results, and delineating by implication
those problems which need further study.

The scope of the present monograph is also the same as that of the previous
one in that

(1) Materials are assumed to be linearly elastic.

(2) Structures were not included in this study, although some attention has

been given to the accuracy of representing a stiffened shell as an orthotropic shell
for purpose_ of vibration analysis.

The key to a comprehensive monograph such as this is organization. Careful
organization not only makes the completed work more understandable and useful

to the reader, but also facilitates the writing. Although much of the organization
can be seen from the Contents, I will attempt to explain it further below.

Shells have all the characteristics of plates along with an additional one--

curvature. Thus we have cylindrical (noncircular, as well as circular), conical,

spherical, ellipsoidal, paraboloidal, toroidal, and hyperbolic paraboloidal shells

as practical examples of various curvatures. The plate, on the other hand, is the

special limiting case of a shell having no curvature. So called "curved plates"

found in the literature are, in reality, shells. Thus, the primary classifier of the

field of shell vibrations is chosen to be curvature. For a given curvature (say
circular cylindrical, for example) the available literature is divided as to whether

complicating effects such as anisotropy, initial stresses, variable thickness, large

deflections, nonhomogeneity, shear deformation and rotary inertia, and the effects

of surrounding media are present or not. The next subdivision of organization is

boundary shape. Thus, a circular cylindrical shell can be open or closed, have

boundaries which are parallel to the principal coordinates or not, and have cut-

outs or not. Once the boundary shape is determined, attention is given to the

possible types of fixity that can exist along each edge (i.e., the boundary con-

ditions). Finally, attention is given to such special considerations as point sup-

ports or added point masses. Thus, for each type of curvature, the organization
of the previous monograph Vibration of Plates is followed.
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iv PREFACE

In addition to having the added complexity of curvature, shells are more

complicated than plates because their bending cannot, in general, be separated

from their stretching. Thus, a "classical" bending theory of shells is governed by

an eighth order system of governing partial differential equations of motion,

while a corresponding plate bending theory is only of the fourth order. This

added complexity enters into the problem not only by means of more complex

equations of motion, but through the boundary conditions as well. The classical
bending theory of plates requires only two conditions to be specified along an

edge, while a corresponding shell theory requires four specified conditions.
To demonstrate the significance of the latter point, consider a flat panel

(i.e., a plate) which is simply supported along two of its opposite edges. The num-

ber of possible problems which can then arise, considering all combinations of

"simple" boundary conditions which can exist on the remaining two edges, is 10.

For a cylindrically curved panel (i.e., a shell) the corresponding number is 136!

To complicate matters further, whereas all academicians will agree on the

form of the classical, fourth order equations of motion for a plate, such agree-
men_ does not exist in shell theory. Numerous different shell theories have been

derived and are used. Thus, if analytical results for frequencies and mode shapes

of a given shell configuration are presented, strictly speaking, the shell theory
used in the calculations must be specified. For the sake of separating and defining

clearly the various shell theories commonly found in the shell Vibration literature,

chapter 1 is devoted to their derivation, with special emphasis being given to the

identification of points in the derivation where the different assumptions are made

which give rise to the different theories.
Statements are found in the literature which imply the equivalence of all

eighth order shell theories. The accuracy of such statements is examined care-

fully in chapter 2 on a problem for which exact solutions exist--the closed cir-

cular cylindrical shell supported at both ends by shear diaphragms. Extensive

comparisons of _esults from the various shell theories are made with those from

the exact, three dimensional elasticity theory.
In addition to the differences in theories, simplifications are often made in

the resulting equations of motion or the characteristic (frequency) equations.

These simplifications include, among others: neglecting certain (hopefully) small

terms in the equations of motion, neglect of the tangential inertia terms, linear-

ization of the characteristic equations, and assuming that the wave length in one

direction is considerably longer than in the other. Comparisons of the effects of

these simplifications are also made in chapter 2.
Comparing plate and shell vibrations, it is found that shell frequencies are

more closely spaced and less easily identified, both analytically and experimen-

tally. Furthermore, the fundamental (lowest frequency) made for a shell is gen-

erally not all obvious, whereas for a plate it usually is.
There are more parameters required to define the shell vibration problem.

For example, consider a rectangular plate simply supported on all its edges.

The complete frequency spectrum is determined by varying one parameter--the

length-to-width ratio. For the cylindrically curved panel having the same edge
conditions, however, three additional parameters can be independently varied--

the thickness-to-radius ratio, the length-to-radius ratio, and Poisson's ratio.

The present monograph contains approximately 1000 references. Of these,
more than half deal with circular cylindrical shells. Therefore, two chapters were

devoted to this voluminous topic. Chapter 2 deals with the results of classical
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PREFACE

theory while complicating effects are studied in chapter 3. By contrast, very little
work has been done with noncircular cylindrical shells, and these results are sum-

marized in chapter 4. Chapter 5 is devoted to circular conical shells.

Because of the complexity of the field of shell vibrations as described above,
and because of my own limitations in time and organizational capability, the

following sacrifices had to be made in the present monograph:

(1) There are undoubtedly more relevant references which have been un-

knowingly omitted from this work than in the previous one. This is mainly due
to the comparative recentness of the shell vibrations literature.

(2) Chapter 6 is only a bibliography for the vibrations of spherical and
other shells.

(3) Numerous forms of nondimensional frequency parameters as given in

_"the literature are used directly without conversion to a common parameter.

For these shortcomings I sincerely apologize to all my readers.

The support of the National Aeronautics and Space Administration is grate-

fully acknowledged, particularly that of Mr. Douglas Michel, who sees the value

of devoting time and effort to making available research results useful to man-

kind, as well as to the creation of new knowledge. I wish to thank Messrs. S. G.

Sampath, Adel Kadi, and Ting-hwa Wang, three of my doctoral students, for

their devotion to this work. Without their help in supervising the procurement

of the relevant literature, in providing analytical help (particularly in chapters
1 and 2), and in editing the manuscript, this monograph woulcl not have been

possible--indeed, I would not have undertaken it. I also wish to thank Drs.

Robert Fulton, Francis Niedenfuhr, Herbert Reismann, and Carl Popelar. for
their technical advice. Finally, the enormous editorial assistance of Mr. Chester

Ball, and Mrs. Ada Simon is gratefully acknowledged.

ARTHUR W. LEISSA

The Ohio State University
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Fundamental Equations of Thin Shell Theory

Chapter 1

A thin shell is a three-dimensional body which

is bounded by two closely spaced curved surfaces,

the distance between the surfaces being small in
compare'son with the other dimensions. The locus

of points which lie midway between these sur-
faces is called the middle surface of the shell.

The distance between the surfaces measured

along the normal to the middle surface is the

thickness of the shell at that point. The thick-
hess need not be constant in the formulation of

a suitable theory of deformation, but constant

thickness results in governing equations which

are easier to solve; furthermore, certain manu-

facturing processes naturally yield shells of es-

sentially constant thickness.

Shells may be regarded as generalizations of a

flat plate; conversely, a flat plate is a special case

of a shell having no curvature. The terminology

"curved plate" is used occasionally in the litera-

ture-usually referring to a shell having small

changes in slope of the undeformed middle sur-
face. In this work the "shallow shell" will be used

to describe this type of shell.

This chapter presents the fundamental equa-

tions of thin shell theory in their most simple,
consistent "form. Thus the material is assumed

to be linearly elastic, isotropic, and homogene-

ous; displacements are assumed to be small,

thereby yielding linear equations; shear defor-

mation and rotary inertia effects are neglected;
and the thickness is taken to be constant. Inas-

much as this work is aimed at the vibration of

shells, it should also be said that the vibration

results predicted analytically are assumed to be

for a shell in a vacuum (although experimental

results will generally be given in air) and that

vibrations will occur with respect to zero values

of static initial stress in the shell. These compli-

cating features will be discussed (in those cases

for which information is available) in subsequent

chapters dealing with special configurations of
shells.

A large number of differing sets of equations

have been arrived at by various academicians,

all purporting to describe the motion of a given
shell. This state of affairs is in contrast with the

thin plate theory, wherein a single fourth order

differential equation of motion is universally

agreed upon.

Furthermore, there is considerable argument
in the literature as to whether the differences

between the various thin shell theories are sig-

nificant or not (cf., refs. 1.1 through 1.8). In

chapter 2 some attempt will be made to com-

pare the results for free vibration frequencies

and mode shapes arising from various thin shell

theories in the case of circular cylindrical shells,

especially for one particular set of boundary
conditions.

The main purpose of this chapter is to present

straightforward derivations of the sets of equa-
tions of various thin shell theories. It will be

seen that differences in the theories result from

slight differences in simplifying assumptions

and/or the exact point in a derivation where a

given assumption is used. Only those theories

which are obtainable from Love's postulates (see

sec. 1.3) by using a differential element of the

middle surface, have been derived for shells of

arbitrary curvature, and which have been ap-

plied in the literature to shell vibration problems

will be considered in this chapter. Among the
thin shell theories which will be derived in this

chapter are those attributed to Donnell (refs. 1.9

and 1.10), Mushtari (refs. 1.11 and 1.12), Love

(refs. 1.13 and 1.14), Timoshenko (ref. 1.15),

Reissner (ref. 1.16), Naghdi and Berry (ref.

1.17), Vlasov (refs. 1.18 and 1.19), Sanders (ref.

1.20), Byrne (ref. 1.21), Fliigge (refs. 1.22 and

1.23), Goldenveizer (ref. 1.24), Lur'ye (ref. 1.25),
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and Novozhilov (ref. 1.26). However, not all of the

theories listed above are independent. Many of

the theories use certain sets of equations in com-

mon, and some are generalizations or duplica-
tions of another. Numerous other theories are

available in the literature. Some are derived by

expansion of the displacements and stresses in

power series in the thickness coordinate z. Others

are derived by asymptotic integration. The fol-

lowing authors have originated some of the gen-

eral theories for arbitrary curvature not included

in this chapter: Aron (ref. 1.27), Basset (ref.

1:28), Epstein (ref. 1.29), Trefftz (ref. 1.30),
Synge and Chien (refs. 1.31 and 1.32), Lamb

(ref. 1.33), Osgood and Joseph (ref. 1.34), Hay-

wood and Wilson (ref. 1.35), Koiter (ref. 1.36),

Cohen (refs. 1.37 and 1.38), and Knowles and

Reissner (refs. 1.39 and 1.40). Writings which are

particularly good from the standpoint of com-
parison of various thin shell theories include ref-

erences 1.1, 1.4, 1.7, 1.17, and 1.41 through 1.47.

1.1 BRIEF OUTLINE OF THE THEORY

OF SURFACES

The deformation of a thin shell will be com-

pletely determined by the displacements of its

middle surface. Certain relationships relating to
the behavior of a surface will be summarized in

this section. More useful information can be

found in the numerous texts dealing with differ-

ential geometry, the theory of surfaces, and

shell theory (cf., refs. 1.19, 1.24-1.26, and 1.42).

1.1.1 Coordinate System

Le_ the equation of the undef._rmed middle

surface be given in terms of two independent

parameters a and # by the radius vector

(1.1)

Equation (1.1) determines the geometric prop-

erties of the surface and yields a method for

finding points on the surface. Suppose that the

parameter a is kept at a fixed value a0, while

changes. In this case equation (1.1) deter-

mines a space curve on the surface. Such curves

are called # curves, and the set of all values a0

within a given interval corresponds to a family

of fl curves. In an analogous manner one can

introduce the concept of a curves (fig. 1.1).

Assume that the parameters a and # always

vary within a definite region, and that a one-

to-one correspondence exists between the points

of this region and points on the portion of the
surface of interest. Denote

-_ Or]

r,,=_ (1.2)

-_ Or I

The vectors _ and _0 are tangent to the _ and

B curves, respectively. The length of these vec-
tors will be denoted by

k..]=A
(1.3)

Ir.ol=B

Consequently it follows that _,,,/A and _,_/B

are unit vectors tangent to the coordinate curves.

If the angle between the coordinate curves is

denoted by x then

.... cos x (1.4)
A B

Denoting

_'"A-= _" B-_'_= _ _-_=sinX x_a (1.5)

where _, is the unit vector of the normal to the

surface and is orthogonal to the vectors _, and _.

, _ =CONSTANT

_ / (/3CURVE)
/

In ( -V_a

/-\ _/3 : CONSTANT

7_ \ _ ( a CURVE)

0

x/p'L_ Y

FIGURE 1.1.--Middle surface coordinates.

1
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FUNDAMENTAL EQUATIONS OF THIN SHELL THEORY

The unit vectors _,, _ and _n are usually called
the basic vectors of the surface.

1.1.2 First Quadratic Form

Let there be given two points (a,f_) and (a+da,

_+df_) arbitrarily near to each other and both

lying on the surface. The increment of the vec-

tor r in moving from the first point to the second

point is

dr= r,, da+r,_ d_ (1.6)

From equations (1.3), (1.4), (1.5) and (1.6) the

square 0"f the differential of the arc length on
the surface is

d_.dr=ds2= A2 da 2

+2AB cos X da d_+B 2 dfl 2 (1.7)

The right-hand side of equation (1.7) is the

"first quadratic form of the surface." This form

determines the infinitesimal lengths, the angle

between the curves, and the area on the surface,

i.e., the intrinsic geometry of the surface. How-

ever, the first quadratic form does not determine

a surface by itself. The terms A 2, AB cos x, and

B 2 are called the "first fundamental quantities."

1.1.3 Second Quadratic Form

The concept of the second quadratic form

arises when one considers the problem of find-

ing the curvature of a curve which lies on the

surface. Let r= r(s) be the vectorial equation of

a curve on the surface (s is the arc length from

a certain or!gin). Denoting the unit vector along
the tangent to the curve by _, then

. dr -_ da --,d_
.r= _s = r ,_-_s + r ,O_ss (1.8)

According to Frenet's formula (ref. 1.48), the
derivative of this vector is

d_
-- = -- (1.9)
ds p

where 1/p is the curvature of the curve, and/_ is

the unit vector of the principal normal to the
curve.

Substituting for ÷ from equation (1.8) into

equation (1.9) one obtains

fr __ /da\ _ --, [da\/d_\

-, /dfl\ 2 -. d2a __ d2_

where

(1.10)

-_ 02r ( i= a,B_
r,q = Oi O----j' \j = a,_/

Let _ be the angle between the normal to the

surface _ and the principal normal to the curve
under consideration 2_; then

cos _=_.2_ r (1.11)

If both sides of equation (1.10) are scalar-multi-

plied by _, one obtains

cos _ L da2 + 2M da d_ + N d[32
--= (1.12)

p ds 2
where

L = _,,,'_

M=_,_._=_,,_,._ (1.13)

N = _,_._

The expression (L da2W2M da dB+N d_ 2) is

called the "second quadratic form" of the surface

and the quantities L, M, and N are the coeffi-

cients of the form. The second quadratic form is
thus related to the curvatures of the curves on

the surface.

From equation (1.12) one can obtain the nor-

mal curvatures of the surface; i.e., the curva-

tures of the curves obtained by intersecting the

surface with normal planes. For the curve gen-
erated by a normal plane, _ and _ are either par-

allel (_=0) or have opposite directions (¢=_r).

Since a "plane" curve always leaves its tangent
in the direction of vector 2_ and if one takes its

outer normal as the positive normal to the sur-

face, ¢ =v results. Thus from equations (1.7) and

(1.12) the normal curvature is

1 L da2+2M da d_+N dB _
(1.14)

R A _ da2+2AB cos X da d[_+B 2 d_ 2

To obtain the curvatures of the a curves and

the f_ curves take _ = constant and a = constant

respectively, thus

V

w:
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1L}R, A 2

1 N

Re B 2

(1.15)

1.1.4 Gauss Derivative Formulas

At this point assume that the curves _ = con-

stant and f_= constant are lines of principal cur-
vature of the undeformed middle surface. The

coordinates _, _ are then called principal coordi-

nates. Weatherburn (ref. 1.49) shows that the

necessary and sufficient conditions for the para-

metric curves to be lines of principal curvature
on a surface are that

cos x=0 (1.16a)

M=0 (1.16b)

The condition given by equation (1.16a) is that

of orthogonality satisfied by all lines of principal

curvature, while M = 0 is the necessary and suffi-

cient condition that the parametric curves form a

conjugate system (i.e., through each point on the
surface passes a unique curve of each family of

curves).

The second derivatives of r with respect to the

parameters may be expressed in terms of _,,,_,a

and _,. Remembering that L, M, and N are the

normal components of r,,., _,_a and _,a_, one may
write

r1:r,_+ Y:lr,_+L_n

1 --+ --+• 2 (:.:7)- F12r,_+Fl_r,_+M_ .

- F22r,.+F22r,_+N_ _

where r_k (i,j,k = 1,2) are the Christoffel symbols

which can be expressed in terms of the coeffi-

cients of the first principal quadratic form as

follows (ref. 1.24):

10A

rll= 

A OA
(1.18)

B 2 0f_

l OA
F_2 = -- --

A O_

10B
2

F:2 - B O_

BOB
1

F22= A 2 0_
(1.18)

1.1.5 Derivatives of the Basic Vectors

Making use of equations (1.17) and (1.18) and

the fact that in.%= 1 one obtains the following
expressions for the derivatives of the basic vec-

tors (ref. 1.42)

A
A

%,_ = _-_

B

_,_ = R--_io

10A A

(1.19)
1 OB

= 2 o-g

1 aA

B O_

10B
_'¢,o

B

1.1.6 Gauss Characteristic Equation

The four fundamental quantities for principal

coordinates A, B, L, and N are not functionally

independent, but are connected by three differ-

ential relations. One of these, due to Gauss, is

an expression for (LN) in terms of A and B and

their derivatives, and may be deduced from

either of the following equations:

(_-.,) ,0= (_,,_).- (1.20a)

(_0,-) ,o= (_o,_),- (1.20b)

Substituting for the derivatives of basic vectors

from equations (1.19) into equations (1.20) one

obtains for principal coordinates

all OB\ all OA

v) =
AB LN

K AB
(1.21)

t_
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where 1/K= 1/R_R_ and is called the Gaussian
curvature. Since the Gaussian curvature is ex-

pressible in terms of the coefficients of the first
fundamental form and their derivatives, one can
conclude that surfaces which have the same first

fundamental quantities have the same Gaussian
curvature.

1.1.7 Mainardi-Codazzi Relations

In addition to the Gauss characteristic equa-

tion, there are two other independent relations.

These may be established from the following

equation:
(%,,),_ = (_._),_ (1.22)

Substituting for derivatives of the basic vectors

from equations (1.19) into equations (1.22)

[_,)r-/\ 1 oA-I [1 o B .

(1.23)

Equation (1.23) is satisfied if

_(__) = I OA}

Ro o_

0(__o ) 10B

(1.24)

The formulas given by equations (1.24) are the
Mainardi-Codazzi relations. It is worthwhile

noting that Bonnet (ref. 1.49) has proved the

theorem: When A, B, R,, and Ro are given,

satisfying the Gauss characteristic equation and

the Maina_di-Codazzi relations, they determine

a surface uniquely, except to position and orien-

tation in space.

1.2 SHELL COORDINATES AND THE

FUNDAMENTAL SHELL ELEMENT

To describe the location of an arbitrary point

in the space occupied by a thin shell, the po-
sition vector is defined as

R(a,fl,z) =r(afl) _-z% (1.25)

where z measures the distance of the point from

the corresponding point on the middle surface

along _ and varies over the thickness

(-h/2<_z<_h/2)

The magnitude of an arbitrary infinitesimal

change in the vector/_(a,_,z) is determined by

(ds) 2= dR.dR = (dr-l-z d_ +_ dz)

•(dr+z d_,_d-% dz) (1.26a)

Remembering the orthogonality of the coordi-

nate system, then from equations (1.5), (1.6),

and (1.19) and the chain rule

d_n= 0a0%da-_ d_ (1.26b)

one obtains

(ds)2=g_ da2+g2 dB2+g3 dz 2 (1.27)
where

gl=[A(l+_)] 2

g2= [B(l___z_] _ (1.28)k \ R_/

g3= 1

The quantities g_, g2, g3, A, B, R,, and R_ are

connected by the equations of Lamb (cf., ref.

1.18), since the three-dimensional space (the

space in which the three independent variables

a,/3, z vary) is a Euclidean space.

0 z

O{A 1 _[B(ld-_)] }(l+z/R.)
0 1 0 z

(1.29a)

0 1 z 0 z
A(I+z/R.)

B(1-t-z/Ro)l ;[ (--.z)]0[ (_ _)]A i+_-_._. B IJF

which are the Gauss equation (1.21) and the

Mainardi-Codazzi equations (1.24) generalized
for a surface at a distance z from the middle

surface. Using equations (1.24) equations (1.29b)

and (1.29c) can be transformed to

l

12
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, / (1.30)

Having established the coordinate system of

the shell space, the fundamental three-dimen-
sional element of a thin shell will be defined next.

The fundamental shell element is the differential

element bounded by two surfaces dz apart at a
distance z from the middle surface and four ruled

surfaces whose gener._tors are the normals to

the middle surface along the parametric curves

a=ao, o_=o_o+da, _=_o and _=_o+d_. The

assumption that the parametric curves are lines

of principal curvature ensures that the ruled

surfaces will be plane surfaces and, furthermore,

that these planes intersect each other at right

angles. The lengths of the edges of this funda-

mental element are according to equation (1.27)

(see fig. 1.2)

ds.(_>=A(l+z/R.) dc_} (1.31)ds_ (_)= B (1 +z/R_) d_

the differential areas of the edge faces of the
fundamental element are

dA. (_)= A (I +z/R.) da dz I
I

dA_ (_)=B(I +z/Ra) d_ dz ]
(1.32)

A
In

Lt '_

p IQ I_

FIGURE 1.2.--Notation and positive directions of

stress in shell coordinates.

while the volume of the fundamental element is

dV (z) = [A (I +z/R.)][B(I +z/R_)] da d_ dz

(1.33)

1.3 LOVE'S FIRST APPROXIMATION

In the classical theory of small displacements

of thin shells the following assumptions were

made by Love (ref. 1.13)

(1) The thickness of the shell is small com-

pared with the other dimensions, for example,
the smallest radius of curvature of the middle

surface of the shell.

(2) Strains and displacements are sufficiently

small so that the quantities of second- and

higher-order magnitude in the strain-displace-

ment relations may be neglected in comparison

with the first-order terms (ref. 1.43).

(3) The transverse normal stress is small com-

pared with the other normal stress components

and may be neglected.
(4) Normals to the undeformed middle sur-

face remain straight and normal to the deformed
middle surface and suffer no extension.

These four assumptions taken together give

rise to what Love called his "first approxima-

tion" shell theory. These approximations are

almost universally accepted by others in the
derivation of thin shell theories.

The first assumption defines what is meant by

"thin shells" and sets the stage for the entire

theory. Denoting the thickness of the shell by h

and the smallest radius of curvature by R, then

it will be convenient at various places in the

subsequent derivation of shell theories to neglect

higher powers of z/R or h/R in comparison with

unity. The second assumption permits one to re-

fer all calculations to the original configuration
of the shell and ensures that the differential

equations will be linear. The fourth assumption

is known as Kirchh'off's hypothesis and catego-
rizes the shell theories that will be discussed in

this chapter. As a consequence of this geometric
assumption

ez

(1.34)

and therefore the transverse shear stresses

{

L_

7

k_
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from Hooke's law. In the following section, non-

vanishing shear resultants Q, and Q8 will be
defined as integrals of the transverse shearing

stresses, and the transverse shearing stresses

can be expressed in terms of the shear resultants
and the surface loads (cf., ref. 1.42). However,

the vanishing of transverse shearing strains is in-

consistent with the presence of transverse shear-

ing stresses. Thus, transverse shearing strains

must exist. Adding to that geometric assump-

tion the static assumption that _, is negligible,
another"inconsistency is introduced; i.e., the

vanishing of e_ and a_ simultaneously.
The third and fourth assumptions deal with

the constitutive equations of thin elastic shells
and assume the shell to behave like a material

having a special type of orthotropy wherein

E_=G,,,=Go,= _, and _,,=vs,=0 (ref. 1.41).

1.4 STRAIN-DISPLACEMENT EQUATION

The well-known strain-displacement equations

of the three-dimensional theory of elasticity in

orthogonal eurvilinear coordinates are (el., ref.

1.50, pp. 179-180)

3

0 / Ui \ 1 K'1Ogi Uk

k=l

i = 1,2,3

1 [ 0 [ U_\ ' (1.35)
_/ ij -_- _ gi--v'g,g,[

0 / U_.\3
i,j = 1,2,3

i¢j

where the ei, "y_j, and Ui are normal strains,

shear strains, and displacement components, re-

spectively, at an arbitrary point. In the shell

coordinates the indices 1, 2, and 3 are replaced

by a, /3, and z, respectively, except for the dis-

plaeeme'nts U1, U2, and Us, which are replaced

by U, V, and W, respectively, and the coeffi-

cients of the metric tensor are given by equa-

tions (1.28), thus yielding

1 10U V OA _-R, (1.363)e.= (l+z/R.) _a _ AB 01_

1 U

(1A_z/RoS/__ OB 10V W\_+_ V+_) (1.36b)e_

OW
e, - (1.36c)

Oz

A(I+z/R,) 0 U

A_B(1-f-z/Rs) 0 V
_ _[B(l@-zz/Rs)] (1.36d)

1 OW

"Y"_-A(I+z/R,) Oa

+A(I+z/R,) O[A(I+U/R.)] (1.36e)

1 OW

3'8"=B(1-t-z/Rs) OB

+B(I_t_z/Rs)O[. V ] (1.36f)
ozl_B(l +z/Rs) J

Now in order to satisfy the Kirehhoff hypoth-

esis, the class of displacements is restricted to

the following linear relationships:

U(a,l_,z) = u(a,t3) +zO.(a,_) (1.373)

V(a,tJ,z) = v(a,l_) -t-z08(a,_) (1.37b)

W(a,l_,z) = w(a,/3) (1.37c)

where u, v, and w are the components of displace-

ment at the middle surface in the a,/_, and nor-

mal directions, respectively, and 0. and 08 are
the rotations of the normal to the middle sur-

face during deformation about the/3 and a axes,

respectively; i.e.,

oU(a,_,z) ]
Oa--

------_z / (1.38)
o8 ov(_,_,z)

Oz )

The third of equations (1.34) is satisfied by

using equation (1.37e) with equation (1.36c);

i.e., W is independent of z and is completely de-

fined by the middle surface component w. Sub-

stituting equations (1.37) into equations (1.36e)

and (1.36f), the first two of equations (1.34) are

satisfied provided that

u 10w v 10w
0. 08= (1.39)

R. AOa R8 B013

II

T"

L ': : J : " f'"
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1.4.1 Equations of Byrne, Flfigge, Goldenveizer,

Lur'ye and Novozhilov

Substituting equations (1.37) into equations
(1.36a, b, and d) yields

1
e. (e,+za,) (1.40a)

(l+z/R.)

1

es (l +z/Rs) (es+zK_) (1.40b)

1 1 z2
(I+z/R_)(I+z/Rs)[( -R--_R_) _"s

+2(I +2--R +2--RoRo)r] (1.40c)

where e,, es, and e=s are the normal and shear

strains in the middle surface (z = 0) given by

l Ou v OA w

u OB 10v w

_s AB Oa _-B 0-_+-_

A 0/u\ B

(1.41)

and K, and Ks are the midsurface changes in cur-

vature and r the midsurface twist, given by

1 00. Oo OA (1.42a)
K. A _q AB OB

O. OB 1 00s

Ks AB Oa t-_ 0-_ (1.42b)

A-B
A 0(0.'_ Boles\ 1 /10u

u 0___) (1.42e)AB

These are the strain-displacement equations used

by Byrne, Fliigge, Goldenveizer, Lur'ye, and
Novozhilov.

with E..... , r still given by equations (1.41)

and (1.42). These are the strain-displacement

equations which represent the theories of Love
and Timoshenko.

1.4.3 Equations of Reissner, Naghdi, and Berry

If one chooses to make the simplification of

Love and Timoshenko (i.e., z/R, and z/Rs<<l)

earlier in the derivation, then doing So in equa-
tions (1.36a, b, and d) reduces them to

10U V OA We,_=-- f _-
A Oa AB On R.

U OB lOV W

es AB Oa t-_-_+-_0

A O[U\ B O_(V'

(1.44)

/
Then substituting equations (1.37) into equa-
tions (1.44) the total strains can again be repre-

sented as the sum of the stretching and bending

strains as in equations (1.43) with equations

(1.41) and (1.42) still applying, except that equa-

tion (1.42e) changes to become

A 0/'0=\ B !(es (1.45)

1.4.4 Equations of Vlasov

Recognizing that for a shell z/Ri (i=a,B) is

less than unity, then one can expand the quo-
tient 1/(l+z/Ri) into a well-known geometric

series by simple division; i.e.,

1 - V(--A_ ", i=a,_ (1.46)
l+z/Ri A.4\ Rd

n=O

Substituting equations (1.37) and (1.46) into

equations (1.36a, b, and d) gives

1.4.2 Equations of Love and Timoshenko

If in equations (1.40) one neglects the terms

z/R= and z/Re and their products as being small

in comparison with unity one obtains

e. = e=+zK, eo = es+zKs _'=s = e=s+zr (1.43)

n=O

2(es = (_+zKs)

n=O

(1.47)

T

_r
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= I

A� 1 z\V_[/ z\nO I

B[ 1 z\V_[[ z\"O

B n=O

with e,, el, K,, and Ks given by equations (1.41)

and (1.42). Equations (1.47) can be rearranged as

where

oa

e, = _.+ _K",z"
n=l

co

eft = Eft-J[ - _ Kfln zn

n=l

"Yaf = ear -[- _'rnz n

n=l

{ 1V-1[ _°_ ,
gnu = -- -- ga -- --_, ,o) _, ,o)

[ 1 'y-i[ _0'_

;)
(l_n--lA O U[,Ro,

-\_/ ] G\_/j

oc_o_ BO_ o_ .4 013_

(1.48)

(1.49)

and where e,f is that of equations (1.41). If now

the series contained in equations (1.48) are trun-

cated after n= 1 to provide linear relationships

in z, then equations (1.49) simplify to

Kal = Ka -- --
R.

Kfl=Kf Re (1.50)

1 AO u BO v

2__( o_ 1oBow 1 oA o_'_
ABk.Oa 013 B 0,_ 013 A 013 -_ ]

which are the middle surface curvature relation-

ships of Vlasov's theory.

1.4.5 Equations of Sanders

Sanders (ref. 1.20) developed an eighth order

shell theory from the principle of virtual work.

The principle is written as

f fr/OBN. OANf,, N OA

OB AB\

- Nf-_a+Q,:_,, ) 6u

+[OANo . OBN,f OB

OA AB\

- N.-_ + Qo-_o ) 6v

/ga /_O

+OBQ_ . OAqf'_

_---_-) _w
/OBM= OAM,,, OA

- Mf_- ABQ.)60.

{OAM o , OBM.o , a* OB

- M "0130A- ABQf) _0°

+ A B ( N .¢ - N o=+ -M-._-f_=

Mf,,_ 60._]dad13=O (1.51)

where the "generalized displacements" include

the displacement components u, v, and w and the

rotations 0,, 08, and 0, about the 13, a, and n

directions, respectively, and 6u, for example, is

the variation of u. The six quantities in parenthe-

1

L



10 VIBRATION OF SHELLS

ses represent the "generalized forces" associated

with the generalized displacements as obtained
from a "generally accepted" set of equations of

equilibrium (cf., eqs. (1.112) and (1.115)) neglect-
ing body forces and moments and surface loads.

Integrating equation (1.51) by parts yields

/ Ou OA AB \

+ Ne._(AO_--v_-_ + ABO,_)

/OB Ov AB \

+ X_ u_ + A-_ + _w)

+ABo )
/ 00. OA\

i'*

+M,, _O,+M_,_ _O_)B d_

--(N_,_ _u+N_ _vWQ_ _w

+M_, _O,,+M_ 5Oe)A da] =0 (1.52)

where the double integral extends over the region
of tt_e middle surface of the shell enclosed by the

curve C. The double integral represents the vir-

tual change in strain energy within C and the
line integral represents the virtual work of the

boundary forces. The quantities within the paren-
theses can now be regarded as the strains corre-

sponding to the ten components of "generalized

resultants," N,, . . . , Me, thereby yielding the
following strain-displacement relations:

10u v OA w

(1.5aa)

u OB 10v w
(1.53b)

u OA 10v

_"= AB O:+_t_A _--O" (1.53c)

10u v OB
+0,_ (1.53d)

"YO=B O_ AB Oa

1 00. Oa OA (1.53e)

0,_ OB 1 O0o
(1.53f)

Ke=_ Oa B 013

O. OA 10o e on
-_ (1.53g)

K,,o= AB O_ A Oa R.

100_ Oe OB 0,_

KO,=B O_ AB-_a+-Ro (1.53h)

10w u

"_""=A Oa R= -k-O" (1.53i)

10w v
3% = t-O_ (1.53j)

B O_ Re

where _,, and _,_ are the tangential shear strains

corresponding to the force resultants N,_ and

N_,, respectively, and where 7,z and _'_z are the

transverse shear strains corresponding to the

transverse shear force resultants Q, and Q_.

Using Kirchhoff's hypothesis, v,z = _,_z= 0; there-

fore, equations (1.53i and j) yield the same

expressions for the rotations of the normal, 0=and

0_, as were obtained previously in equations (1.39).

The rotation about the normal, 0_, may be cal-

culated in terms of u and v by taking the normal

component of the surface curl of the total dis-

placement vector (cf., ref. 1.51) giving

1 (OBv OAu'_
0, = 2--_\ _--_ 0-_ ] (1.54)

and substituting equation (1.54) into equations

(1.53c and d) shows that

• , = me (1.55)

Furthermore, using equations (1.53c, d, g and

h), (1.39), (1.54), and the Mainardi-Codazzi

equations (1.24), the following identity holds:

1/1 1\

_.0- _e, = _(_-_-_-_=)(_,= _--_e)(1.56)

Now define

e,0 =_,,+_a (1.57)

1
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(1.58) 1.4.6 Equations of Donnell and Mushtari

S= _(N.o+ N_.)

1

S = _(M.o+Mo.) (1.60)

Using equations (1.54) through (1.60), then

equation (1.52) can be written as

6_o+ M.

43Io 6_o)AB da d/_-¢c[(N. 6u+ N.o 6v+Q. 6w

+ M. 6O=+M.o 60o)B d[3- (No. 6u+ N_ 6v

+Qo 6w+Me. 60.+M0 60o)A da]=0 (1.61)

From the double integral in equation (1.61)

which represents the virtual change in strain

energy the generalized strains e,0 and r corre-

spond to the resulting S and H. Hence, it is ob-

served that the strain-displacement equations of

the Sanders theory are given by equations (1.41),

(1.42a and b), and

a 0/0°\

1 1

R°/\ / (1.62)

If one neglects the tangential displacements

and their derivatives in equations (1.42) for the

midsurface changes in curvature and twist, they

simplify to

10(10waw ) 10A OwK.- A A AB 2 013 013

1011_ \_,B ,]Ow 10BOw (1.63)
K°= B A _B Oa Oa

B 0(10w) A 0(10w' ]"=--- LA o--g,

The strains at any point in the shell are then

given for the Donnell-Mushtari theory by equa-

tions (1.43) where e,, e0, and e,0 are given by

equations (1.41) and K,, d0, and r are given by

equations (1.63).

1.4.7 Remarks on the Strain-Displacement

Equations

From the preceding section it can be seen that

the total strains at any point (according to all the

theories considered here) can be represented as

the sum of two parts--one due to stretching and

the other due to bending. In the theories consid-

ered three types of expressions were found to rep-
resent the total strain. These are summarized in

table 1.1. The expressions of Byrne et al. are the

TABLE 1.1.--Total Strains at Any Point in a Shell

Theory e_, e_ "yaO

1

T ._

Byrne, Fltigge,

Goldenveizer, Lur'ye,

Novozhilov

Love, Timoshenko,

Reissner, Naghdi, Berry,
Sanders, Donnell, Mushtari

Generalized Vlasov

1
(1 +z/R=) (_= +z_a)

1

(1 + z/Ro) (_o+ z_o)

(l+z/R=)(l_l_z/Ro)[(1--_-----=_R_)e'ok-z(1-k-2--ZR==+2---ZRo0)r ]

e=o+zr
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most general of the three types, with the other

types being special cases of these. The expres-
sions of Byrne et al. are the direct result of the

application of the Kirchhoff hypothesis to the

strain-displacement relationships of the three-

dimensional theory of elasticity. The expressions

of Love et al. were arrived at by neglecting z/R,

and z/R_ in comparison with unity, as is seen in

table 1.1. A milder approximation is that of

Vlasov who represented a quotient of the type

1/(l+z/R_) by its geometric series expansion;

the accuracy of the approximation then depends

upon the number of terms retained in the series.
The expressions ascribed to Vlasov in table 1.1

are the generalized forms arrived at before trun-

cation of the series. However, it will be seen in
section 1.5.3 that the series will be truncated

after n = 2 for the subsequent development of the

Vlasov theory.

The expressions for the middle surface strains

e,, E_ and e,_ are the same according to all the

theories considered here. They are given by

equations (1.41).

There is general agreement among the theories

for the expressions of the middle surface curva-

ture changes, K, and _, as can be seen in table

1.2. If one considers only the linear terms (n = 1)

of the series expansions for the strains according

to the Vlasov theory (i.e., eq. (1.50)), then
Vlasov's K,, for example, differs from those of

the other theories by the term e,/R,. This differ-

ence arose due to replacing 1/(l+z/R,) by its

series expansion in the derivation. The Donnell-

I

¢

TABLE 1.2.--Change in Curvature of the Middle Surface

Theory K_ Ks

Byrne, Fltigge, Goldenveizer,

Lur'ye, Novozhilov, Love,
Timoshenko, Reissner,
Naghdi, Berry, Sanders

Vlasov a

Donnell, IVIushtari

100, 0_ OA 1 [ l Ou v OA w

-A "-_ -_ AB OB -_k]-O-_+-_ "_ + R-_)

l O(l O _a) 10AOwA AB _ OB O_

a Terms given for the Vlasov theory correspond only to the linear (n = 1

1 008 0,_ OB

B O0 AB Oa

l OOo , 0,, OB 1[ u OB 10v w'_

1o(a o,ow
BOO\BOB] A_BOa Oa

terms of table 1.1.

TABLE 1.3.--Change in Twist (r) of the Middle Surface

.A

Byrne, Fltigge, Lur'ye, Goldenveizer,

Novozhilov, Timoshenko, Love

Reissner, Berry, Naghdi

V]asov a

Sanders

Mushtari-Donnell

A 0[0,_ B 0[0_ l[lOu v OB_ 1 [ 10v

A O[O.'X B O(Oo_ + 1 (1 l_(OBv OAu_

B 0(10w_ A 0(10w)

Terms given for the Vlasov theory correspond only to the linear (n = 1) terms of table 1.1.
t_
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5_ushtari expressions in table 1.2 are simplifica-

tions of the others obtained by neglecting terms

containing the tangential displacements u and v.

However, there is widespread disagreement

among academicians concerning the proper form
for the middle surface change in twist, r. These

disagreements are summarized in table 1.3. The
differences in the expressions of Vlasov and of

Donncll and Mushtari from that of Byrne et al.

are due to the same reasons discussed in the

previous paragraph for K_. The r of Reissner et
al. differs from that of Byrne et al. because the

neglect of z/R, and z/R_ in comparison with

unity, and doing so at an earlier stage in the
derivation than in the Love-Timoshenko formu-

lation. Sanders' expression can best be described

as one having a correction factor added to that
of Reissner et al., as will be seen in the next

paragraph.
Let a shell be subjected to a rigid body trans-

lation denoted by the vector

_= _, H-5fia+ _n% (1.64)

and a rigid body rotation by the vector

= -a_,+a,_+_n_ (1.65)

Then the displacement vector of a point on

the middle surface is given by

u = _-[- (_×r) (1.66)

where r is the position vector locating the middle
surface as described in section 1.1. Of course, if

a shell is given a rigid body motion, then sub-

stituting the displacement of a typical point as

given in equktion (1.66) into the strain-displace-

ment equations should result in no strains.

Sanders (ref. 1.20) showed that his strain-dis-

placement equations are consistent from this

standpoint, but that the twist does not vanish

in the Reissner-Naghdi-Berry theory. For the

latter theory the twist becomes (ref. 1.20)

1 1

which vanishes only for a spherical shell, a fiat

plate, or an axisymmetrically loaded shell of

revolution. If the rotation _ is large it can lead

to significant errors, as found by Cohen (ref.

1.38) on helicoidal shells. Thus if the correction

factor [(1/R,)-(1/Ro)]O_ is arbitrarily added

(with 0_ given by eq. (1.54)) to the expression of

Reissner et al. in table 1.3, the inconsistency
discussed above is eliminated and the r of the

Sanders theory results. Kraus (ref. 1.42, p. 68)

showed that the strain-displacement equations

of Byrne, Fltigge, Goldenveizer, Lur'ye, and
Novozhilov have no inconsistencies with regard

to rigid body motions. Kadi (ref. 1.44) found

that the equations of Love, Timoshenko, and

Vlasov are also free from this inconsistency, but

the Donnell-Mushtari theory gives curvature

changes

K_ A

[1 1\ _ OA _

50 _(_) (1.68)Ks B

+

r \R. Ro/LB OCkA/-A On\B/
i

due to rigid body translations _,, _, and _ in

the u, v, and w directions, respectively.

1.5 FORCE AND MOMENT RESULTANTS

As shown in the previous section one result

of the Kirchhoff hypothesis is to restrict the

displacements u and v to those which vary

linearly through the thickness (cf., eqs. (1.371

and b)). Consequently, for the theories of Love,

Timoshenko, Vlasov, Reissner, Naghdi, Berry,

Sanders, Donnell, and Mushtari, as shown in

table 1.1, the resulting strains e,, co, and _,,_ also

vary linearly with z. For the other theories the

strain variation is more complicated, but never-

theless, completely defined with respect to z,
Thus, if the relationships between stresses and

strains are defined (as, for example, in Hooke's

Law), the resulting stresses can be integrated
over the shell thickness. The resultants of the

integrals will be termed "force resultants" and
"moment resultants" in this work. Other termi-

nologies for these quantities used variously in the
literature of shells include "stress resultants"

and "forces," corresponding to our force resul-

JL



14 VIBRATION OF SHELLS

rants, and "stress couples," "couples," "couple

resultants," and "moments," corresponding to
our moment resultants. The force and moment

resultants are components of second order

tensors, and hence they are not true forces and
moments. The force and moment resultants will

have dimensions of force per unit length and
moment per unit length, respectively.

Proceeding along the path laid out in the

previous paragraph, Hooke's Law will first be
assumed as the constitutive law to be followed.

This limits all shells considered in this mono-

graph to be made from materials which are
linearly elastic. Furthermore, in this chapter
devoted to deriving shell theories in their most

simple form_, the materials will be limited to

those which are isotropic. The effects of ortho-

tropy and its generalization, anisotropy, will be

seen in subsequent chapters. Hooke's Law is
written in its well-known three-dimensional

form as

1

e. = _[_,-- _(_+a_)] (1.69a)

1

es = _[as-- _(a_-ka,)] (1.69b)

1

e_ = _[_,- _(a_-ka0)] (1.69c)

2(1+;)

_'-s = E a.s (1.69d)

2(1+_)
_'.z- E -a_z (1.69e)

• 2(1-k_)
7s_ = E as_ (1.69f)

where, in accordance with the shell element

shown in figure 1.2, a, and as are the normal

stresses and a,s and as, are the shear stresses in

the tangential (a and #3) directions and _,_ and

as, are the transverse (i.e., in the z direction)

shear stresses, all acting upon the transverse

faces of a shell element; E is Young's modulus,

and _ is Poisson's ratio. Assuming the sYmmetry
of the stress tensor (neglecting body couples),

then z,s =as,. It is pointed out that the strains

are also assumed to be independent of tempera-
ture because temperature has no explicit effect

upon the free vibration case being considered

in this monograph. Temperature can enter the

problem implicity through its influence upon

initial stresses or upon the elastic moduli--two

complicating effects which will be discussed in

subsequent chapters.

The Kirchhoff hypothesis, as discussed in

section 1.3, yields e_=.r,==_/_=O, whence, by

equations (1.69c, e, and f), a,_=,T_=O and

z_=,(z,q-as). But Love's third assumption is

that a_ is negligibly small, which is one unavoid-

able contradiction in the order of shell theory

being considered here. Another contradiction is

that _,_ and as_ are clearly not zero, since their

integrals must supply the transverse shearing

forces needed for equilibrium; but they are

usually small in comparison with a,, as, and a.s.

Retaining the assumption that _ is negligibly

small reduces the problem to one of plane

stress; that is, equations (1.69) reduce to

/
a [

which, when inverted, give

E

a, = 1-_(e,-_ _e_) (1.71a)

E

_s=___(e_+_e,) (1.71b)

E
(1.71c)

Consider the face of the element in figure 1.2

that is perpendicular to the a-axis (i.e., the face

for which a is constant). On that face the stresses

a,, a,s, and a,= act. The arc length of the intercept

of the middle surface with the face is dss = B d/3,

and the arc lengths of intercepts of parallel sur-

faces are ds(_='=B(1--kz/Rs)d_, as discussed in

section 1.2. The infinitesimal force for example,

acting upon the elemental area of thickness dz

on the face is then given by a, ds(_=)dz. Inte-
grating such forces over the thickness of the

shell and dividing by B d_ yield the force resul-

tant N,, expressed in units of force per

I
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unit length of middle surface. Thus, the force

resultants acting on this face can be expressed asz,
0:j

and, similarly, the force resultants on the face

perpendicular to the #-axis will be

[ qo ) a -h/2 [ _,)

The positive directions of the force resultants

are shown in figure 1.3.

Similarly, the moment of the infinitesimal

force a,.ds(_ _) dz about the 3-line is simply

za,, ds(o_) dz and the moment resultant M, is

obtained by dividing the total integrated mo-
ment over the thickness by B d3. Thus, the

moment resultants are given by

{M:,}: F" ](i+Z zdz]
J -h/2 (a,_ _ \ /¢_/ (1.74)

J-h/_ ((_. ! \ R./

and, consequently, have dimensions of moment

per unit length of middle surface. The positive
directions of the moment resultants are shown in

figure 1.4.

It is worthy to note that although z._=_.

from the symmetry of the stress tensor, it is ob-
vious from equations (1.72), (1.73), and (1.74)

that N,_#N_ and M,_#Mo_ unless R,=Rm

At this point the assumption will be made

that the sh_ll material is homogeneous; in par-
ticular, that the elastic constants E and _ are

independent of z. Thus, if equations (1.71) are

substituted into equations (1.72), (1.73), and
(1.74) and the integrations over z are carried

out, E and v will be treated as constants. The

procedure for a heterogeneous material will be

discussed in subsequent chapters.

1.5.1 Equations of Love, Timoshenko, Reissner,

Naghdi, Berry, Sanders, Mushtari, and
Donnel|

If one neglects z/R<_ and z/R_ in comparison

to unity, then equations (1.72), (1.73), and

(1.74) can be rewritten as

_" IQ_ N

/ o..+ II "+

FIGURE 1.3.--Notation and positive directions of
force resultants in shell coordinates.

.A

In /M..
t°£--2o/ -L----____/Mo

M.o / /

/ / _ /f. , OMB

M + OMB"dB

M_ + _ da/ l c)M _/

oa M_,+ _a a da

FIGURE 1.4.--Notation and positive directions of

moment resultants in shell coordinates.

{N:}= E fh/. i1 I1-- v2J_h/2( z] (e.+ve_) dz (1.75a)

1-.;}:.r':/
N,o = No, I E fh,2 [ 11
M:o=M,.j 2(-7-4Z)j__/.tzl_:,dz(1.75c)

where the stress strain equations (1.71) have
been used and where the transverse force re-

sultants have been omitted. Substituting the

expressions for the total strains according to

Love, Timoshenko, Vlasov, Reissner, Naghdi,

Berry, Sanders, Donnell, and Mushtari as given

in table 1.1, equations (1.75) become

Eh

N_ = (1 --v 2)(e,q- v_o) (1.76a)

L_
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Eh

Ne = (1-_2_ (ee+ re<`) (1.76b)

Eh

N,e=Ne<` 2(l+_)e<`e (1.76c)

Eh 3

M<` 12(1_ v2) (K<`+vKe) (1.764)

Eh 3

Me= 12(1_ v2) (Ke+ vK<`) (1.76e)

Eh 3

M,e = Me, - 24(1+ _)r (1.76f)

To obtain force and moment resultants in terms

of the displacement u, v, and w it would now be

necessary to substitute the expressions for e<`,

ee, and e,e from equations (1.41) and the various

expressions for _<`, KS, and r (according to the
various theories) from tables 1.2 and 1.3.

1.5.2 Equations of Byrne, FlOgge, and Lur'ye

If the strain expressions of Byrne, Fltigge, and

Lur'ye from table 1.1 are substituted into equa-

tions (1.72), (1.73) and (1.74), along with equa-

tions (1.71), the results are as given in eq. 1.77.

Now utilizing the fact that z/R<, and z/Re are less

than unity, quotients of the type 1/(l+z/Ri) can

be replaced by their geometric series equivalents,

as indicated previously by equation (1.46). Then

for sufficiently small z/Ri, the series of equation

(1.46) is truncated after terms of the third degree

and is substituted into equations (1.77). The inte-

grands are then expanded, terms of degree

greater than three are discarded, and the inte.

grations are carried out, giving

Ehr h2/1 Re)( _.)]N<, = -- I e<,+ vee ----[ - K, --
1 -- _2L 12\R.

(1.78a)

_.""r ' eeNe=7_, _e+._o-h_(
12\Re

(1.785)

r .i . 1V.__.o41N<`e 2(_,,)L°<`'-_RT<,,Rd\2 R<,/J
(1.78c)

Eh [ h2[ '1 i '_['r e<`e'\l
i _aJ ........Ne<`=2(l+,,)L 12tReRoA2 nell

(1.78d)

Eh 3 r / 1 1

M. 12(_,.2)[,<<.+,.,<e-C_<.he),O] (1.79a)

21//,<, Ke+VK<`-- _- ee (1.79b)

M:' = 24_U RJ

Eh_ l ,:e_
_Se<`-2477-4-;iV-_)

(1.79c)

(1.79d)

1.5.3 Equations of Vlasov

To obtain force and moment resultants, Vlasov

retained two terms of the series expansions for

the total strains given in table 1.1; i.e.,

e a = eaJf-ZK<`l--]-Z2Ka21

ee = ee+ZKel+Z2Ke2 ?
/

r = _<`e+zr_+z_-_ J

(1.80)

with K,_, Ke_, and r_ defined by equations (1.49).

Substituting equations (1.80) into equations

(1.75), integrating, and disregarding terms which

contain powers of h greater than three, one
obtains the force and moment resultants of

Vlasov (ref. 1.19, p. 284).

I

T"

{;:}

{N.eM<`e }

Neo
Me_!

=!fh/2 {1}[(l+_)(l+Z_.-l(_<`+z<_)+v(_e+ZKe)Jdz1--v2J_hl2 Z \ R<,}

f_'_11[(1+z_ z _1
=i_v-----72j_hi2{zjL\ _,(i-k_)(ea-PZKe)+v(e<`+zK.)Jdz

. r,,2/ [(, , z z.,.z-, ,,z- -R--R_)'<`e+zt,l +-i_:+7-_,), J
Z 2 Z Z

E fh/: ilj(l+Z__i[(l__)_.e+z(l_k__R_._k___)r]dz2(--[_.) J __l_l z J \ Re�

(1.77)

£-
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N. = iE__hv2[E.+v_.

1 ea

12\R,

h2{ 1 1 e_

Eh r hv1 1_ ]

Eh r h_{i

Eh 3 r " 1 1

Eh 3 P / 1 1

Eh _ / _,_X

(1.81)

(1.82)

E 2 2

U - 2( l _----_ f v[ ea -_e_ --_2_,eae_

(1.85)

Substituting further the expressions for the total
strains in terms of the middle surface strains and

changes in curvature given in table 1.1, equation

(1.85) becomes

U
E z z -1

2(1_ _g/v{ (I+_)(1+_) (e"+zK"):

+/lt z \/ z \-1

+2_(_.+z_.) (_+z_)

z z 2

.-f-z(1--i--_--l-_)r] iABdc_d_dz (1.86)

Replacing (l+z/Ri) -1 in equation (1.86) by its
series expansion given in equation (1.46) and

neglecting terms raised to powers of z greater
than two in the integrand one obtains

1.5.4 Equations of Goldenveizer and Novozhilov

From the theory of elasticity the well-known

expression for the strain energy stored in a body

during elastic deformation is

, +a_) dV (1.83)

where dV is the element of volume which, ex-

pressed in shell coordinates, is (see eq. (1.33))

Applying the Kirchhoff hypothesis of thin shells

reduces equation (1.83) to

ikU=-_ (aae,+a_ea+(7,_,,a) dV (1.84)

Substituting equations (1.71) into equation (1.84)

yields

E f
U I (Qo+zQI+z_Q2)AB da d_ dz

2(1--_2)Jv
(1.87)

where Qo, Q_, and Q_ are defined by (ref. 1.26)

[ ea_2_

qo = (e=-i-ea)2-2(1-_)te=e_---_-) (1.88a)

1
+(e--i,)e<,Or--(_ _)(e<_--eo 2) (1.88b)

('DQ2 = (,.+,0)2-2(1-_) _<,_o--

l-v/1 1\

/ 1 1 \/e. _ e,2\

1

R,<R_

T

t-
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Carrying out the integration of equation (1.87)

over the thickness (taken to be constant) be-

tween limits z = -h/2 and z = +h/2 gives

U 2 Qo+_Q2 AB doedB (1.89)

where the integral of the term in equation (1.87)

containing Q1 disappears because of symmetric
limits.

Novozhilov (ref. 1.26, p. 45) argued that be-

cause the use of the Kirchhoff hypothesis in

replacing the strain energy integral given in
equation (1.83) by that of equation (1.84) intro-

duces errors of the order h/R in comparison to
unity, then terms of this order cannot be arbi-

trarily rejected in equation (1.89), but must be

examined carefully to determine whether they
are to be retained or rejected. First the curva-

ture changes and twist are replaced by dimen-
sionless quantities defined by

/

, h / (1.90)

e0 ---- _K O/
e=J = hr )

where e_', ey, and e_0' can be physically interpreted
as the strains in the extreme fibers of the shell

resulting from K_, K0, and r, respectively. Substi-

tuting equations (1.88a and c) and (1.90) into
equation (1.89), equation (1.89) can be rewritten
as

where

I1= (_.+.0) 2-- 2(1 -- v) (_..0--_)

16/j (1.92)

(1--_)1 h h\ ,

lib h,/h h , ,
+(l-v)( h 2 h2 h=\ I

It can now be seen that 12 and Ia are now of the

orders (h/Ri) and (h/Ri) _, respectively, with re-

spect to unity; hence, 12 and Ia were neglected

by Novozhilov in comparison with I1, giving for
equation (1.89) :

Eh

-- 2(1-- ') Le-e0-- T) J -t-i-_[ (K. +KO)'

( r')]}--2(1--v) K,K0--_- AB doe d5 (1.93)

This is the same as Love's (ref. 1.13) strain en-

ergy expression, wherein stretching and bending
portions are uncoupled.

Returning to the strain energy functional given

by equation (1.84) and taking its variation gives:

_U= jv(a,, _e.-l-a o _eo-k-_.o _%,o) dV (1.94)

Substituting the expressions for the total strains

from table 1.1 gives

nt-_O( 1+k)(_'O -Fz 8gO)

+a.o(l-RZ---R_) a..O

+z o, glg_ 21gO]

Making use of the definitions of force and

moment resultants given by equations (1.72),
(1.73), and (1.74), equation (1.95) can be
rewritten as

_U=f£(N. _,,+No _o+S _.o

+M. _K.+M_ _Ko+H _r)AB da d_ (1.96)

where

S = N,0- M-M_°"
1

= N0,- w-M,0 (1.97a)
/$0

I

¢

T-'

L
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H = _(M=_+Me,) (1.97b)

Taking the variation of equation (1.93) yields

(1-,2)J.J_tL

+_T _r]IAB da d_ (1.98)

Comparing equations (1.96) and (1.98) leads one

to the following relationships:

Eh

Y_ (1_ v2) (e,+_Ee) (1.99a)

Eh

Ne - (1 - v 2)(ee+ re.) (1.99b)

Eh

S 2(l+v)E_e (1.99c)

Eh _

M. - 12(1 -- v2) (K,+ vKe) (1.994)

Eh 3

Me 12(1_ v2)(Ke+ vK,) (1.99e)
r

Eh 3

H=24(l+vir (1.99f)

These are the force and moment relationships

given by Novozhilov (ref. 1.26, p. 48).
To obtain relationships for N,e, Ne,, M,_, and

Me, instead' of those for S and H given in equa-

tions (1.99), some further manipulation is

necessary. Define a function _ by

_ =_(M,e-Me, ) (1.100)

Adding equations (1.97b) and (1.100) and

substituting equation (1.99f) gives

Eh3 _)T+q_ (1.101)M=0- 24(1 +

Substituting equations (1.97b) and (1.100)

similarly leads to
Eh 3

Me= 24(l+v)r-_ (1.102)

Substituting the definitions of the moment

resultants given in equations (1.74) into equation

(1.100) (remembering ¢,e = ¢e,) yields

1[ 1 1 '_ fh/2
--I _ _.ez dz (1.103)

and using equation (1.71c) gives further

E 1
-- z 2 1+--4_._/ a 1\ fh/2 / z\-_

(1 +_)-I[ (1-- R_-Re)e=e

+z I +=-A-_ + r dz
\ a el J

(1.104)

Integrating equation (1.104) and neglecting

terms containing h raised to powers greater than

three (actually neglecting powers of h/R_ greater

than three with respect to unity, if the equations

are put into nondimensional form as was done

earlier in this section) yields

Eh3[ 1 1.)

Inserting equation (1.105) into equations (1.101)

and (1.102) and using the nondimensional form

of the twist given by equation (1.90c), one can

see that the function _ is of order h/R_ in com-

parison with unity and, hence, can be neglected.

Thus, a consistent set of force and moment

relationships for N,e, Ne,, M,e, and Me= by this

theory is, from equations (1.101), (1.102),

(1.97a), (1.99f), and (1.99c),

Eh / h 2 \ l

_ e _* Eh3 I
.... = Ivle= 2--_ _-_) r J

(1.1o6)

The force and moment resultant equations

given above as derived by Novozhilov (ref. 1.26)

(and independently by BMabukh (ref. 1.52) at

the same time) are also those which were adopted

by Goldenveizer (cf., ref. 1.24, pp. 83, 84, and

230).

I
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1.5.5 Remarks on the Force and Moment

Resultant Equations

Essentially three different procedures have

been followed in obtaining the force and moment

resultan_ equations given in the preceding sec-

tions. Beginning with the defining equations
(1.72), (1.73), and (1.74) for the forces and mo-

ments, after the stress-strain equations (1.71)

are introduced, equations (1.75) corresponding

to the theories of Love, Timoshenko, Reissner,

Naghdi, Berry, Sanders, Mushtari, and Donnell

are arrived at by indiscriminantly neglecting

z/Ri (i=,_,B) in comparison with unity. On the

other hand, integration of the unsimplified equa-
tions (cf., eqs. (1.77)) over the thickness is

extremely cumbersome. The theory of Byrne,

Fliigge, and Lur'ye simplifies the integration and

at the same time attempts a more careful discard

of terms of higher order by using the series expan-

sion of quotients of the type 1/(l+z/R_). The

Vlasov theory does likewise, following a slightly

different algebraic manipulation.
Consider now a rationale which could be used

to reduce equation (1.78a) of the Byrne-Fltigge-

Lur'ye theory to the corresponding equation

(1.76a) of Love et al. Equation (1.78a) is first
rewritten as

Eh

N =___{[ h2[ 1[ 1+ 1-_-R-_ _ R1R0) ] e-

h2/1 1\ I

wO---_-_---_)K,j (1.107)

For a thin shell, it is reasonable to neglect the term

h2[(1/R,_)-(I/R,Ra)]/12 in equation (1.107)

with respect to unity. The second step required

to reduce equation (1.107) would be to neglect

h2[(1/R,_) - (1/Ra)]K,/12 with respect to (E_+vea).
Introducing the nondimensional curvature e,'

given by equation (1.90a), it is seen that the

second assumption is valid provided that the

strains due to bending are small compared to

those due to stretching.

On the other hand, consider the analogous
procedure to reduce equation (1.79c) for the

twisting moment M_a to the corresponding

expression of Love et al., equation (1.76f). To do

so, it is necessary to neglect the term e,a/R, in

comparison with r. But substituting equations

(1.39) into equation (1.42e) and using equations
(1.41), the resulting expanded form for r contains

_,,a/R, as an explicit, non-negligible term. It is

therefore inconsistent to neglect e,,_/R,_ in com-
parison with r.

The third procedure, leading to the equations

used by Novozhilov and Goldenveizer, avoided

inconsistencies of the type described above by

taking variations of the strain energy functional
and carefully discarding terms.

The force and moment resultant equations
arising from the various theories are summarized
in tables 1.4 and 1.5.

TABLE 1.4.--Force Resultants According to the Various Theories

|

' Theory

Byrne, Fltigge, Lur'ye

Goldenveizer, Novozhilov

Love, Timoshenko, Reissner,
Berry, Naghdi, Mushtari,
Donnell, Sanders

V]asov

(1 -- p2)N./Eh

h_[ 1
c. + _a - --I--

12\R.

Same as Byrne,

Fltigge, Lur'ye

(1 -- v2)N_/Eh

h2[ 1

Same as Byrne,

Fltigge, Lur'ye

2(1 +v)N,_/Eh

h_[ 1

2(1 +v)N_,/Eh

h2[ 1

R./\2

h _ h 2

1)
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TABLE 1.5.--Moment Resultants According to the Various Theories

21

J

Theory

Byrne, Flfigge, Lur'ye

Goldenveizer, Novozhilov,
Love, Timoshenko,
Reissner, Naghdi, Berry,
Mushtari, Donnell,
Sanders

Vlasov

12(1-_)M=/Eh _

K_ -_ VK .... Ea

K_+ vK_

Same as Fliigge,

Byrne, Lur'ye

12 (1 - _2) M_/Eh _

Same as Byrne,

Fliigge, Lur'ye

24(1 + v) M,_/Eh 3

ea_
7"----

R.

__ea_

r°C R-_

24(1 + u) MtJ,_/Eh 8

7"----

RE

r+_

1.6 EQUATIONS OF MOTION

At least three distinct methods are used in the

literature for obtaining equations of motion, all

depending upon the results obtained in the pre-
vious sections. The first method is the one most

widely used and, hence, is the "standard one."

It simply applies Newton's laws by summing
forces and moments which act upon a shell ele-
ment of thickness h. An excellent derivation

based on this approach is given in Novozhilov's

monograph (ref. 1.26, p. 33). The second method,

exemplified by the derivation in section 1.6.2,

begins with the equations of motion of an in-
finitesimal element of the three-dimensional

theory of elasticity and integrates them over

the thickness to obtain the equations of motion

for a shell element. The third method is actually
a class of variational methods. One derivation of

the variational type depending upon Hamilton's

principle was made by Kraus (ref. 1.42, p. 40).
Sander's equations derived in section 1.6.4 are

also an example of the third method.
In the derivations which follow, for simplicity

the equations of motion are derived in the static

case, yielding equations which govern the equi-
librium of a shell element. However, the equi-

librium equations will include body force and

body moment terms which are readily capable

of representing inertial terms by applying

D'Alembert's principle at a later stage.

1.6.1 The Standard Derivation

Consider the equilibrium of the shell element
of thickness h shown in figure 1.2 under the

influence of internal force and moment resul-

tants us shown in figures 1.3 and 1.4 and exter-

nally applied body forces and moments and
surface loads. The total external force intensity

vector q'is the sum of all such effects and can
be written as

q = q._. + q,_a+ qn_ (1.108)

In general, q has components in all three direc-
tions as indicated, is considered to be acting at

the middle surface, and must be multiplied by

the area of the middle surface (AB do_ d_) to

obtain a true force. Thus, q has the dimensions

of force per unit area. In practice it may arise
due to externally applied pressures or external

fields (gravitational, accelerative, magnetic, etc.,

see eqs. (1.118) for the integrals defining q,, q_,

and q,). Similarly, the moment intensity due to

these external fields is given by

m=m,j,,+m_ia+m._,_ (1.109)

and has dimensions of moment per unit area.

Let the total forces acting upon the faces

defined by a = constant and by f_= constant be

denoted by F, and F_, respectively, where

F,, = (N,i,_ + N,,_a+ Q,,_n)B d_ I
(1.110)I

as shown in figure 1.3. Love's second postulate
that the deflections are sufficiently small allows

F ¸
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one to refer equations (1.110), which are written naturally in terms of the deformed middle surface,

to the undeformed middle surface instead. On the other two faces of the shell element the corresponding

forces are F,+ (OF_/Oa) da and F_+ (0F_/00) d0. Thus, the vector equation of force equilibrium for

the shell element is given by

OF.onda+_ dO+-qAB da d/3=O (1.111)

Substituting equations (1.108) and (1.110) into equation (1.111) and utilizing the rules for differentia-

tion of unit vectors given by equations (1.19), the vector equation can be expanded into its three
scalar components as follows:

O(BN.)+_(ANe_)+_N.__OB N AB_a o+-_Q,+ABq,=O (1.112a)

_(AN_)+O (BN.o)+___aNo. -'ff_OAN "+-_ Q_'-j-ABAB qtJ=0 (1.112b)

AB N AB N 0 B 0
-_. ,---_ _+_a( Q.)+-_(AQo)+ ABq,=O (1.112c)

Let the total moments acting upon the faces defined by a =constant and by 13=constant be

denoted by i)_, and _)_, respectively, where

(1.113a)

9_e = (- M0¢. + M_.¢a) A da (1.113b)

as shown in figure 1.4. On the other two faces of the element the corresponding moments are

_,+ (0_,/0a) da and _+ (0_/00) dfl. Thus, the vector ew,:ation of moment equilibrium for the
shell element is given by

X dso_q--_ +mAB da dO=O (1.114)

where the point 0 has been used as the reference origin for the moments; where the term (F. ×_) ds_/2,

for example, represents the moment of the force F, located by the position vector (dsa/2)_ with respect

to 0; and where ds, =A da and ds_=B dO. Substituting equations (1.109), (1.110), and (1.113) into

equation (1.114), performing the indicated vector cross products, and utilizing equations (1.19), the
vector equation can be expanded into its three scalar components as follows:

0 0 AM OA M OB
_(BM.) +-_( o_) +-_ ._ --_aMo -ABQ. +ABm_ = 0 (1.115a)

_(AM_) +O (BM,_) OB OA+_aM_.---_M,-- ABQa+ ABm, =0 (1.115b)

N,,_-N_,,-q =0 (1.115c)
R. Re

d

F"

k_



FUNDAMENTAL EQUATIONS OF THIN SHELL THEORY
23

Equations (1.112) and (1.115) form the set of equations of equilibrium used by most authors in

shell theory.

1.6.2 An Alternative Derivation

The three-dimensional equations of equilibrium in a set of orthogonal, curvilinear coordinates are

given by (cf., ref. 1.50, p. 181)

3

Lo.A_/_/ 2 g_ _]+q_ gVg,=O i=1,2,3 (1.116)
j=l

where g--_v/g_g2g3 and qi* is the body force intensity per unit volume. In shell coordinates the indices

1, 2, 3 are replaced by a, #, and z, respectively, and the coefficients of the metric tensor are given by

equations (1.28), thus yielding (ref. 1.41)

0_g_ 0 oVZ 0 -- A V_g_a V *=0 (1.117a)

--_a,-t--_( v g#a,a) +--_z,a+_zz(_C/g-goza ,) +---_aa,+ g.gaqa =0 (1.1175)

-- ,o- -- _ _°, +--(v/_g._,)+-z-(_/a.e_,)+ g.a_q. =0 (1.117o)
R. z. R e _+ Oa ( g_ ) O# az

where the symmetry of the stress tensor has been assumed and where the term _/g,g_q.* is, for example,

a combined body and surface force intensity in the direction _,.

Upon multiplying equations (1.117) through by dz, integrating over the thickness, and making

use of the generalized Mainardi-Codazzi equations (1.30) and the definitions of the force resultants

given by equations (1.72) and (1.73), one obtains the force equilibrium equations (1.112), with the

following definitions for q,, q_ and q,:

-/

1 _ 1 rh/2
• qa =-7-_,[%/g,ga¢,a]_:/2-[-7-_ I %/_,g_qa* dz (1.118)

21D _x_ j --h/2

1 .-- 1 rh/2 __

q, = -_[_/ g,g_a,]_/_ Jr-_ j_ _/e_/ g"gaq"* dz

Upon multiplying equations (1.117) through by z dz, integrating over the thickness, and making

use of equations (1.30) and the definitions of the force and moment resultants given by equations

(1.72), (1.73) and (1.74), one obtains the first two moment equilibrium equations (1.115a) and (1.115b).

However, equation (1.117c) does not give equation (1.115c); rather, it gives a relationship between

M,, Ms and certain higher order stress resultants not used in classical shell theory.

1.6.3 Equations of Donnell and Mushtari

The equations of Donnell and Mushtari are arrived at by neglecting the terms containing Q, and

Qa in the two tangential force equilibrium equations (1.112a, b). The remaining force equilibrium

equation (1.112c) and the moment equilibrium equations (1.115) remain unchanged.

1
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replaced by their translatory inertia equivalents

given by

_ h02v |
qo_ --p 0_- _ (1.123)

l
Ohv|

qo=-oh l

where p is mass density per unit volume and t

is. time. Rotary inertia can be included by suit-

ably replacing m_, and m_ in equations (1.115a

and b), but this effect is generally negligible
unless the shells become relatively thick (say,

h/R> 1/10, where R is the least radius of curva-
ture of the shell). However, in this ease it be-

comes equally important to include the effects
of shear deformation, which requires a complete

reformulation of the shell theory and leads to a

tenth order set of differential equations of mo-

tion. Thus, the effects of shear deformation and

rotary inertia will be considered as a separate

subject in later chapters.

Following the systematic procedure outlined

in the paragraph before the last, it would be

possible to display general equations of motion

in terms of u, v, and w for shells having arbitrary

curvature properties. However, the equations
would be extremely unwieldy, especially when

the radii of curvature R, and Re (and, conse-

quently, the Lam_ parameters A and B) are

not constant, but depend upon a and 8. Thus,

the, procedure will be followed only for specific

curvatures (cylindrical, spherical, conical, etc.)
and the resulting equations of motion will be

presented where relevant in the subsequent

chapters.
If the equations of motion are solved to find

u, v, and w (in the ease of free vibration the mode

shape is determined), then the resulting stresses

z,, zo and _,_ can be found in the following

manner:

(1) Substitute u, v, and w into the strain-

displacement equations.
(2) Determine the strains at points through-

out the shell thickness (particularly at z = ± h/2)

by using the expressions given in table 1.1.

(3) Find the stress components at any point

by means of the stress-strain equations (1.71).

1.8 BOUNDARY CONDITIONS

Assume that the boundaries lie along coor-

dinate curves. The work done by the reactions

at the boundaries is zero; i.e.,

W_= (P,.uW_,'a) df_ =0 (1.124)
1

along the boundary _ = a2 and

W2= (F_.u+_'f_) da=O (1.125)
1

along the boundary _=/32. The vectors ft,, F_,

i_Z. and _Z_ are given by equations (1.110a and b)

and (1.113a and b), respectively, and

u=u_,+v_+w% (1.126)

= -- 0_,+ 0,$_ (1.127)

By substituting equations (1.110), (1.113),

(1.126), (1.127), and (1.39) into equations

(1.124) and (1.125), one obtains

w_ = ff'[ N,u + N,,av+ Q,w+ M,o

(_ 1_) ] .... Bo B +M.O. dB=O

"'[ NW2= o,u+Nov+Qow+MoOo

+Mt_,, A o=o,

(1.128)

but, integrating by parts

'M Ow

_ fO'O(M.o)w
J_, o8

f"' 0

-J,,, _-a(Mo,,)w dE

dot

(1.129)

By substituting equations (1.129) into equations

(1.128) and collecting terms, one obtains

k
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t, v
10M,,,

-M
,0w _1=,2 = 0 (1.1303)

02 Mf [(N,o+'"°°)u+N,.
J.,Lk R<<I

( 1 OM,._]w+ MoOt_] A da+

_.
"" _,1_=w _$_2 (1.130b)

Equations (1.130) are satisfied if the integrand
and the second parts of the equations are set

equal to zero. Thus the boundary conditions, on

an edge where a = constant, are

N, or u=O (1.1313)

(N._+ M'°_ v=0 (1.131b)
R_ ] or

Q"-_ B O/_ ] or w=0 (1.131c)

M, or 0,=0 (1.131d)

M,_w;:=O , (1.131e)

and on an edge where/7 = constant

(N_.+_-_ ") or u=0 (1.132a)

' N, or v=O (1.132b)

( 10M_.._Q°'_ A Oa ] or w=0 (1.132c)

M_ or 0_=0 (1.132d)

Mo,,w::=O (1.132e)

If the ¢t curve is a closed curve, then equation

(1.131e) is identically satisfied. Similarly, if the

a curve is a closed curve, equation (1.132e)

is identically satisfied. Equations (1.131) and
(1.132) are the boundary conditions associated

with the equations of equilibrium given in equa-
tions (1.112) and (1.115).

The boundary conditions associated with San-

ders' equations of equilibrium are obtained by

setting the virtual work of the forces acting on

the boundaries of the shell equal to zero. Thus
from equation (1.119) one obtains

N. or u=0 (1.1333)

1

Is+ (2R, 2_?.)H] or v=0 (1.133b)

(10.)Q.+ -_ or w=0 (1.133c)

M, or 0.=0 (1.133d)

Hw ii=O (1.133e)

on an edge where a = constant an: _

[S-1-(2-_ 2-R;)] or u=O (1.134a)

N_ or v=0 (1.134b)

(Q.+I OH) or w=0 (1.1340

21//0 or 0_=0 (1.1344)

Hw_i=O (1.134e)

on an edge where #3= constant.

1.9 SHALLOW SHELL THEORY

A shallow shell may be regarded as a slightly
curved plate. A shell whose smallest radius of

curvature at every point is large compared with

the greatest lengths measured along the middle
surface of the shell is one definition of a shallow

shell. Vlasov (ref. 1.19) describes a shallow shell
as follows:

Consider a shell outlined in part by some surface and

which is a thin-walled spatial structure with a compara-

tively small rise above the plane covered by this structure.

We call such shells shallow. If, for example, a building

which has a rectangular floor plan is covered by a shell

with a rise of not more than 1/5 of the smallest side of the

rectangle lying in the plane of the supporting points of

the structure, then we class such a spatial structure in

the category of shallow shells.

The development of the shallow shell theory

is principally credited to Marguerre (ref. 1.53),

I
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Reissner (refs. 1.54 and 1.55), and Vlasov (ref.

1.19). An extensive bibliography on shallow shells

is given by Leissa and Kadi (ref. 1.56).

No attempt, to present a rigorous derivation of

shallow shell theory will be made in this section.

For rigorous derivations the reader is referred

particularly to references 1.19, 1.54, 1.55, and
1.56. The primary purpose of this section is sim-

ply to present the shallow shell equations for
shells having arbitrary curvatures for reference

in subsequent chapters.
The terms containing Q_ and Q_ in the first

two equilibrium equations (1.112a) and (1.112b)

are neglected as in the Donnell-Mushtari theory

(sec. 1.6.3). Further, the tangential loads q, and

q_ (which are tangential inertia terms in the free

vibration problem) are neglected. With these
two assumptions equations (1.112a) and (1.112b)

are identically satisfied by the introduction of

an Airy type of stress function _ defined by

l O(lO ] 1 oBo 

!(

10AO¢ 1 0B 07,0._3_]
A OB Oa BOa

(1.135)

The expressions for changes of curvature are
taken as in the Donnell-Mushtari theory (eqs.

1.63,) and the compatibility condition for dis-

placements of the middle surface are approxi-

mated (in particular, the Gaussian curvature,

1/R,R_, is assumed negligibly small). The re-

sulting equations of equilibrium and compati-

bility which govern the deflected region of a

shallow shell then become, respectively (ref.

1.19)

DVdw +VR_ = q"/ (1.136)
!

Vd_-- EhV_2w = O)

where V 4= V2V2 and

Eh s
D = (1.137)

12(1 -- v_)

V2= 1 [O(B Ok O{A O\]
J

B

(1.138)

Further, according to the shallow shell theory

M. = -- D (K. + vK_) ]

Ms = -- D(K_+ vK,) / (1.139)
D

M._ = Ms. = - _r

and

0(,.+,,_)

Qo =n O-_@1@K2)

(1.140)

with the expressions for _1, K2, and r given by

equations (1.63). The governing eighth order set

of equations (1.136) is then solved in terms of

the two dependent variables w and 9, with

physical quantities being determined from equa-

tions (1.135), (1.139), and (1.140).
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I

Thin Circular Cylindrical Shells

Chapter 2

This chapter will be limited to the study of

thin circular cylindrical shells, not including the

effects oLinitial stress, anisotropy, variable thick-

ness, shear deformation, rotary inertia, large

deflections, nonhomogeneity, or surrounding

media. These complicating effects will be studied

(as they pertain to circular cylindrical shells) in

chapter 3.

Nevertheless, there is a great deal of complexity

in the organization of the remaining material.
The standard or classical theories of thin shells

are governed by eighth order systems of differen-

tial equations which, as was seen in chapter 1,

take many forms, depending upon the assump-

tions made. For some problems, simplifying
assumptions leading to the fourth order inexten-

sional or extensional theories can be justified.

Cylindrical shells can be opened or closed, and

edge restraint conditions can take many forms.

Several physical parameters can be varied,
including

(1) Number of circumferential waves

(2) Thickness/radius ratio

(3) Length/radius ratio

(4) Poissoh's ratio.

The governing differential equations of motion

are sometimes simplified by neglecting tangential

inertia, or by neglecting other terms in the equa-

tions for various justifying reasons. Solution of

the governing equations is often accomplished by

one of several approximate methods. Finally,

experimental, as well as theoretical, results are

frequently available for comparison.

In the first section of this chapter the shell

equations derived in chapter 1 will be expressed

in terms of circular cylindrical shell parameters

and the corresponding equations of motion will

be synthesized. The remainder of the chapter is

devoted to reporting vibration results. The case

31

of the shell of infinite length is discussed first

because of its relative mathematical simplicity.
Results are subsequently presented both for

closed and open thin circular cylindrical shells of

finite length. By far, most of the results available

are for closed shells, although in some cases the

results for closed shells can also be interpreted in
terms of open shells. Open shells can be either

shallow or deep. Although there are 136 combina-

tions of "simple" boundary conditions possible

for a closed circular cylindrical shell, most of the

results are available for a single one of these

cases--when both ends are supported by shear

diaphragms. Two types of boundary conditions
not axisymmetric but of practical value have no

reported results. These are

(1) Point supports.

(2) Boundary conditions that are discontin-

uous along a single edge; for example, one portion
of a boundary may be clamped and the remainder
free.

Furthermore, little has been done with circular

cylindrical shells when the natural cylindrical

coordinates of the problem are incompatible with
the boundaries, as in the case of closed shells

having noncircular edges or cutouts.

2.1 EQUATIONS OF MOTION

The shell coordinates to be used are x and 0 as

shown in figure 2.1. Further, the length coordi-

nate x is replaced by a nondimensional length s
defined by

s =x/R (2.1)

where R is the cylindrical radius. Following the

procedure outlined in section 1.7 the equations
of motion are synthesized for the case of a circular

cylindrical shell by using the following parame-
ters in tables 1.1 through 1.5:
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a=s, _= 0 ]

A =R, B =RI (2.2)
R_= _, R_=R

The equations of motion for thin circular cylindri-
cal shells can be written in matrix form as

[2]{ui} = {0} (2.3)

where {ui} is the displacement vector

{ui} =- (2.4)

u, v, and w are the orthogonal components of

displacement in the x, 0, and radial directions,

respectively, and [2] is a matrix differential

operator.

A
FIGURE 2.1.--Closed circular cylindrical shell

and coordinate system.

2.1.1 Eighth Order Equations

Different eighth order systems of equations are commonly used to model the vibrational behavior

of circular cylindrical shells. In this case the [_] operator in equation (2.3) can be treated as the sum

of two operators; i.e.,

[_] = [_D--M] + k[_ MOD] (2.5)

where [,_D--M] is the differential operator according to the Donnell-Mushtari theory, [_MOD] is a

"modifying" operator which alters the Donnell-Mushtari operator to yield another shell theory, and

k is the nondimensional thickness parameter defined by

k-h2/12R 2 (2.6)

Thus, each eighth order shell theory for circular cylindrical shells differs from the Donnell-Mushtari

theory by an operator [£MOD] which is multiplied by the constant k, which is very small for small

h/R ratios.

• The Donnell-Mushtari operator is found to take the form

02 , (l--v) 02

0e2

(l-- V2) R2 02]-P E

(1--k v) 02

2 Os 00

0
p--

Os

(1_-_) 02 0
p--

2 Os O0 Os

[ (l--y) 02 02 02 082_-_ 0-/

__ 020 1 +kV4+p!l - _2)R2
O0 E Ot 2

(2.7)

where V 4= VW 2 and

J
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02 02

v 2= os---2+ 00--_2 (2.8)

Similarly, the modifying operators for various circular cylindrical shell theories take the forms shown
below.

Love-Timoshenko:

[_C.oD] =

"0 0 0 -

02 02 03 03
0 (1 002 as2 0o 003

03 03

0 -- (2-- V)0s2 00 003 0
m

(2.93)

Goldenveizer-Novozhilov (also Arnold-Warburton) :

-0 0

O2 02

[2MOD] = 0 2(1-- v)_--S_d 002

03 03
0

__2_UJ OS2t_ O0 003

Houghton-Johns (simplified Goldenveizer-Novozhilov) :

-0

0
[_MOD] = ,

0

0

0

03 03

-- (2 -- U)0S2 00 003

Fli_gge-Byrne-Lur'ye (also Biezeno-Grammel):

[-eMOD]=

0

0 3 0 3

-- (2-- U)Os2 00 003

Reissner-Naghdi-Berry :

(l--v) 02

2 002

0
3(1-- v) 02

2 082

03 . (l--v) 03 (3--v) 03

2 Os2 O0

0

0

03 03

-- (2-- v)Os2 00 003

0

03 (l--v) 03

Os3 2 Os 002

(3--v) 03

[2MOD] =

-0 0

(1--_) 02 02

0 2 Os-_'_ 002

0

.03 03

Os 2 O0 003

0 3 0 3
0

Os 2 O0 003

2 Os200

0 2

1+ 2_-_

(2.9b)

(2.9e)

(2.9d)

(2.9e)

T
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Sanders:

[oC_oD]=

Vlasov :

[_aMOD] =

Epstein-Kennard:

[_MOD]=

(2__9,,+6,,2) 02--v 2(l__v) 2 Os2

(1-- v) 02 v _ 04
q 4-

(1-- v) 02

8 002

3(1--v) 02

8 Os O0

(l-v) aa
2 as 002

VIBRATION OF SHELLS

3(1--v) 02

8 Os O0

9(1--v) 02 02
8 as 2 _-a-_

(3--v) Oa Oa

2 as 2 O0 003

0 0

0 0

aa . (l-v) oa (3-v)
0soo2 2

(2--7v--k5v2--v a) 02

2(l--v) 2
v 2 04

2 002 (l--v) 2as 4 +(l--v) 2as 300

p2

(3-q-v--17v2+12v 3) 02 [ (10--23v+12u 2) 0_2_22(l--v) 2 as oo 2(1- v) 2 002
v2 04 v2 04

+ _'_')2 as 3 ao +(l--v) 2 as 2 002

p2 04 ]+(i-_ 2 as oO3
t

[v(l+3v) O F 3u2 On 2( v) aO

(4-5v+v2+3v 3) o a ] -F (2-7_+11_2-3v3)q 2(l--v) 2 as 002 2(1-- v) 2

+3(2--4v-F3v 2) 03

03

Os2 O0

(l--v) 03

2 Os 005

(3--v) a 3

2 Os2 O0

0

0 3

O0a

O3 (l--v) Oa -
F

as 3 2 Os 002

(3--v) a3

2 Os 2 O0

02

Kennard simplified:

p2

as O0

0 3

Os2 O0

(2--9v+6v 2) O2(l--v) 2 Os

(2-5v+v 2) O3

2(1--v) 2 Os3

(1--v+4v2--2v a) 03 ]2(1- )2 oioo2

(lO--26v+15v 2) 02(l--v) 2 O0

v(3--v) 03

2__- _2 003

(3-9v+6v2-2v 3) 03 ]2(1-- v) 2 as S O0

(l+3v)

(2--2v+v2+2v 3) 05
+

+

2(l--v) 2

(10-- 17v+ 10v 2

2(l--v) 2

082

[!o[.euoD] = 0

0

3v O 0 3v 03 ]

(2+,) e (4-v) 02 |

(2.9f)

(2.9g)

(2.9h)

(2.9i)

1

T

JL.
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For the various shell theories the modifying

operators are simple in some cases and compli-
cated in others. Furthermore, several of them are

seen to be nonsymmetric, which has resulted in

much criticism in the literature of shell theory

(cf., refs. 2.1 and 2.2). Nonsymmetric equa-

tions of motion can yield imaginary vibration

frequencies.

The shell theories described by the differen-

tim operators in some cases are specializations

of the theories derived in chapter 1 for arbitrary

shells and, in other cases, were developed spe-

cially for circular cylindrical shells. The theories
of Donnell-Mushtari, Love-Timoshenko, Golden-

veizer-Novozhilov, Fliigge-Lur'ye-Byrne, Reiss-

ner-Naghdi-Berry, Sanders, and Vlasov were

derived in chapter 1.

Arnold and Warburton (refs. 2.3 and 2.4)

derived their widely used equations of motion of

circular cylindrical shells by using Lagrange

equations with suitable strain energy and kinetic

energy expressions. Although they began with

Timoshenko strain-displacement equations, par-

titular assumptions made when integrating over

the thickness yielded the equations of Golden-

veizer and Novozhilov. This equivalence has

apparently been pointed out in the literature.

Houghton and Johns (ref. 2.5) suggested a set

of simplified equations of equilibrium for static

problems of circular cylindrical shells which are

obtained by neglecting k with respect to unity

in the Goldenveizer-Novozhilov equations. This

procedure was also carried out by Bijlaard (ref.

2.6) on the Timoshenko-Love equations. Epstein

(ref. 2.7) derived a general set of equations of

shell theor:_ from the three-dimensional theory

of elasticity by means of expansion of stresses and

displacements with respect to the thickness coor-

dinate, z. These equations were subsequently

rederived and specialized to circular cylindrical

shells by Kennard (refs. 2.8 through 2.11).

As indicated in chapter 1, in addition to the

theories derived there, there exist many other

distinct theories for thin shells having arbitrary
curvature. In addition there are theories derived

specially for circular cylindrical shells which will

not be accounted for in this chapter, for example,

those of Coupry (refs. 2.12 and 2.13), Morley

(ref. 2.14), Herrmann and Armenakas (refs. 2.15

and 2.16), Yu (ref. 2.17), Galerkin (ref. 2.18 and

ref. 2.19, p. 295), Miller (ref. 2.20), Simmonds

(ref. 2.21), and Mugnier and Sehroeter (ref. 2.22).

The strain energy of a circular cylindrical

shell is obtained by substituting the appropriate

strain-displacement equations into equation
(1.84) and integrating over the thickness. The

total strain energy can be written as

Eh f2_ fl

V 2(i__u2iJ0 Jo (ID--M-'kkIMoD) dsdO (2.10)

where ID--M is the integrand of the strain energy
of the shell according to the Donnell-Mushtari

theory and is given by

/Ou Ov k 2

kOs 4\Os 00] _l

+k{ (v2w)2-2(1- k Os 2 002

\Os 00] J} (2.11)

and IMOD is the "modifying integrand" which

differs depending upon the shell theory being

used. Some examples of modifying integrands

which are appropriate to the shell theories being
considered here are given below.

Goldenveizer-N ovozhilov :

Ov /OvX 2

[MOD = -- 2_-_V2w + _)

Ov 02w _.20v 02w--2(1--_) O00s 2 Os Os O0
(0,y1

Os/ J

(2.12a)

Houghton-Johns:

IMOD---- --20v 02w Ov 02w Ov 02w
oo 2p o oo

(2.12b)

Fli_gge-Lur' ye-Byrne:

(1--_,)[OU'_ 2 OU c92W 20U 02W

IMOD=_-_) _-(1--p)_-00s O0 O-s Os--_

o,
---_s] --3(1--_)Os Os O0

Ov 02w 02w

-- 2_-_-_--_s_+W2-4- 2w-_ (2.12e)

..,.--
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Reissner-N aghdi-B erry :

Ov / Ov\ 2 [ Ov 02wIMOD=--2-_oVSW+L_O) --2(1--,) O00s 5

av asw 1(°_51 (2•12d)
4 as os ao 4\_! J

Sanders:

IMOD 8 \O0] 4

Vlasov:

Ov Ou

Os 00

+ (1-- v)-_ OT%-O --8-- \O-s]

[ OvV Ov 05w Ov 05w

+tjo) 00 Os5 Os O0

Ov 05w
--2-- -- (2.12e)

00 002

IMOD=(I_v)O__ 05w 20uOSw 3(1___)_s 02wOs O0 Os Os2 Os 00

2v av2_05w 05w
00 -_s2 -Fw2-F 2w_ (2.12f)

It is further noted that the strain energy inte-

grands given by equations (2.11) and (2.12) are

consistent with the equations of motion given
earlier in this section for these theories• Consis-

tency requires that the equations of motion are

derivable from an energy principle by means of a
variational procedure.

For example, one variational principle which

may be invoked is Hamilton's principle, which

may be written as

fit(T-- V)

2

8 dt=O (2.13)

That is, the variation of the time integral be-

tween given time limits of the difference between

the kinetic and potential energies must vanish.

The kinetic energy of the shell is

1 f2_ fa F/Ou\5 /Or\5

Ow 2

Substituting equations (2.10), (2.11), (2.12), and

(2.14), it can be seen that equation (2.13) can
be written in the form

ft_ f2_ [.1 [ Ou Ou Ou Ov Ov Ov Ow Ow

L JoJo L ooo, ooo, oo
05W ,o_] dsd0dt=0 (2.15)

Ot Os 5 0s O0 005 ]

and the functions u, .... 05w/005 are functions

of s, 0, and t. From the calculus of variations,

the conditions that equation (2.15) be satisfied

are the Euler-Lagrange equations, given by

ou _\_/-_\Uu,/-_\_,/=

o, os\o,,/ _\_/-Yt\_/=°

ow _-_j-_\_/-_\_/
05 / Off \ 05 / 0_ \

05 / O_ \

=o
where, for example, Off/Ou, indicates the partial

derivative of the functional ff with respect to the

function Ou/Os.

Using the various strain energy functionals

given by equations (2.11) and (2.12) in con-

junction with equations (2.16), the equations of

motion determined by equations (2.7) and (2.9)
will result.

Strain energy integrands which are consistent
with the other theories included in equations

(2.9) cannot be found because the equations of

motion are not symmetric.

The total strain energy integrand given in
equation (2•10) can be written as the sum of

two parts--one part due to stretching (mem-

brane) and one part due to the addition of

bending stiffness; i.e.,

Itot_l = I_b .... + Ibending (2.17)
where

/Ou av V

. ['au 1lay au\ 5]

-2(l-_)L;_-;k_-_) j (2.18)

and /bending is the sum of those terms of the

integrand of equation (2.10) which contain k,

taken both from equations (2.11) and (2.12).

I

T
LA
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2.1.2 Extensional (Membrane) Equations

The extensional or membrane theory for cir-

cular cylindrical shells has an extensive history,

including the early works of Rayleigh (refs. 2.23

and 2.24) and Love (refs. 2.25 and 2.26). In

using this theory it is assumed that the bending

rigidity of the shell is negligible at every point.

Thus, the extensional equations of motion can
be arrived at by setting k=0 in equations (2.5)

and (2.7), yielding

O2u_ (l-v) 02u t_(l+_) o_v _-_sOs--+- 2 002 2 Os O0

O(1--,2)R 20_u

E Ot2

(1+_) O2u (1-_)02v o2v Ow
2 osoo -_ 2 os2_-_+-_ (2.19)

p(1--v2)R 2 02v

E Ot2

Ou Ov p(1-v_)R 2 02w

vOs +_+w= E Ot2

This system of differential equations 1s of the

fourth order in s and 0. The strain energy inte-

grand given in equation (2.18) is consistent with

these equations.

2.2 SHELLS OF INFINITE LENGTH
t

Consider first the closed circular cylindrical

shell of infinite length having displacements of

the form

u=A cos Xs cos nO cos cot/
/

v =B sin Xs sin nO cos _t _ (2.20)t

/
w = C sin ks cos nO cos wt J

where A, B, C, and X are undetermined constants,

n is an integer for closed shells, and w is the

frequency of free vibration in radians per second

(if the mass density o is expressed in units involv-

ing seconds). The cyclic frequency (eps) is ob-

tained by dividing w by 2_r. The form of solution

taken in equations (2.20) assumes that the time

and spatial variables are separable, giving rise to

normal modes executing simple harmonic mo-

tion, the period and phase of the motion being

the same for all points on the shell. The periodic

functions of 0 used in equations (2.20) guar-

antee that the displacements are periodic (e.g.,

w(s,O) =w(s,O+2_r)) and continuous (e.g.,

w(s,_:)= w(s, -_) ).
Substituting equations (2.20) into equations

(2.1) and (2.3), using any form of the eighth or-
der shell theories given by equations (2.7) and

(2.9), it can easily be seen that the number of
differentiations in each term of the equation of

motion are such that each equation of motion

permits factorization of terms containing s, O,
and t out of each equation. The equations of mo-

tion must be satisfied for all values of s, 0, and t

allowed to vary independently. This leads to a

set of homogeneous equations which, for the
Donnell-Mushtari theory, for example, can be

written in matrix form as in equation (2.21).

For a nontrivial solution, the determinant of the

coefficient matrix in equation (2.21) is set equal

to zero, which yields either of the following two

eigenvalue problems:

(1) For a given X, there exists one or more

proper values of the frequency parameter

p(1--v2)R%2/E such that the determinant van-

ishes, or

J

¢

__2 (1-- U)n2 (1+ v),_,n2 2

(l+u)Xn2 [ (1--v)X2--n22

--vX n

h%

A

B

C

0

0

= (2.21)

0
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(2) For a given frequency _, there exists one

or more proper values of X such that the deter-
minant vanishes.

Of course, since s = x/R, then the half-wavelength

of the displacement functions in the x direction

is 1 if X is chosen to be _rR/l, and the frequencies
of free vibration can be found which correspond

to the given wavelength.

As will be seen in section 2.3 the displacement

functions chosen as in equation (2.20) also exactly

satisfy the freely-supported or shear diaphragm

end conditions of finite length shells. Thus, a

circular cylindrical shell of infinite length vibrat-

ing in a mode, so that the half-wavelength in the
x-direction is l, corresponds to a finite shell of

length 1having a particular set of end conditions.
One simple mathematical model of a cylindrical

shell of infinite length is obtained by using the

concept of plane strain. The necessary assump-
tions are that there is no motion in the direction

of the length of the shell and that the physical

quantities (displacements, membrane forces,
bending moments, etc.) do not depend upon loca-

tion along the length. Thus, the case of plane

strain requires

u = O, v = v(0), w = w(O) (2.22)

which changes the character of the shell motion

from two-dimensional to one-dimensional (varia-

tion only with 0) and simplifies the analysis

considerably. For example, under the assumption

of equations (2.22) the Fliigge equations of

motion given by equations (2.1), (2.3), (2.7), and

(2.9d) reduce to (refs. 2.27 through 2.29)

, 02v Ow p(1-u2)R 202v

_+-_ = E ot_

;+[1+k,i 0 ,21jw
p(1 -- _,2)R2 0ew

(2.23)

E Ot2

Equations (2.23) may be solved by assuming

v=B sin n0cos _0t/ (2.24)
w = C cos nO cos _0t/

Substituting equations (2.24) into (2.23) yields

[n_n92 i+k(l_nn2)2_92][;] _[:] (2.25)

where

f_ _ p(1 -- _2) R2_o2 (2.26)
E

For a nontrivial solution, setting the determinant

of the coefficient matrix in equation (2.25) equal

to zero gives the roots

92=0, l+k (n=0)

=:at l+n_+k(n_- 1)_92
2 L (2.27)

v/j1 +n_+k(n 2-1)_]_- 4tn_(n- 1)_]

(n_0)

as was shown by Reismann (refs. 2.27 and 2.28).

The root _=0 for n=O corresponds to rigid

body torsional rotation of the shell.
Now consider the solution functions given in

equations (2.20) for the case when the wave-

length in the x (and s) direction becomes infi-

nitely long. The solution functions can then be

represented as

u = A cos nO cos _t /
!

v=B sin nO cos wt_ (2.28)
!

w = C cos nO cos _t)

Taking, for example, the Donnell-Mushtari the-

ory and substituting equations (2.28) into the

equations of motion yields a set of homogeneous

equations which can also be arrived at by taking

the limit as 1--__ (i.e., X--_0) in equations (2.21) ;

that is,

/J !

0 n (1 + kn') -- a j[_ cJ

= (2.29)

It is seen that from equations (2.29) the motion

uncouples, giving a purely axial (or longitudinal)

motion characterized by the frequency parameter

a__ (1-- _)n2 (2.30)
2

V
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and, because the v and w displacements are now

uncoupled from U, the other two modes for a
given n are the same as the plane strain modes
discussed earlier in this section. In the ease of the

Donnell-Mushtari theory, finding the roots of the

uncoupled second order determinant arising from

equations (2.29) gives

f_2= 0, 1 (n = O) ]

f_2 = _[ (l-_-n2-_-kn4) /

--b__2--4kn6] (n_0) l

(2.31)

which can be compared with the corresponding

plane strain frequencies from the Fltigge equa-
tions of motion given in equations (2.27).

The off-diagonal terms 212, 221, 213, and 2_1 in

the matrix operators in the equations of motion

for the remaining theories (equations (2.9)) are
also either zero or contain derivatives with re-

spect to s (giving X) in each term, so the same

uncoupling for a circular cylindrical shell of infi-

nite length occurs for each theory. The resulting

frequency formulas for the three roots _22 for

each theory are listed in table 2.1. In deriving the

frequency formulas for table 2.1 terms containing

k 2 were neglected.

TABLE 2.1.--Frequency Parameter Formulas for Circular Cylindrical Shells

of Infinite Length According to Various Theories

J

Shell theory (Axial mode) (Radial and circumferential modes)

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

(also Arnold-Warburton)

Houghton-Johns

(Simplified Goldenveizer-

Novozhilov)

Biezeno-Grammel

Flfigge

Sanders

Reissner-Naghdi-Berry

_¢'lasov

Epstein-Kennard

Kennard Simplified

Membrane

1

_(1 --,)n 2

Same as

Donnell-Mushtari

Same as

Donnell-Mushtari

Same as

Donnell-Mushtari

1 t

_(1 q-k) (1 -- ,)n 2

Same as

Donnell-Mushtari

1 -t-_ (1 -,)n 2

Same as

Donnell-Mushtari

Same as

Donnell-Mushtari

1

_(1 q-k) (1 --,)n 2

Same as

Donnell-Mushtari

Same as

Donnell-Mushtari

_{ (1 q-n _--t-kn 4) T [(1 +n2)_W2kn4(1 --n_)] 112}

i 2
5{ (I +n ) (1 +kn_) T-[(i +n_) 2-2kn_(1-6n2 +n_)] "_}

Same as Love-Timoshenko

_{ (1 q-n 2 q-kn 4) _ [(1 q-n 2) 2 q_2kn4(5 _n2)]1/2 }

1

_{[1 q-n2+k(1 --n2) 21 T-[(1 -Fn2) 2 +2k (1 --n_) 31_n }

_{ [1 +n_+kn 4] -T-[(1 q-n2) 2 -- 2/0n6] 1/2 }

Same as Love-Timoshenko

Same as Love-Timoshenko

Same as Biezeno-Grammel

_{[ 1+3, 2 /10--20"q-ll'_ 2 1--2, 4"]l q- x-----_k q-n --L" (1--,)-----_ )kn q- (1 _,)----_kn J

1 +3, 22--52vq-32V2.kn2-T- (1 -t-n_) _+2-i-__ p k (l__v)2

lO-2O,+14_2kn. 2-4,+4,2 _]-q
(1_,)2 (1--') 2 kn j /

2-]-, 4 --J,

"_ [ 1 -t-2 +'k-}-2(1 --3k)n2q-n4q -3(2 --3")kn4--2kn"]'12_
1--v 1--, j {

O, 1 +n 2
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In table 2.1 the "Biezeno and Grammel shell

theory" is Iisted separately. It is actually the

same as that of Fliigge, but a subtle difference

exists between their frequency equations (ref.

2.30) and those of Fliigge (ref. 2.31). In their

work only the terms containing ld are discarded

when expanding the frequency determinant,

whereas Fliigge also neglected k with respect to

unity, thereby discarding additional terms.

It is interesting to note that' the membrane,
Biezeno-Grammel and Vlasov formulas are the

only ones in table 2.1 that yield the correct zero

frequency (corresponding to rigid body transla-
tion in the transverse direction) for the lowest
radial-circumferential vibration mode in the case

n= 1. On the other hand the Vlasov, Epstein-

Kennard, and Kennard Simplified formulas do

not yield zero frequencies for the torsional mode
for n = 0 as they should.

In tables 2.2 and 2.3 frequency parameters are

given for infinite shells and u =0.3 according to

the various theories for R/h = 20 and 500, respec-

tively, and for n= 0, 1, 2, 3, 4. The formulas of

table 2.1 are the basis for tables 2.2 and 2.3. Only

the Epstein-Kennard and Kennard Simplified
formulas for the radial and circumferential fre-

quency parameter _2 depend upon _. Significant

differences among the shell theories exist only

for certain of the radial-circumferential modes,

usually those modes which are primarily radial

in nature, and these differences decrease as R/h
is increased.

Considering table 2.2, which shows up the

largest differences among the theories, one ob-
serves that:

(1) For n=O, the agreement among all the-

ories is excellent for the one nontrivial frequency
which exists.

(2) For n= 1, the differences among the the-

ories for the rigid body "beam bending" mode

are clearly seen. The Houghton-Johns equations

yield an imaginary frequency.

(3) For n=l, considering the highest fre-

quency, the theories fall into two groups having

frequencies differing by approximately eight
percent.

(4) For n>2, all theories are in close agree-

ment except for those of Donnell-Mushtari,

Fltigge, Houghton-Johns, and the membrane

theory for the lowest frequency.

The significant difference arising out of the

Fltigge theory for infinite circular cylindrical

shells by neglecting/c with respect to unity in the

characteristic equation apparently has not been

pointed out previously in the literature.

Considering table 2.3 for thinner shells

(R/h = 500) it is seen that the Donnell-Mushtari,

Fliigge, Houghton-Johns, and membrane equa-

tions again give results which differ considerably

t

TABLE 2.2.--Frequency Parameters for Circular Cylindrical Shells of Infinite

Length According to Various Theories _ = 0.3, R/h = 20

Shell theory

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Houghton-Johns
Fltigge
Biezeno-Grammel
Reissner-Naghdi-Berry
Sanders
Vlasov
Epstein-Kennard
Kennard Simplified
Membrane

Axial
modes Radial-circumferentiM modes

Lowest Highest

o
o
o
o
o

1.03441 x lO-4
o
o

1.03441 x lO-4
o

1.71796XlO -4
o

1

1

1

1

1

1.00010

1

1

1

1.00028

1.00013

1

J_
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TABLE 2.2.--Frequency Parameters for Circular Cylindrical Shells of Infinite

Length According to Various Theories; _ =0.3, R/h=20--Concluded

Shell theory

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Houghton-Johns

Fliigge

Biezeno-Grammel

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

Kennard Simplified

Membrane

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Houghton-Johns

Fliigge

Biezeno-Grammel

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

Kennard Simplified

Membrane

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Houghton-Johns

Flfigge

Biezeno-Grammel

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

Kennard Simplified

Membrane

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Houghton-Johns

Fliigge

Biezeno-Grammel

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

Kennard Simplified

Membrane

Axial
modes

0.591608

.591608

.591608

.591608

.591608

.591670

.591608

.591623

.591608

.591676

.591608

.591608

1.18322

1.18322

1.18322

1.18322

1.18322

1.18334

1.18322

1.18325

1.18322

1.18334

1.18322

1.18322

1.77482

1.77482

1.77482

1.77482

1.77482

1.77501

1.77482

1.77487

1.77482

1.77501

1.77482

1.77482

Radial-circumferential modes

Lowest Highest

1.02062 X 10 -2

1.47648X 10 -4

1.47648X10 -4

1.02052X10-2i

1.25000X 10 -5

0

1.47648X 10 -4

1.47648X10 -4

0

0

0

0

5.16417X10 -2

3.87307X10 -2

3.87307X10 -2

3.65151X10 -2

5.47755 X 10 -2

3.87306X10 -2

3.87307X10 -2

3.87307X10 -2

3.87307×10 -2

3.87307 X 10 -2

3.87313 X 10 -2

0

.123256

.109548

.109548

.1O8691

.126637

.109557

.1O9548

.109548

.109557

.109638

.109560

0

.224118

.210077

.210077

.209617

.227600

.210102

.210077

.210077

.210102

.210267

.210108

0

n

2.36643

2.36643

2.36643

2.36643

2.36643

2.36668

2.36643

2.36650

2.36643

2.36668

2.36643

2.36643

1.41425

1.30676

1.30676

1.30672

1.30657

1.41416

1.30676

1.30676

1.41416

1.41372

1.41420

1.41416

2.23622

2.23666

2.23666

2.23652

2.23614

2.23615

2.23666

2.23666

2.23615

2.23457

2.23606

2.23607

3.16254

3.16334

3.16334

3.16308

3.16301

3.16249

3.16334

3.16334

3.16249

3.15962

3.16232

3.16228

4.12348

4.12463

4.12463

4.12424

4.12482

4.12344

4.12463

4.12463

4.12344

4.11897

4.12319

4.12311
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TABLE2.3.--FrequencyParameters for Circular Cylindrical Shells of Infinite

Length According to Various Theories; v = 0.3, R/h = 500

Shell theory

DonneU-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Houghton-Johns

Fliigge

Biezeno-Grammel

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

Kennard Simplified

Membrane

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Houghton-Johns

Fltigge

Biezeno-Grammel

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

Kennard Simplified

Membrane

Donnell-Mushtari "

Love-Timoshenko

Goldenveizer-Novozhilov

Houghton-Johns

Fltigge

Biezeno-Grammel

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

Kennard Simplified

Membrane

Donnell-Mushtari

Axial
modes

0.59161

1.18322

Radial-circumferential modes

Lowest Highest

0

0

0

0

0

1.00O00X10 -_

0

0

1. 00000 X 10 -_

0

3.69865X10 -_

0

4.08166X10 -4

.541195

.541195

.540924

.541196

0

.541195

.541195

0

6.90534X10-4i

2.61725X10 -4

0

2.98553×10 -2

1.54919X10 -3

1.54919X10 -3

1.46045X10 -3

2.19075X10 -3

1.54916X10 -3

1.54919X10 -3

1.54919X10-a

1.54916×10 -8

1.69146X10 -3

1.55785X10 -3

0

4.92926X10 -3
Love-Timoshenko

Goldenveizer-Novozhilov

Houghton-Johns

Fltigge

Biezeno-Grammel

Reissner-Naghdi-Berry
Sanders

Vlasov

Epstein-Kennard

Kennard Simplified

Membrane

4.38155 X 10 -8

4.38155X10 -_

4.34721X10 -_

4.42416X10 -a

4.38156X10-3

4.38155X10-3

4.38155X10-3

4.38156 X 10 -3

4.36732X10-3

4.38316X10-3

0

n

1.77482

1.41421

2.23607

2.23607

2.23607

2.23607

2.23607

2.23607

2.23607

2.23607

2.23607

2.23606

2.23607

2.23607

3.16228

3.16228

3.16228

3.16228

3.16228

3.16228

3.16228

3.16228

3.16228

3.16227

3.16228

3.16228

7
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TABLE 2.3.--Frequency Parameters for Circular Cylindrical Shells of Infinite

Length According to Various Theories; _ =0.3 R/h=5OO--Coneluded

Shell theory

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Houghton-Johns

Fliigge

Biezeno-Grammel

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

Kennard Simplified

Membrane

4

Axial
modes

9

Radial-circumferential modes

Lowest Highest

2.36643 8.96144X10 -3

8.40119X10 -3

8.40119 X 10 -3

8.38257X10 -3

7.92069X10 -3

8.40126 X 10 -3

8.40119X10 -3

8.40119X10 -3

8.40126X10 -3

8.28641X 10 -8

8.40174 X10 -3

0

4.12311

4.12311

4.12311

4.12311

4.12311

4.12311

4.12311

4.12311

4.12311

4.12310

4.12311

4.12311
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for those of the other theories for the lowest fre-

quency for n_>2. The Epstein-Kennard theory
now also differs considerably.

The amplitude ratios B/C for the coupled
radial-circumferential modes are determined by

substituting the corresponding frequency into

either of the homogeneous equations governing

these modes (e.g., either of the last two of eqs.

(2.29)). Thus, for example, from equation (2.29)
for the Donnell-Mushtari theory the amplitude

ratio B/C is given by

B n 2
(2.32)

C n2--_ 2

where _2 is given by equations (2.31). For a
discussion of the ordering of the frequencies and

the corresponding mode shapes for various n, see

section 2.3.2 in the case of long shells (small k)

of finite length.

2.3 CLOSED SHELLS---SHEAR DIAPHRAGMS

AT BOTH ENDS

Consider the closed circular cylindrical shell of

finite length l which satisfies • the boundary
conditions

w=M_=N_=v=O at x=0,/ (2.33)

These conditions can be closely approximated in

physical application simply by means of rigidly

attaching a thin, flat, circular cover plate at each

end. The plates would have considerable stiff-

nesses in their own planes, thereby restraining

the v and w components of shell displacement at
their mutual boundaries. However, the plates,

by virtue of their thinness, would have very little
stiffness in the x direction transverse to their

planes; consequently, they would generate neg-

ligible bending moment M_ and longitudinal
membrane force N_ in the shell as the shell

deforms. Because of the capability of the plates

to supply shearing forces N,e to the shell, the type

of boundary conditions satisfied by equations

(2.33) will be called shear diaphragm in this work.

Other terminologies frequently found in the lit-

erature to describe the edge conditions given by

equations (2.33) are "simply supported" and

"freely supported." The phrase "simply sup-

ported" is a carryover from linear beam and plate

theory where it is thought of as a flat edge either

supported by knife edges or hinged. In the case

of a beam or plate, hinged ends are usually found

in practical application as fixed hinges; that is,

fixed with respect to their longitudinal or inplane
directions as well as the transverse direction. For

small deflections yielding the classical linear

theory, this fixity has no effect on the transverse

deflections. Of course, in the case of a shell the

degree of tangential fixity at the edges has a

major effect on transverse deflections and vibra-
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tion frequencies. The phrase "freely supported"

is also misleading for it may connote no tangen-

tial fixity (i.e., N_y=O at x=O,1) at first en-

counter with the reader, although it has also

been used by some authors to identify boundary

conditions of the type u = v = w = M_ = 0 (cf., refs.

2.32 through 2.34).

The circular cylindrical shell supported at both

ends by shear diaphragms (referred to later in

this monograph as SD-SD) has received by far
the most attention in the literature. This is due

to the fact that one simple form of the solutions

to the eighth order differential equations of
motion is also capable of satisfying the SD-SD

boundary conditions exactly. This solution has

already been presented as equations (2.20).
Choosing

=mTrR/1 (m = 1,2, . . .) (2.34)

the boundary condition equations (2.33) are

satisfied exactly. Further substitution of equa-

tions (2.20) into equations (2.1), (2.3), (2.7), and

(2.9) yields the characteristic (or frequency) deter-

minant. The characteristic determinant according

to the Donnell-Mushtari theory has Mready been
indicated as the determinant of the coefficient

matrix of equation (2.21). The determinant may

be expanded to yield a characteristic equation, the

roots of which are the nondimensional frequency
parameter eigenvalues.

2.3.1 Comparison of Theories

The solution procedure described above has
been carried out for each of the shell theories

given in section 2.1.1. The resulting characteristic
equations can be written as

a6_ (K2+k _K2)a4+ (Kl+k _K1)_ 2
-(K0-?k AK0) =0 (2.35)

where _2 is the nondimensional frequency parame-

ter given previously in equation (2.26); k is the

nondimensional thicknessparameter given in

equation (2.6); Ko, K1, K2 are constants arising

from the Donnell-Mushtari theory; and AK1,

AK2, AK3 are modifying constants depending

upon the shell theory being used.

When the characteristic equations are written

in the form of equation (2.35), the differences

among the shell theories insofar as they affect the

computed free vibration frequencies can be seen

more clearly. That is, each coefficient of the cubic

equation in _22differs from the Donnell-Mushtari

theory (and each other) by a term multiplied by k,
which is a small number for thin shells. The

Donnell-Mushtari constants are

1

K2 = 1 -k-_(3 -- ,)(n2+k 2) -_-k(n2+k2) 2

1

K1 =_(1 -- v)[ (3 +2_,) X2+n_-k - (n2+X2) 2

+_]c(n2+_2)3 ] (2.36)

1

K6 = _(1 - ,)[(1 - u2)k4-_-k(n2+ X2)4]

The modifying constants for each shell theory are

given in table 2.4. For simplicity the modifying

constants given in table 2.4 have been linearized

with respect to k. That is, terms containing k 3

and/c 2 which arise in the expansion of the char-

acteristic determinants have been neglected with

respect to those containing only k. A further

simplification which can be made at this point is

to neglect k with respect to unity in the coeffi-

cients KoWAKo, etc. of equation (2.35). This is

precisely the difference between the Biezeno and

Grammel modifying constants and those of

Flfigge. Flfigge (ref. 2.31) made this further sim-

plification, while Biezeno and Grammel (ref. 2.30),

using the same characteristic determinant, did

not. The two types of simplification described

above are examples of why it is often difficult to
compare equations used in different references on
shell vibrations.

The characteristic equation for the membrane
theory is obtained from that of the Donnell-

Mushtari theory by simply setting k = 0.

The cubic equation (2.35) in the nondimen-
sional frequency parameter _2 will have three

roots for fixed values of n and _ (=m_rR/1) (cf.,

the discussion in ref. 2.3). Thus a shell of a given

length may vibrate in any of three distinct modes,
each having the same number of circumferential

and longitudinal waves, and each having its own
distinct frequency. The modes associated with

each frequency can be classified as primarily

radial (or flexural), longitudinal (or axial), or

circumferential (or torsional). The lowest fre-
quency is usually associated with a motion that

is primarily radial.

G
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TABLE 2.4--Modifying Constants for the Characteristic Equation (2.35)

_a

i

r :I

r'._

rq

Shell theory

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

(also Arnold-

Warburton)

Houghton-Johns

(Simplified

Goldenveizer-

Novozhilov)

Biezeno-Grammel a

Fliigge b

Reissner-Naghdi-Berry

Sanders

AK_

(1 -- v) _2 +n s

2(1 -- u)k s +n _

1 3
1 -- =(3 q- u)n 2 +=(1 -- u) k s

z z

9 1

_(1 --u)_sq-_(9-- v)n 2

AK1

(1 --v)X _ +n sq- (1 --v)X 4
1 1

-- _ (3 -- us) X_n 2--7,(3 q-u)n 4

2(1 -- u)hs -}-nS -_-2 (1 --12) _4
1

-- (2 -- v) X_n s -- _ (3 q- _) n4

2(2-- u) kSn2--2n 4

1

-- (3 -- 2 v) lx2 + (2 -- u)n s -_-_ (3 -- 7u) X4

1

- (5 - _)xsn s - _(5 - _)n 4

1 1

_(1 -- _)hs q-n2 q-_ (1 --_)k 4

1 1
--:(1 q-v) (3 -- v)k2n s --7,(3 q-v)n 4

4

9 1 9

_(1 -- v)k Sq-g(9 -- vln s q-_(1 -- u)k 4

1 1 4

--_(4 --3v+3vs)X2n s --_(11 +5v)n

AKo

1

7_(1 --_)[2 (1 --u_)k 4q- (3 q-v)h2n2 -k-n 4

-- (2 +_) (3 -- u)ktn s -- (7 -t- u)hZn 4 --2n 6]

1

(1 -- v) [4 (1 -- u s) _4 q_4k2nS +n 4

--2(2 -- u) (2 -{- u) ken s -- 8hSn 4 --2n 6]

_(1 -- u)[ --2(2 -- u) (2 + _) k4n _ --8k2n 4 --2n _]

1

_(1 -- _) [(4 -- 3_)X4 +2 (2 --v) hSnS+n 4

-- 2 _6 _ 6 k4n 2 _ 2 (4 -- _) XSn 4 _ 2n _]

1

,_(1 -- u) [2 (2 -- _) h2n s+n 4 -- 2uX _

-- 6X4n _ -- 2 (4 -- _) Xsrt 4 -- 2n _]

1 [1_(1--v) _(5+3u)_n2-_-n4--2(2-_-_') hone

--2(3 + _)XSn 4 --2n 6

i(i --_)[ 9-(I--_s)×'+4_2nSq-n _

2 [_4

-- 6×4nS -- 8k2n4-- 2n _

>

C_

o_

F ':l

r

Obtained from equation (2.9d) by keeping all linear terms in k in the expanded determinant.
Obtained from Biezeno and Grammel frequency equation by neglecting ]: with respect to unity.



M

J

r I

q

Shell theory

Vlasov

Epstein-Kennard

Kennard Simplified

Membrane

TABLE 2.4--Modifying Constants

"AK2

1 --2n _

(1 T3,) (2--8p2+3ps)k 2

(1 --v) 2(1 __p)2

(19--37_-19._+v s) v2(n_-X2)

2(1 _.)2 (1 --.)J

(2 -[- _) (4 -- .)n 2

2(1--.) 2(1--_)

- (n_+X2)

For the Characteristic Equation (2.35)--Concluded

AK1

1

5(3 - _) (n' +as) - 2._4

-- (6 --3. + _,2)X_n2 -- (3 -- .)n 4

(3 +8,--5,2-- _.s)_.2 (2 --F-,)n 2
2(1 --,) 2

(6 +4v--8,_+3,s)X 4 _._(n2 -_-X2) s

4(1 --.) 2(1 --v)

(26 --60v-4-40u 2 --3vs--8_4) X_n 2

2(1 -,)
(13 --22,+10,_)n 4

2(1 --_.)

(2-F.) (3 --.)X"q (6-_.)n"
40 -.) 4

(4 -- .) (3 -- .)X2n 2 (12--17.+.2)n 4

4(1 --v) 4(1 --.)

--_(3 -- v) (n2-l-h2) s

AKo

1 2

_(1 --,)[(n +X_) _--_-2,X_--6XCn _

--2(4 -- _.)k_n_--2n _

1 [(2+6v--2, z_(1 -- i.) 2(1 -- 1') 3"s) x_'_-4x_nz

-_ (lq-.) (7--5v) ,

--Sk_n 4 --2n _ ]

1. . [- (2+_)X 4 (2 +.) (2--3.)h_n _

(4--_)X4n _ (8--8.--3._)k_n 4 2n _

2(1--.) 2(1 --.)

1

--_(1 -- _) (n_ A-X') 4

Obtained from equation (2.9d) by keeping all linear terms in k in the expanded determinant.

Obtained from Biezeno and Grammel frequency equation by neglecting k with respect to unity.

t" _I
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The mode shapes (or eigenfunctions) of free vibration are found by returning to the homogeneous

set of equations which yielded the characteristic equation. In the case of the DonneU-Mushtari theory,
this set is given by equation (2.21). Any two of the equations are chosen and the third is discarded.

The two remaining equations can be solved for the ratios of amplitudes, the most convenient ratios to

choose being A/C and B/C. For example, using the first two of equations (2.21), it is clear that they

can be rewritten as

(l_v).Xn j

(2.37)

which can be inverted to find A/C and B/C

corresponding to each of the three frequency

parameters _ which exist for fixed values of n
and X. The resulting mode shapes will not have

true nodal lines; that is, there will be no lines on

the surface of the shell for which u, v, and w will

all be zero.* As can be seen from equations (2.20)

nodal lines will occur so that two of the displace-

ment components will be zero and the other will

be a maximum. As indicated above, the lowest of

the three frequencies for each n and X will usually

yield A/C and B/C ratios less than unity, indi-

cating that the motion is primarily radial. Typical

radial nodal patterns for circular cylindrical

shells supported by shear diaphragms are shown

in figure 2.2 (taken from ref. 2.35),.

Because exact solutions of equation (2.35) can

readily be found, this permits comparison of dif-

ferences in frequencies according to the various

theories for the particular shell curvature and

boundary conditions being used here. Numerous

references are available which take this approach
t

to obtain exact solutions; these references, and

the shell theories which they use are summarized
in table 2.5. In addition to the references in table

2.5, there are others following the same exact

solution procedure, but using a theory other than

those included in table 2.5; this group includes

references 2.50 and 2.93 through 2.97. Other

works, including references 2.98 through 2.107

deal with an energy formulation of the problem.

Other analytical methods such as Galerkin, finite

differences, and finite element techniques are

used in references 2.12, 2.13, 2.16, 2.36, 2.79,

2.84, and 2.108 through 2.114. In many of these

cases the approximate method was used to solve

a more complicated problem (cf., chapter 3) and

n=O n=2 n=3

n= 1 n:4

CIRCUMFERENTIAL NODAL PATTERN

rn=l m=2 m=3

AXIAL NODAL PATTERN

NODAL ARRANGEMENT

_ _/ \ \\ ,/_xff/"-CIRC UM FERE NT IAL

NODE_
_ x_ AXIAL NODE

* In the case of axisymmetric modes (n =0), the radial,

longitudinal, and circumferential motions do completely

uncouple, giving distinct nodal lines.

'FIQURE 2.2.--Nodal patterns for circular cylindrical

shells supported at both ends by shear diaphragms.

(After ref. 2.35)
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TABLE 2.5.--References Using the

Exact Solution Equations (2.9)

Shell theory References

Donnell-Mushtari 2.32 through 2.53, 2.115

Love-Timoshenko 2.32, 2.37, 2.47, 2.54

through 2.59, 2.130

Goldenveizer-Novozhilov 2.3, 2.4, 2.32, 2.42, 2.48,

(also Arnold & Warburton) 2.54, 2.60 through 2.67

Houghton and Johns 2.68

(Simplified Goldenveizer-

"'Novozhilov)

Fliigge 2.20, 2.27, 2.28, 2.31,

2.35, 2.47, 2.48, 2.49,

2.50, 2.54, 2.59, 2.62,

2.66, 2.69 through 2.82

Reissner-Naghdi-Berry 2.83

Sanders 2.84, 2.85

Vlasov 2.47, 2.86, 2.87

Epstein and Kennard 2.54, 2.66, 2.88, 2.89,

2.90

Kennard Simplified 2.91, 2.92

Coupry 2.12, 2.13, 2.62

Yu 2.227

results for the more simple problem discussed in

this section were included as a special case. Lit-
eratu_e sources for experimental results include

references 2.3, 2.4, 2.12, 2.29, 2.33, 2.36, 2.37,

2.39, 2.45, 2.62, 2.64, 2.70, 2.74, 2.83, 2.85, 2.87,

2.88, 2.90, 2.98, 2.99, 2.101, 2.102, 2.103, 2.106,
2.107, 2.116, and 2.117.

To allow for a meaningful comparison between

the various theories on the circular cylindrical

shell supported at both ends by shear diaphragms

it was necessary to perform an independent set of

calculations for the roots of the cubic equation

(2.35) in _2. This procedure was necessary be-

cause of the different thickness/radius and

length/radius ratios used by the various refer-

ences listed above and because of the paucity
of numerical results which are available in the

literature for some theories. Furthermore, to

allow an accurate comparison of theories, tabular
results must be available.

Numerical results for fundamental frequencies

arising from the solution of equation (2.35) by

digital computer are given in table 2.6 for the

shell theories shown, for five circumferential

wave numbers (n = 0, 1, 2, 3, 4), for six values of

length/radius ratio (1/mR=O.1, 0.25, 1, 4, 20,

100), for R/h=20, and for v=0.3. The quotient

l/m indicates that a shell having twice the length
and twice the number of axial half-waves as

another will vibrate at the same frequency as the

latter, because node lines duplicate shear din-

phragm edge conditions. For simplicity, m is
considered to be unity in the discussion of the

tables below. In table 2.7 corresponding results

are given for R/h = 500.
To emphasize the differences in free vibration

frequencies which can result from the various

theories, tables 2.6 and 2.7 list the percent by

which the shell frequency parameters differ from
those found by an exact three-dimensional elas-

ticity solution. Values of the frequency param-

eter _ arising from the elasticity solution are

given in table 2.8. The elasticity solution is

explained in appendix A. In reference 2.118 com-

parisons of the results of eighth order shell the-
ories with the exact three-dimensional elasticity
solutions are also made.

For the case of the very thin shell (R/h = 500)
for l/mR = 0.1 and 0.25, the numerical procedure
was not able to find the roots of the character-

istic determinant of the elasticity solution even

though 30 significant figures were carried during

all phases of the calculations (expansion of the

series for Bessel functions, set-up of the fre-

quency determinant, evaluating the determinant,
etc.). Consequently, the corresponding ten values

listed in table 2.8 are from the widely-used

Fliigge theory instead.
Tables 2.6 and 2.7 also divide the shell theories

into four categories: (1) the Donnell-Mushtari
theory, (2) other general first approximation shell

theories, (3) two "simplified" shell theories ob-

tained from other theories by neglecting k with

respect to unity in the equations of motion (see

see. 2.1.1), and (4) the membrane theory.
From tables 2.6 and 2.7 the following general

conclusions are evident:

I
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(1) The theories within each group show close

agreement with each other over essentially the

entire_ range of length parameter l/mR and for
both thickness ratios. Significant differences exist

only between one group and another.

(2) All theories show close agreement for shells
of moderate length (1�mR = 1, 4) and small num-

bers of circumferential waves (n = 0, 1, 2).

(3) For very thin shells (R/h= 500) the theo-
ries are in closer agreement than for thicker ones

(R/h = 20).

(4) For very short shells (1/mR=O.1, 0.25)
none of the shell theories compare favorably

with eiasticity theory (due to end effects),

although they compare well with each other. The
membrane theory is inadequate in this region.

(5) For very long shells, and n = 0 (l/mR = 20,

100) the theories are in essentially exact agree-
ment (the mode shape is pure torsional for the

fundamental frequency).

(6) For very long shells the membrane theory

is grossly inadequate except for n = 0, 1.
(7) For very long shells and n = 1, most of the

"simplified" theories are completely inadequate,

yielding frequencies which are imaginary (nega-
tive values of the roots for _2). These theories

behave acceptably, however, for all other n.

This same type of behavior was found for

corresponding "simplified" versiqns of the Love-

Timoshenko, Reissner-Naghdi-Berry, and San-

ders theories, although the simplified Kennard

theory behaved acceptably.

(8) For very long shells and n=l, 2 the

Donnell theory is in substantial error, although
the error decreases if n continues to increase

t

(n=3, 4 . . .).

These qualitative conclusions are more readily

apparent from figures 2.3 through 2.10 (from

ref. 2.119) wherein _ is plotted versus l/mR for

the thicker shell (R/h= 20). The numbers used

on these graphs identify the groups of shell
theories as in tables 2.6 and 2.7. The number

"5" indicates the exact, three-dimensional elas-

ticity solution.

As indicated previously, for each n three roots

of the frequency equation exist. Tables 2.6 and

2.7 give the percent by which the lowest non-

trivial frequency for each n deviates from the

corresponding three-dimensional elasticity solu-

tion. The agreement is generally much better

for the higher two modes than the lowest. It
was found that the higher frequencies agreed

within 0.01 percent for all theories, all n, and all

l/mR when R/h was 500. The percentages by

which the higher two frequencies differ from

those of the Fliigge theory are listed in table

2.9 for R/h = 20. Again it is seen that the agree-

ment among the theories is excellent, with only

the Epstein-Kennard theory showing significant

deviation for very short shells. The frequency

parameters according to the Flfigge theory which
are the basis for the comparisons made in table

2.9 are given in table 2.10.

The amplitude ratios A/C and B/C accord-

ing to the Fltigge theory for the lowest fre-

quencies are presented in table 2.11 for n=O,
1, 2, 3, 4 and l/mR=0.25, 1, 4, 20. The percen-

tages by which the amplitude ratios differ from
these values according to the other shell theories

are given in table 2.12 for R/h= 20. These ratios
and the corresponding mode shapes agree very

closely for all the theories except for very short

shells (l/mR = 0.25). The Biezeno-Grammel, Vla-

sov, and Fltigge equations agree closely on ampli-
tude ratios even for short shells. For R/h = 500,

the agreement among the theories for the ampli-
tude ratios was even better. For l/mR = 1, 4, 20

the values of A/C and B/C differed from the

Fltigge theory by less than 0.01 percent for
all theories, as well as for the B/C ratio for

1�mR=0.25. The A/C ratio for 1�mR=0.25

differed among the theories by 0.02 percent or

less for all theories except for n= 1 where the

Fltig_e, Biezeno-Grammel, Vlasov, and Epstein-

Kennard results agreed to within 0.01 percent,
but the others all differed from Fliigge by

approximately 4 percent.

w.
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TABLE 2.6.--Percent Differences in Lowest Frequency Parameters Between Shell Theories

and Three-Dimensional Elasticity Theory; SD-SD Supports; _= 0.3; R/h = 20

J

Shell theory

Group Name

1 Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

Fliigge

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

1�mR

0.1 0.25 1 4 20 100

36.51 8.10 0.17 (a) (a) (a)

36.44 8.08 .17 (a) 0.02 0.02

36.37 8.06 .17 0.03 .04 .04

36.35 7.89 .11 .03 .03 .03

36.38 7.90 .07 --. 01 (a) (a)

36.47 8.09 .15 --.01 '--.01 --.01

36.43 8.08 .17 .02 .02 .02

36.45 7.92 .11 (a) (a) (a)

39.78 7.90 (a) --. 09 -- .07 --. 05

Houghton-Johns 36.51 8.10 .17 (a) (a) (a)

Kennard Simplified 36.51 8.10 .19 (a) (a) (a)

Membrane -90.88 --58.27 --. 93 (a) (a) (a)

Donnell-Mushtari 36.53 8.16 .25 .15 18.89 1683.80

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

Fliigge

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

Houghton-Johns

Kennard Simplified

4 Membrane

1 Donnell-Mushtari

t

2

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

Flfigge

Reissner-Naghdi-Berry
Sanders

Vlasov

Epstein-Kennard

3 Houghton-Johns

Kennard Simplified

Membrane

36.46 8.12

36.39 8.10

36.38 7.94

36.41 7.94

36.50 8.14

36.45 8.12

36.48 7.97

39.81 7.95

• 16 --. 02

.14 --. 02

.12 .01

.07 --. 05

.17 -- .02

.16 --. 02

.11 --.05

(a) -. 01

--. 02 --. 06

--. 02 --. 06

(a) --. 05

-- .05 --. 11

.14 3.90

--. 02 --. 08

--.67 --17.92

• 02 --. 02

36.53 8.14 .13 --.16 --23.45 1432.23i

36.53 8.16 .24 .68 .94 20.97

--90.90 --58.69 --1.34 --.05 --.03 --.03

36.62 8.33 .62 4.85 32.97 33.21

36.55 8.26 .21 .15 .17 --.11

36.48 8.23 .13 --.04 .10 --.12

36.47 8.09 .19 .17 .17 --.10

36.49 8.09 .10 .08 .12 --.14

36.59 8.28 .28 .35 .25 --.10

36.54 8.26 .20 .02 •09 --.11

36.57 8.12 .17 .06 .13 --.09

39.92 8.13 .02 .03 .19 --.02

36.62 8.27 .01 --.74 --5.52 --5.82

36.62 8.32 .46 1.11 .60 --.07

--90.94 --59.93 --3.46 --7.07 --86.68 --99.45

a Differences of less than 0.01 percent•
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TABLE 2.6.--Percent Differences in Lowest Frequency Parameters Between Shell Theories and

Three-Dimensional Elasticity Theory; SD-SD Supports; _ = 0.3; R/h = 20--Concluded
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_roup

Shell theory

Name

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

Flfigge

Reissner-Naghdi-Berry
Sanders

_asov

Epstein-Kennard

Houghton-Johns

Kennard Simplified

Membrane

1 Donnell-Mushtari

Love-Timoshenko
Goldenveizer-Novozhilov

Biezeno-Grammel

Flfigge

Reissner-Naghdi-Berry
Sanders

Vlasov

Epstein-Kennard

Houghton-Johns

Kennard Simplified

Membrane

n

l/mR

0.1 0.25 1 4 20 100

36.77 8.62 1.57 10.35 12.87 12.87

36.69 8.50 .39 .46 .32 .31

36.62 8.45 .21 .25 .31 .30
36.61 8.35 .39 .46 .33 .32

36.63 8.35 .31 .40 .28 .26

36.72 8.53 .56 .69 .33 .31

36.68 8.50 .35 .28 .30 .30

36.71 8.38 .36 .04 .34 .33

40.09 8.42 .15 .35 .42 .42

36.75 8.50 .16 --.37 --.47 --.47

36.76 8.59 .98 1.54 .40 .33

--91.03 --61.89 --10.82 --55.48 --97.74 --99.93

36.97 9.0i 2.94 7.18 7.34 7.34

36.88 8.83 .78 .70 .61 .61

36.81 8.77 .53 .61 .61 .61

36.81 8.70 .79 .71 .63 .63

36.83 8.70 .71 .64 .57 .56

36.92 8.87 1.03 .78 .62 .61

36.88 8.83 .69 .62 .6i .60

36.91 8.73 .77 .71 .64 .64

40.33 8.82 .55 .74 .74 .74

36.95 8.81 .47 .41 .39 .39
36.97 8.95 1.68 1.13 .65 .63

--91.14 --64.44 --28.13 --84.34 --99.32 --99.52

7



TABLE 2.7.--Percent Differences in Lowest Frequency Parameters Between Shell Theories

and Three-Dimensional Elasticity Theory; SD-SD Supports" v = 0.3; R / h = 500

t

Shell theory

Group Name

1 Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Nevozhilov

Biezeno-Grammel

Flfigge

Reissner-Naghdi-Berry
Sanders

Vlasov

Epstein-Kennard

3 Houghton-Johns
Kennard Simplified

4 Membrane

1 Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov
Biezeno-Grammel

Flfigge

Reissner-Naghdi-Berry
Sanders

Vlasov

Epstein-Kennard

3 Houghton-Johns

Kennard Simplified

4 Membrane

1 Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov
Biezeno-Grammel

Flfigge

Reissner-Naghdi-Berry
Sanders

Vlasov

Epstein-Kennard

3 Houghton-Johns

Kennard Simplified

4 Membrane

0

1

1�mR

a 0.1 a 0.25 1 4 20 100

(b) (b) (b) (b) (b) (b)

(b) (b) (b) (b) (b) (b)

(b) (b) (b) (b) (b) (b)

(b) (b) (b) (b) (b) (b)

(b) (b) (b) (b) (b) (b)

(b) (b) (b) (b) (b) (b)

(b) (b) (b) (b) (b) (b)

(b) (b) (b) (b) (b) (b)

--0.01 (b) (b) (b) (b) (b)

(b) (b) (b) (b) (b) (b)

(b) (b) (b) (b) (b) (b)

--14.14 --0.45 (b) (b) (b) (b)

(b) (b) (b) (b) 0.03 17.37

(b) (b) (b) (b) (b) (b)

(b) (b) (b) (b) (b) (b)

(b) (b) (b) (b) (b) (b)

(b) (b) (b) (b) (b) (b)

(b) (b) (b) (b) (b) 0.01

(b) (b) (b) (b) (b) (b)

(b) (b) (b) (b) (b) --.03

--.01 (b) (b) (b) (b) (b)

(b) (b) (b) (b) (b) --21.10

(b) (b) (b) (b) (b) .04

--14.19 --.46 (b) (b) (b) (b)

(b) (b) (b) 0.01 .02 32.92

(b) (b) (b) (b) ,02 .09

(b) (b) (b) (b) .01 .09

(b) (b) (b) (b) .02 ,09

(b) (b) (b) (b) ,02 .09
(b) (b) (b) (b) .02 .10

(b) (b) (b) (b) .01 .09

(b) (b) (b) (b) .01 .09

--.01 (b) (b) (b) .01 .09

(b) (b) (b) (b) --. 44 -- 5.53

(b) (b) (b) (b) .05 .11

--14.32 --.50 --0.01 --.01 --4.16 --86.53

a Comparisons for l/mR=O.1, 0.25 are made with the Flfigge theory, rather than with the three-dimensional
elasticity theory.

b Differences of less than 0.01 percent.



TABLE2.7.--PercentDifferences in Lowest Frequency Parameters Between Shell Theories and

Three-Dimensional Elasticity Theory; SD-SD Supports; _ = 0.3; R/h = 500--Concluded

I

Group

1

Shelltheory

Name

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

Fliigge

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

3 Houghton-Johns
Kennard Simplified

4 Membrane

1 Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

Fliigge

Reissner-Naghdi-Berry
Sanders

Vlasov

Epstein-Kennard

3 Houghton-Johns

Kennard Simplified

4 Membrane

n

l/mR

a 0.1 a 0.25 1 4 20 100

(b) (b) (b) 0.09 9.71 12.42

(b) (b) (b) (b) .09 --.07

(b) (b) (b) (b) .09 --.07
(b) (b) (b) (b) .09 --.07

(b) (b) (b) (b) .09 --.07

(b) (b) (b) (b) .10 --.07
(b) (b) (b) (b) .08 --.07

(b) (b) (b) (b) .09 --.07
--.01 (b) (b) (b) .08 --.07

(b) (b) (b) -- .01 -- .51 --.85

(b) (b) (b) . O1 .14 --. 06

--14.56 --.56 (b) --.33 --50.89 --97.74

(b) (b) .01 --. 15 6.48 6.66

(b) (b) (b) .01 (b) --.01

(b) (b) (b) (b) (b) --.01

(b) (b) (b) .01 (b) --.01

(b) (b) (b) (b) " (b) --.01

(b) (b) (b) .01 (b) --.01

(b) (b) (b) (b) (b) --.01

(b) (b) (b) (b) (b) --.01

--.01 (b) (b) (b) (b) --.01

(b) (b) (b) --.01 --.22 --.20

(b) (b) (b) .03 .02 --.01

--14.88 --.66 (b) --3.08 --83.30 --99.32

Comparisons for 1�mR=0.1, 0.25 are made with the

elasticity theory•
b Differences of less than 0.01 percent•

Fliigge theory, rather than with the three-dimensional

TABLE 2.8.--Lowest Frequency Parameters According to Three-Dimensional

" Theory; SD-SD Supports; _ = 0.3

RIh

2O

500

n

__ m,

0

1

2

3
4

l/mR

0.1 0.25 1 4 20 100

10.4586 2•28505 0.958083 0.464648 0.0929296 0.0185859

10.4670 2.29380 .856414 •257011 .0161063 .000665031

10.4914 2.32041 .675486 .121249 •0392332 •0347711

10•5326 2•36597 .539294 .129881 .109477 .109186

10.5898 2.43231 •492343 •219098 .209008 .208711

(1.11103) (•957994) _.949203 •464648 .0929296 .0185859

(1.11049) (.951993) •844952 .256883 .0161011 .002664824

(1.10890) (.934462) .652148 .112689 •00545243 •00156235

(1•10630) (.906734) .481028 .0580087 .00503724 .00438626

(1.10276) (.870765) .354118 .0353927 .00853409 .00840299

Note: Values in parentheses are from the Fl_igge shell theory.
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TABLE 2.9.--Percent Differences in Higher Frequency Parameters Between Shell Theories

and Fli2gge Theory; SD-SD Supporls; v = 0.3; R/h = 20

J

Shell theory

Group Name

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

Reissner-Naghdi-Berry

Sanders

V]asov

Epstein-Kennard

Houghton-Johns

Kennard Simplified

Membrane

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

l/mR

0.1 0.25 1 4 20 100

--0.07 --0.03 --0.04 (a) (a) (a)

(a) (a) (a) (a) (a) (a)

--. 02 (a) --. 02 (a) (a) (a)

(a) (a) (a) (a) (a) (a)

.03 .02 (a) (a) (a) (a)

(a) (a) (a) (a) (a) (a)

(a)
.01

--. 04

(a)

(a)
(a)

-- .02

(a)

(a)
.01

--.02

(a)

(a)
0.01

(a)
(a)

(a)
0.01

(a)

(a)

(a)
0.01

(a)
(a)

(a) (a) --.01 (a) (a) (a)

(a) (a) (a) (a) (a) .01

--.07 --.03 --.04 (a) (a) (a)

.01 (a) .01 .01 0.01 .01

--.07 --.03 --.02 .29 .17 .17

--2.43 --.31 --.03 --.19 --.08 --.07

--.07 --.03 --.04 (a) (a) (a)

(a) (a) (a) (a) (a) (a)

--. 07 --.03 --. 04 (a) (a) (a)

(a) (a) (a) .01 .02 .02

--. 07 --. 03 --. 04 (a) (a) (a)

(a) (a) (a) (a) (a) (a)

--.07 --.03 --.05 --.02 --.02 --.02

(a) (a) (a) (a) (a) (a)

--.02 (a) --.02 --.02 --.02 --.02

(a) (a) (a) .01 (a) (a)

.03 .01 (a) --.02 --.02 --.02

(a) (a) (a) .01 (a) (a)

(a) (a) --.03 --.04 --.02 --.02

.01 .01 .02 .02 (a) (a)

-.04 -.02 -.02 -.02 -.02 -.02
(a) (a) (a) .01 (a) (a)

--.01 (a) --.01 --.02 --.02 --.02

(a) (a) (a) .01 (a) (a)

--.07 --.03 --.05 --.03 --.02 --.02

.01 .01 .01 (a) (a) (a)

--. 04

-- .02

-- .07

--2.43

-- .03

-- .03

--.03

--.31

-- .01

--. 03

-- .03

-- .03

p--

L-

L:

Difference _0.01 percent. 7
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TABLE 2.9.--Percent Differences in Higher Frequency Parameters Between Shell Theories

and Fli_gge Theory; SD-SD Supports; v = 0.3; R/h = 20--Continued

57

I

Group

Shell theory

Name 0.1

Houghton-Johns - 0.07

(a)

Kennard Simplified 1 -. 07
(a)

Membrane -. 07

(a)

Donnell-Mushtari --. 07

(a)

Love-Timoshenko -.02

(a)

Goldenveizer-Novozhilov

l/mR

-. 03

(a)

--.03

(a)

-. 04

(a)

(a)

(a)

--.05

(a)

-- .06

(a)

--.07

(a)

--. 03

.01

--0.02

.01

-- .02

(_)

-- .03

(a)

--. 06

(a)

-- .05

.03

2O

--.01

(_)

--.02

(_)

-- .06

(a)

--.06

.02

100

--.01

(_)

--.02

(a)

--.06

(a)

-- .06

.02

.03 .01 --.01 --.05 --.06 --.06

(a) (a) .02 .03 .02 .02

(a)
.01

-- .02

(a)

(a)

(a)

-- .03

.01

--. 04

-- .31

--.03

(a)

--. 04

(a)

Biezeno-Grammel (a)
.01

Reissner-Naghdi-Berry -. 04

(a)

Sanders 2 --. 01

(a)

Vlasov --. 07
.01

--. 06

.03

--. 03

.01

--. 02

.02

--.06

.02

--. 09

(b)

--. 03

.01

-- .07

(a)

-- .09

(a)

-- .08

.01

--.04

.02

--.03

.03

-- .08

.03

-- .05

.02

Epstein-Kennard --. 07
--2.44

Houghton-Johns -. 07

(a)

Kennard Simplified --. 07

Membrane --.07

(a)

Donnell-Mushtari

-. 07

.03

--. 05

.02

--. 05

.02

--.06

(a)

--. 13

.02

-- .05

•02

-- .05

(a)

--.07

(a)

--. 08

(a)

--. 07

.03

--.07

•03

--. 09

•03

--.07

.03

--. 07

(a)

-- .02

(a)

.O3

(a)

(a)
.01

-- .04

(a)

Love-Timoshenko

Goldenveizer-Novozhflov

Biezeno Grammel

Reissner-Naghdi-Berry

--. 07

.02

--. 06
.02

-. 05

.02

-- .06

(a)

--. 14

.02

--.06

.02

--. 04

(a)

-- .06

(a)

-- .07

--. 07

--. 07

•03

--.07
.03

-- .09

•06

--. 07

•03

--. 04

(a)

--. 04

(a)

-- .01

(a)

.01

(a)

--.01

.01

--.02

(a)

--.07

.02

-- .06

.02

--.06

.02

--. 06

(a)

--. 14

.02

--.06

.02

--. 04

(a)

-- .06

(a)

--.07

(a)

-- .07

.03

-- .07

.03

-- .09

.03

-- .07

.03

C

a Difference <0.01 percent.
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TABLE 2.9.--Percent Differences in Higher Frequency Parameters Between Shell Theories

and Fli_gge Theory," SD-SD Supports; u = 0.3; R/h = 20--Concluded

Shell theory

Group Name

Sanders

Vlasov
2

Epstein-Kennard

Houghton-Johns

Kennard Simplified

Membrane

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

2 Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

3 Houghton-Johns

Kennard Simplified

4 Membrane

0.1

--0.01

(a)

-- .07

.01

-- .07

--2.46

--.07

(a)

--.07

(a)

--.07

(a)

- .08

(a)

-- .02

(a)

.O3

(a)

(a)
.01

--. 04

(a)

-- .01

(a)

l/mR

0.25

(a)
(_)

--. 04

.01

-- .05

--.32

--.03

(a)

--. 04

(a)

--. 05

(a)

--. 05

(a)

-- .01

(a)

(a)
(_)

-- .02

.02

-- .03

(a)

(a)
(a)

--0.03

• 02

--. 08

.02

-. 13

(a)

--.05

.02

-- .08

(a)

--.11

(a)

--. 09

.01

- .05

.03

--. 05

.03

--.09

• 04

--.06

.03

-- .04

.03

--0.07

.03

-- .08

(a)

--.18

.03

--. 07

• 02

--. 06

(a)

- .08

(a)

-- .08

(a)

--.08

.04

--. 08

• 04

--.10

.03

--.08

.04

-- .07

• 04

2O

--0.07

.03

--. 07

.04

--.19

.04

- . 07

• 02

-- .06

(a)

-- .07

(a)

-- .08

(a)

--.08

.04

-- .08

• 04

--.10

.03

-- .08

.07

--.08

.10

100

--0.07

.03

-- .07

(a)

--.19

.04

-- .07

.02

-- .06

(a)

- .07

(a)

-- .08

(a)

--.08

• 04

-- .08

.04

--.10

.03

--. 08

• 04

--.08

.04

-- .07 -- .05 -- .08 --.08 -- .08 -- .08

• O1 .01 .02 (a) (a) (a)

--.08 --.06 --.16 --.20 --.21 --.21

--2.48 --.33 (a) .03 .04 .04

--.07 -- .03 --.06 -- .08 --.08 --.08

(a) (a) .02 .03 .03 .03

--.08 --.05 --.09 --.07 --.06 --.06

(a) (a) (a) (a) .02 (a)

--.12

(a)

--.09

(a)
--.08

(a)

--.08

(a)
--.06

(a)

-- .08

(a)

?-

_' Difference <0.01 percent.

L
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TABLE 2. l O.--Higher Frequency Parameters A ccording to Fli_gge

Theory; SD-SD Supports; _ = 0.3

R/h

2O

_00

l/_R

0.1

18. 5983

31.4164

18.6079

31.4323

18.6368

31.4800

18.6847

31.5593

18.7516

31.6699

18.5859

31.4173

18.5954

31.4332

18.6237

31.4809

18.6708

31.5603

18.7_66

31.6710

0.25

7.43666

12.5696

7.46093

12.6095

7.53317

12.7281

7.65176

12.9235

7.81423

13.1921

7.43437

12.5700

7.45847

12.6098

7.53021

12.7285

7.64802

12.9239

7.80949

13.1927

1.85928

3.15724

1.98755

3.31870

2.27370

3.75991

2.63998

4.39158

3.06600

5.13976

1.85859

3.15731

1.98631

3.31882

2.27160

3.76012

2.63711

4.39184

3.06248

5.14004

0.710511

1.05458

.888499

1.52574

1.32106

2.34035

1.85602

3.24657

2.42323

4.19160

.710460

1.05456

.888232

1.52571

1.32017

2.34034

1.85451

3.24657

2.42114

4.19162

2O

0.149675

1.00113

.609951

1.41818

1.19015

2.24024

1.77950

3.16569

2.37061

4.12587

.149674

1.00113

.609841

1.41815

1.18946

2.24019

1.77817

3.16566

2.36867

4.12585

• 100

0.029968

1.00004

.592466

1.41440

1.18415

2.23628

1.77627

3.16245

2.36845

4.12323

.029968

1.00004

.592359

1.41437

1.18347

2.23623

1.77496

3.16241

2.36652

4.12321

TABLE 2. ll.--Amplitude Ratios for the Lowest Frequencies According to the Fli_gge
Theory; SD-SD Supports; _ = 0.3

59

J

v"

R/h

2O

500

n
Mode

No. 0.25

A/C

1 0.027453

1 .028648

1 .032050

1 .037160

1 .043299

1 .024004

1 .025077

1 .028120

1 .032664

1 .038064

UmR

B/C

0

.023467

.045471

.064801

.080678

0

.021729

.042056

.059825

.074290

A/C

0.105051

.175923

.248136

.253258

.224076

.104146

.174560

.246201

.250773

.221055

B/C

0

.358264

.427311

.372694

.302545

0

.356523

.425264

.370494

.300182

A/C

0.560678

.993739

.410777

.209999

.125034

.560487

.994089

.410458

.209260

.124085

B/C

0

1.30367

.575505

.360895

.263035

0

1.30423

.575377

.360420

.262315

2O

A/C

2.80248

.407336

.105419

.047283

.026765

2.80243

.407511

.105361

.047129

.026570

B/C

0

1.03268

.50435{

.334954

.25112_

0

1.03293

.50429_

.334617

.250544
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TABLE 2.12.--Percent Differences in Amplitude Ratios Between Shell Theories and Fli_gge

Theory; SD-SD Supports; Lowest Frequency _ = 0.3, R/h = 20

I

Shell theory

Group Name

1 Donnell-Mushtari

2

l/mR

n 0.25 1 4 20

A/C B/C A/C B/C A/C B/C A/C B/C

-9.87 (a) --0.66 (a) --0.03 (a) (a) (a)

Love-Timoshenko -9.87 (a) --. 66 (a) -. 01 (a) 0.02 (a)

Goldenveizer-Novozhilov --9.87 (a) -. 66 (a) (a) (a) .04 (a)

Biezeno-Grammel (a) (a) (a) (a) .04 (a) .03 (a)

Reissner-Naghdi-Berry - 9.87 (a) -. 67 (a) -. 05 (a) (a) (a)

Sanders -9.87 (a) --.66 (a) --. 01 (a) .02 (a)

Vlasov 0 (a) (_) (a) (a) (a) (_) (_) (_)
Epstein-Kennard --3.32 (a) --. 24 (a) --. 08 (a) --. 06 (a)

--9.87 (a) --. 66 (a) --. 03 (a) (a) (a)

--9.87 (a) --. 66 (a) --. 03 (a) (a) (a)

-- 12.58 (a) --. 86 (a) --. 03 (a) (a) (a)

--9.33 1.94 --.25 0.21 .09 0.08 .08 0.04

3 Hought m-Johns

Kennard Simplified

4 Membrane

1 Donnell-Mushtari

2

Love-Timoshenko - 9.46 --. 92 --. 39 --. 07 (a) -. 02 .01 --. 02

Goldenveizer-Novozhilov --9.55 -- 2.92 --. 46 --. 24 --. 02 -. 03 .01 --. 02

Biezeno-Grammel (a) (a) .02 .02 .02 .01 (a) (a)

Reissner-Naghdi-Berry -- 9.46 --. 89 --. 38 --. 05 (a) (a) .01 -. 02

Sanders -- 9.52 - 1.91 --. 44 -. 14 --. 03 -. 03 (a) --. 02

Vlasov 1 (a) (a) .02 .03 .03 .03 .03 .02

Epstein-Kennard - 3.19 .79 -. 13 .10 .12 .19 .12 .20

Houghton-Johns --9.54 --2.82 --.43 --. 15 -. 02 -. 02 (a)

Kennard Simplified -- 9.33 1.94 --. 26 .20 .07 .07 .05

Membrane --12.48 --7.42 -- .78 --.49 .04 .04 .04

Donnell-Mushtari -- 8.01 1.98 (a) .26 .16 .09 .16

(a)
.02

.02

.05

Love-Timoshenko - 8.46 --. 95 --. 27 --. 11 --. 02 --. 07 (a) --. 08

Goldenveizer-Novozhilov -8.76 -2.96 -. 38 -. 27 -. 03 -. 08 (a) -. 08

Biezeno-Grammel (a) (a) .01 .01 (a) (a) (a) (a)

Reissner-Naghdi-Berry -- 8.45 -. 92 --. 24 --. 08 --. 01 --. 07 (a) --. 08

Sanders 2 -8.68 -1.95 -.36 -.19 -.07 -.08 -.05 -.08
Vlasov (a) (a) .02 .03 .03 .03 .04 .02

Epstein-Kennard - 2.88 .83 --. 06 .18 .10 .25 .11 .27

Houghton-Johns -8.74 -2.86 -. 34 -. 21 -. 02 -. 06 (a)

Kennard Simplified - 8.01 2.01 (a) .26 .11 .09 .10

Membrane -12.28 -7.52 -.78 -.48 -.08 I -.02 -.05
I

- .06

.06

- .01

a Difference <0.01 percent.
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TABLE 2.12.--Percent Differences in Amplitude Ratios Between Shell Theories and Fli_gge

Theory; SD-SD Supports," Lowest Frequency _ = 0.3, R/h = 20--Concluded

61

t

Shell theory

Group Name

n

l/mR

0.25 1 4 20

A/C B/C A/¢ B/C A/¢ B/C A/C

Donnell-Mushtari -6.45 2.03 0.13 0.30 0.22 0.09 0.22

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

3 Houghton-Johns

Kennard Simplified

Membrane

1 Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novoz hilov

Biezeno-Grammel

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

B/C

O. 0(

--7.30 --1.00 --.25 --.17 --.05 --.17 --.04 --.19

--7.85 --3.01 --.36 --.32 --.06 --.18 --.04 --.19

(a) (a) (a) (a) (a) (_) (_) (_)
--7.29 --.98 --.22 --.15 --.05 --.17 --.04 --.19

--7.72 --2.03 --.39 --.27 --.14 --.18 --.12 --.19

(a) .01 .03 .03 .04 .02 .04 .02

--2.52 .89 --.04 .28 .08 .35 .09 .38

--7.82 --2.92 --.33 --.27 --.05 --.16 --.03

--6.43 2.11 .14 .35 .19 .16 .18

--12.12 --7.69 --.98 --.59 --.35 --.13 --.33

--5.02 2.10 .23 .33 .28 .09 .28

--6.27 --1.08 --.27 --.27 --.09 --.31 --.08

--7.05 --3.10 --.38 --.42 --.10 --.32 --.08

(_) (_) (a) (a) (a) (a) (a)
--6.25 --1.05 --.25 --.25 --.09 --.31 --.08

--6.90 --2.14 --.47 --.39 --.23 --.33 --.22

(a) .01 .03 .03 .04 .02 .04

--2.19 --.98 --.05 .41 .05 .50 .06

Houghton-Johns _7.02 --3.00 --.35 --.38 --.09 --.30 --.07

Kennard Simplified -4.97 2.26 .29 .46 .30 .25 .30

--12.11 -7.93 -1.35 --.78 --.76 --.27 --.73Membrane

--.17

.13

--.10

.06

-- .33

--.33

(a)
-- .33

--.33

.02

.52

--.31

.22

-- .23

a Difference <0.01 percent.
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2.3.2 Additional Results for Frequencies and

Mode Shapes

In the previous subsection the accuracy of the

shell theories was compared for n=O, 1, 2, 3, 4
circumferential waves. The lowest of three fre-

quencies for each n was determined. However,

no attempt was made to determine the "funda-

mental frequency" (i.e., the lowest frequency

for all n) for any shell. Some fundamental fre-

quencies may have occurred in the tables for

particular values of l/mR, but others will require

larger values of n.

Thus, the complexity of the frequency spec-

trum for the shell is apparent. There appears to

be no simple rule for determining the spacing of

the frequencies as the wave numbers m and n
are varied. This condition is in contrast with

other, more simple, physical systems. For exam-

ple, in the case of the transversely vibrating

prestretched string, the successive natural fre-

quencies are spaced according to the longi-

tudinal wave number n (an integer), while for

a simply supported beam they are spaced by

1/n 2. Considering two dimensional problems, for

an initially taut rectangular membrane the fre-

quencies depend upon _v/(m/a)2--F(n/b) 2, where

m and n are integers and a and b are the mem-

brane length and width, and for a simply sup-

ported rectangular plate ihey vary according to

(m/a)LF (n/b) 2. Such simple behavior is not the

case for the circular cylindrical shell supported

by shear diaphragms (which is the generaliza-

tion of the simple support conditions used in the

other problems described above). To determine

th_ response of a structure excited in a very

complex or random manner it is important to

know the relative spacing of the frequencies.

This spacing can be expressed in terms of the

"modal density" concept. Studies of the modal

density of circular cylindrical shells supported

by shear diaphragms were made in references

2.88, 2.90, 2.120, and 2.195.

A comprehensive study of the circular cylin-

drical shell supported at both ends by shear

diaphragms was made by Forsberg ' (refs. 2.35,

2.72, and 2.73) using the Donnell and Fltigge

theories. In figure 2.11 (taken from ref. 2.35)

the frequency parameter £=o_R'V/p(1-v2)/E is

plotted as a function of the length/radius ratio

1�mR for numbers of circumferential waves n

varying between 0 and 28 for a relatively thin

shell (R/h = 500) according to the Fliigge theory.

It is obvious from figure 2.11 that, for a fixed

number of circumferential waves, the frequency

increases with an increased number of longi-

tudinal half-waves m, and that the fundamental

(lowest) frequency always occurs for m = 1, but

for varying n depending strongly upon the

length/radius ratio of the shell. For example,

for a shell having R/h=500 and 1/R=2, the

fundamental frequency occurs for m= 1, n=8.

However, there are over 90 modes with values

of m up to 6 and n up to 24 having natural fre-

quencies which are less than that for the simple

mode shape m= 1, n= 2 (ref. 2.35)! The funda-

mental frequencies, which are given by the

envelope of figure 2.11 when m=l, are shown

in figure 2.12 for various R/h ratios (ref. 2.35).

Results from both the Fltigge and Donnell-

Mushtari theories are given. Further com-

parisons of frequencies obtained from the

Donnell-Mushtari and Fliigge theories can be

made in figures 2.13 where n is taken to be 2.

fig

3

,.o _o.o_

• \ x x _ \ x n=28

"_,\\\ \ \. _._

02 \\ \ _,

o.o 
FLUGGE EQ.

0.01 (INPLANE INERTIA _i
INCLUDED)
SHEAR DIAPHRAGM

0.005 - BOUNDARY CONDITIONS
w=O,v =0, Mx=O, Nx=O

AT x=O,.I

R/h =500
_=0.3

0.002

0.00! l
0.5 1.0 2 5

"'_... 20

16

NN t4

_12 t0

8

7

6

5

3

I0 20 50 t00

AXIAL WAVELENGTH PARAMETER, m'_R

FIGURE 2.11.--Variation of the frequency parameter £
according to the Fltigge theory (R/h=500). (After
ref. 2.35)
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_FIGURE 2.12.--Fundamental frequency parameters

for various l/R and R/h ratios. (After ref. 2.35)

1.0

i
0.5
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I 0.1
0.05

,, 0.02

0.01

0.005

0.002

0.001
0.5 0.5

"_- - n=2, m =7
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\
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' \
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fT.O,.I \,
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R/h=500- - - ....

.=2, m=, I r_\---__

  .B ANE \
1.0 2 5 10 20 50 100

LENGTH TO RADIUS RATIO .,IZ/R

FIGURE 2.13.--Comparison of Fliigge and Donnell

frequency spectra for n =2. (After ref. 2.35)

As found in section 2.3.1, figures 2.12 and 2.13

show that the Fltigge and Donnell theories agree

closely for short shells, but that the frequencies

differ increasingly as the length (l/R) and

thickness (h/R) ratios increase.

A similar numerical study was made by

Bozich (ref. 2.69), also using the Fliigge theory

and (apparently) v=0.3. Figures 2.14 through

2.17 show lowest values of £ plotted versus

l/mR for R/h=20, 50, 100, and 2000, respec-

tively. In these figures the solid lines corre-

spond to motions which are primarily radial

(A < C, B < C). However, it is also seen that for

the axisymmetric (n=O) and beam bending

(n = 1) modes, as l/mR is increased, the motions

become axial and mixed, respectively, as shown

by the dashed lines. More precisely, Bozich
showed that for n = 0 the motion associated with

l/mR<2 in these figures is primarily radial,

and for 1�mR > 2 it is torsional. Furthermore, for
l/mR >_r, radial motion corresponds to the largest

of the three eigenvalues. F6r n = 1 the amplitude

of the radial and circumferential displacements

corresponding to the lowest eigenvalue are ap-

proximately equal and greater than the axial (or

longitudinal) displacement for 1�mR>3.5, and
the resulting deflection is similar to beam bend-

ing with little deviation in circular cross section.

In figure 2.14 the envelope of the frequency

curves establishes the fundamental frequency

for the R/h ratio of 20. It is interesting to note

that for shells having an 1/R ratio in the vicinity

of unity, the fundamental frequency is asso-

ciated with four circumferential waves (n=4),

whereas for both larger and smaller l/R ratios
the fundamental frequency occurs for smaller

n. For very short shells (1/R <0.3) it is seen that

the fundamental mode is axisymmetric.

Figures 2.18 sad 2.19 (taken from ref. 2.69)

show the frequency spectra of the second and

third eigenvMues for given n and X. A single

figure covers the range of R/h from 20 to 5000

for modes corresponding to the second and third

eigenvalues. For small values of l/mR and n

the second eigenvalue yields amplitude ratios

such that B>A, C (torsional modes) while

modes having larger l/mR and n have ampli-

tude ratios such that A>B, C (axial modes).
The converse of this is found for the third

eigenvalues. In figures 2.20, 2.21, and 2.22 the

,£

_k

= •
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66 VIBRATION OF SHELLS

,o _%___ [ can be seen explicitly in equation (2.21) for the
B\ \_\_...__ , I I Donnell-Mushtari theory. Thus, the second of

6 _.\.,U_\[.!i "_', Ni' I_"_'_.. ["",_": _>..__-_ =o2_ _ the three equations of motion becomes uncou-
4 _ \_\, ! \! I "_ ! I _-- pled and yields a purely torsional mode shape.

/_ ; i , ] From equation (2.21) the frequency parameter

L,I\ _ i _' i i_]-_ °_3 I _'" for this torsional mode according to the Donnell-

.a/\!\ ] \i I _-] [o 1""_-.._ Mushtari theory is found to be

I/\__,._!__ (1. _) (1--_)(mTrRy (2.38)
Furthermore, the other theories lead to varying

I_ \ I I [ \4,_ [ I _ results for the simple formula given in equation

!![ \] _k I ,"'_'_ _ (2.38). Corresponding formulas arising from the
" .04

various theories are given in table 2.13. It is

important to note that in every case the for-

ulas differ from each other by a term which

o2 \_7 _j/ ismultipliedbyk=M/12R2, whichissmallfor

thin shells. Thus, for practical purposes the

o, theories all agree for axisymmetric torsion.

oos \./k. // Returning to the equations of motion in the

ooe _:_/ axisymmetric case, the two remaining equations
are uncoupled from the torsional mode, but do

[ [ i yield a coupling of radial and axial displace-
0040 2 4 6 8 I0 12 14 16 18 20 22

NUMBEROFCIRCUMFERENTIALWAVESn merits. These equations can be written as

FmURE 2.22.--Variation of the fundamental frequency [abf_2 b ][_]=[0] (2.39)parameter _ with n; Fliigge theory, _=0.3, R/h =2000. e -_2

(After ref. 2.69) where, for example, in the case of the Donnell-

Mushtari theory
lowest frequency parameter is plotted versus n
for R/h= 20, 100, and 2000, respectively (in a =k 2, b = -- _k, c= 1+kk 4 (2.40)

ref. 2.69 similar plots are also given for R/h = 50, as seen from equations (2.21). The roots of the

500, 1000, and 5000). This last set of figures characteristic determinant can be determined

serves to emphasize clearly that the minimum from the quadratic formula to be

frequency for a thin circular cylindrical shell 1
of Riven length and supported by shear din- _2=-_[(a+e)+_v/(a-c)_+4b 2] (2.41)

phragms occurs for n=2 or greater, unless

l/R> 10. On the other for very long shells, the Equation (2.41) has two real, positive roots for

minimum frequency always occurs for n=l, _t2 provided that ac>b 2. Substituting from equa-

that is in the beam bending mode. tion (2.40), it is seen that this inequality is al-

Axisymmetrie motion (n = 0) in the case of ways satisfied for the Donnell-Mushtari theory•

shear diaphragm supports leads to more simple Frequency parameters for the axial-radial modes

solutions than for n_0. Looking at the matrix are given in table 2.13 for each of the theories

differential operators for the various theories, considered here. A plot of all three frequency

equations (2.7) and (2.9), it is seen that sub- parameters _22 arising in the axisymmetric case

stitution of the shear diaphragm displacement is shown in figure 2.23 for the Flilgge theory

functions given by equations (2.20) results in (from ref. 2.69). The lowest frequency in the

the vanishing of the terms arising from the off- axisymmetric ease can correspond to either a

• diagonal elements _12, _21, _28, and _32 of the radial or torsional mode, depending upon l/mR,

matrix in the case of n = 0 for every theory. This but is never an axial mode.

l

L

k_

i.
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TABLE 2.13.--Axisymmetric (n=O) Frequency Formulas According to the Various Shell Theories

J

Shell theory

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

(also Arnold-Warburton)

Houghton-Johns

(Simplified

Goldenveizer-Novozhilov)

Biezeno-Grammel

Flfigge

Reissner-Naghdi-Berry

Sanders

_v]asov

Epstein-Kennard

Kennard Simplified

Membrane

_2

Torsional mode

(1 --p)X2

1

(1 - _) (1 +2k)x2

1

_(1 -- g) (1 -k4k)X 2

Same as

Donnell-Mushtari

Same as

Donnell-Mushtari

1

7_)(1--_) (1 +k)X 2

1 (_k)_(1--v) 1-_ X2

Same as

Donnell-Mushtari

Coupled axial-radial modes

{(1 -{-_2 +kh4) _ [(1 --X2)2-_2_2(2_ +kX_--kX4)] 1_2}

Same as Donnell-Mushtari

Same as Donnell-Mushtari

Same as Donnell-Mushtari

1

{(1 -{-k +_2 +kX4)

-T [(1 --X2)2 q-2k +2(2v_--k)k2 +2(1 --4_)kk4-- 2kk6] 1/2}
1

_{ (1 q-X2-ffk;_ 4) _ [(1 --X_)2q-4_2X 2--2kX6] '/_ }

Same as Donnell-Mushtari

Same as Donnell-Mushtari

Same as Biezeno-Grammel

Same as 1 -_-_-k-{-k 2 - _]_h3 q-Ick 4Donnell-Mushtari 2 _ _

[- 2(1 +3_) 4 q-3p-- 18v2 _- 12v 4

• 4(1--_--2v3--2v s) ]1,3]

Sameas 1/(1+ 2q-v /c+h,+kh4_T_[(l__,3),q_-2+'vkW4v,h 3

Donnell-Mushtari 2(\ 2(l--v) ] k 1--v _13'

Same as 1{ (I+XD =-t-[(1 -XD2+4v_X21 _3 }
Donnell-Mushtari

Another interesting set of frequency spectra is

shown in figures 2.24 through 2.27. In these

figures the frequency f_ is plotted versus _ giving

rise to a family of curves for different thickness

ratios in the r_nge 0.002 <h/R <0.100. Looking

at these curves, it is obvious that the frequency

increases as the length of the shell decreases and

as h/R increases; but, in addition, as one moves

from figure 2.24 to figure 2.27 it is apparent that

the family of curves spreads _purt, indicating

greater frequency differences with increasing h/R

for larger values of n. These curves were presented

by Arnold and Warburton (ref. 2.4) using their

own theory (which is the same as the Golden-

veizer-Novozhilov theory).

Behavior of the amplitude ratios for n = 1 and

n=2 is shown pictorially in figures 2.28 and 2.29

(from ref. 2.50, where the Fliigge theory was

used)• The ratios A/C and B/C _re shown for

h/R=O.01 and 0.1 for the three possible modes

which can occur for a fixed value of n and mR/l.

The change in character of the vibration modes

with changing mR/l (as was discussed in con-

junction with figures 2.14 through 2.19) is clearly

seen from these curves•

It should be mentioned that another extensive

\
\,
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set of results is _vailable in the paper by B_ron -,

_nd Bleich (ref. 2.121), where the three fre-

THIRD MODEquencies and their corresponding amplitude ratios -2 _ _0.?I LEGEND:
BIC

for fixed n _nd X are given for n=0 through 6, -3 I A/C------
_=0.3, and, over a r_nge of X. The procedure o, o.a o.3 o.4 o.5 o6 o.7 o.8 o.8 ,.o
followed by them is p_rticularly interesting mR/L
because of the saving in numerical computation :FIGURE 2.29.--Amplitude ratios for n =2; :Fltigge

time. First, they obtained the frequencies _nd theory. (After ref. 2.50)

corresponding amplitude r_tios according to
membrane theory (see sec. 2.3.1). Then they
substituted the mode shapes determined from tangential displacement _mplitudes are only
membrane theory into a strain energy integral _pproximated in the final results.
including bending effects which was derived in No information is available in the literature
ref. 2.122 using the Fliigge theory. Finally, adding which shows the variation of the frequency
the kinetic energy, they computed corrected parameter as a function of Poisson's r_tio. To
frequencies by the simple Rayleigh method. This gain insight into this question a separate set of
procedure is particularly useful because it not c_lcul_tions were made for this monograph using
only avoids finding roots of the cubic equation in the Fliigge theory. The results are shown in tables
£_, equation (2.35), but at the same time it 2.14 and 2.15 for R/h=20 and 500, respectively.
includes tangential inertia effects, although the D_ta are given for shells of short, medium, and

1
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TABLE 2.14.--Variationof f_ with Poisson's Ratio; Fl_gge Theory, R/h = 20

l

n l/mR

0.25

2O

0.25

20

0.25

2O

'0.25

2O

0.25

2.48900

8.88576

12.5664

1.00063

1.11072

1.57079

.111072

.157080

1.00000

2.49923

8.91476

12.6060

.617720

1.49179

1.89647

.0169336

.727043

1.41716

2.53045

9.00109

12.7243

.353470

1.91566

2.62966

.0393118

1.42214

2.23972

2.58419

9.14283

12.9192

.248049

2.45960

2.49463

.109795

2.12666

3.16533

2.66257

9.33700

13.1872

.274969

3.07645

4.38543

0.25

2.47205

7.69720

12.5685

.944513

.967521

1.60179

.0961909

.151972

1.00079

2.48252

7.72232

12.6083

.584886

1.29248

1.93845

.0163488

.631095

1.41796

2.51444

7.79708

12.7270

.339731

1:65992

2.65154

.0392916

1.23187

2.24015

2.56927

7.91982

12.9223

.242124

2.13089

3.49223

.109782

1.84190

3.16563

2.64901

8.08798

13.1909

.272912

2.66482

4.39181

n l/mR

0.49 0

2.43032 0.210224

6.34969 4 20 2.83314

12.5758 4.12548

.788615 2.76785

.823925 0.25 9.57999

1.67245 13.5242

.0793209 .383129

.136518 5 2 3.63215

1.00302 5.31967

2.44144 .339780

6.37042 20 3.54024

12.6157 5.10085

.513257 2.90202

1.06622 0.25 9.86783

1.98842 13.9251

.0146782 .535651

.521410 6 2 4.40258

1.41919 6.27214

2.47525 .498294

6.43216 20 4.24760

12.7343 6.08415

.304552 3.26240

i.36949 0.25 10.5619

2.67526 14.8974

.0392237 .936933

1.01610 8 2 5.77598

2.24061 8.20864

2.53297 .901993

6.53349 20 5.66266

12.9297 8.06298

.225888 3.74921

1.75794 0.25 11.3884

3.50394 16.0616

.109753 1.45587

1.51918 10 2 7.16734

3.16591 10.1685

2.61629 1.42114

6.67232 20 7.07796

13.1984 10.0501

.267254

2.19817

4.39820

0.25

0.210197

2.45374

4.12582

2.75579

8.29843

13.5284

.382416

3.23062

5.32368

.339735

3.06614

5.10124

2.89148

8.54771

13.9299

.535328

3.81310

6.27492

.498225

3.67878

6.08463

3.25461

9.14881

14.9029

.936740

5.00253

8.21038

.901862

4.90435

8.06362

3.74347

9.86473

16.0675

1.45562

6.20758

10.1699

1.42092

6.13015

10.0509

0.49

0.210146

2.02382

4.12606

2.72697

6.84604

13.5360

.380482

2.66477

5.32757

.339648

2.52894

5.10152

2.86658

7.05182

13.9374

.534499

3.14516

6.27751

.498094

3.03425

6.08494

3.23667

7.54803

14.9101

.936327

4.12622

8.21185

.901608

4.04516

8.06404

3.73060

8.13902

16.0741

1.45513

5.12024

10.1710

1.42049

5.05630

10.0514

N-
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TABLE 2.15.--Variation of f_ with Poisson's Ratio; Fl_agge Theory, R/h = 500

71

1

n l/mR

).25

0 2

2(}

).25

1 2

2O

0.25

2 2

2O

0.25

3 2

2O

0.25

4

1.00415

8.88576

12.5664

1.00000

1.11072

1.57079

1.11072

1.57080

1.00000

.997853

8.91456

12.6061

.616967

1.49094

1.89672

.0169361

.726941

1.41714

.979464

9.00031

12.7245

.346579

1.91416

2.63002

.00569731

1.42144

2.23975

.950371

0.14111

12.9196

.204007

2.45747

3.48142

.00510157

2.12528

3.16547

.912612

9.33410

13.1879

.129782

3.07373

4.38594

0.25

0.972321

7.69530

12.5689

.949456

.961939

1.60184

.0961911

.151972

1.00079

.966227

7.72024

12.6087

.584281

1.29165

1.93854

.0163518

.630987

1.41792

.948425

7.79450

12.7274

.332670

1.65854 ,

2.65165

.00552868

1.23118

2.24011

.920267

7.91644

12.9228

.196852

2.12892

3.49238

.00506018

1.84058

3.16563

.883735

8.08358

13.1915

.125497

2.66228

4.39195

n l/mR

0.49 0

0.875778 0.00854580

6.34571 4 20 2.83109

12.5760 4.12576

.793191 .868558

.818764 0.25 9.57575

1.67244 13.5252

.0793213 .0892546

.136518 5 2 3.72665

1.00302 5.32028

.870312 .0136348

6.36628 20 3.53754

12.6158 5.10125

.512748 .820611

1.06532 0.25 9.86211

1.98841 13.9265

.0146818 .0667205

.521288 6 2 4.39870

1.41916 6.27284

.854349 .0199572

6.42752 20 4.24425

12.7345 6.08468

.296780 .721495

1.36807 0.25 10.5532

2.67524 14.8996

.00502229 .0525428

1.01536 8 2 5.77090

2.24053 8.20954

.829109 .0361080

6.52808 20 5.65801

12.9299 8.06375

.176627 .628660

1.75591 0.25 11.3769

3.50388 16.0644

.00494075 .0630049

1.51780 10 2 7.16100

3.16579 10.1696

.796384 .0568884

6.66591 20 7.07198

13.1986 10.0511

.112898

2.19557

4.39811

0.25

0.00853766

2.45181

4.12585

.841133

8.29285

13.5292

.0864402

3.22755

5.32385

.0136326

3.06360

5.10130

.794789

8.54085

13.9308

.0647987

3.80948

6.27509

.0199565

3.67564

6.08471

.699090

9.13931

14.9041

.0517266

4.99777

8.21058

.0361078

4.89999

8.06375

.609649

9.85264

16.0688

.0627190

6.20162

10.1702

.0568884

6.12452

10.0511

0.49

0.00851444

2.02182

4.12592

.758256

6.83847

13.5362

.0780402

2.66160

5.32744

.0136266

2.52632

5.10134

.716833

7.04298

13.9376

.0590512

3.14142

6.27734

.0199545

3.03101

6.08473

.631558

7.53648

14.9104

.0493413

4.12129

8.21161

.0361075

4.04063

8.06376

.552444

8.12471

16.0744

.0619007

5.11400

10.1707

.0568883

5.05041

10.0511
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long length (i.e., 1�mR=0.25, 2, 20) and over a

range of circumferential wave numbers 0 < n < 10.
Poisson's ratio is allowed to vary over its limiting

range for isotropic materials, 0 < _ < 0.5, although
the value 0.49 was taken to avoid difficulties

associated with dividing by zero at certain places

in the computer routine. In addition to the lowest

frequency for each n, the higher two frequencies

are also given.
As shown in table 2.14 the frequencies corre-

sponding to modes which are predominantly
transverse are affected only slightly by changing

Poisson's ratio (see earlier discussion in this sec-

tion to associate frequencies with modes), that

the effect is most important for shells of moderate

length (l/mR = 2), and that the effect is reduced
as the number of circumferential waves increases.

Further, comparing tables 2.14 and 2.15 it is seen

that the frequency parameter £ is more signifi-
cantly affected by v for thinner shells. Finally, it

must be remembered that the frequency parame-

ter _ contains v (i.e., £= _R_v/p(1- _2)/E). Thus,

although £ may decrease with increasing v, the

actual free vibration frequency _ will increase

with increasing _, as expected.
From tables 2.14 and 2.15 it can be seen that

the two largest frequencies for given values of n
and l/mR essentially do not depend upon R/h.

Forsberg (ref. 2.35) used the exact solution
obtained from the Fltigge tl_eory (including tan-

gential inertia) for the SD-SD shell as a basis

for comparison of approximate solutions obtained
by the finite difference method. Sinusoidal vari-

ation of u, v, and w with respect to e and t was

assumed, as in equations (2.20), and the resulting

set df ordinary differential equations of motion

were replaced by their finite difference equiv-

alents. Convergence of the finite difference tech-

nique was then studied, using 10, 20, 50, and

100 equally spaced points along the length of the

shell. Results for the frequency parameters and
modal characteristics exhibited by the various

solutions are displayed in figure 2.30 for a shell

having R/h=500, l/R=lO, n=4, m=l, and

v = 0.3. It is interesting to note that although the

eigenfunetions (mode shapes) are represented

very accurately with as little as 10 points, the

eigenvalues (frequency parameters) converge

much more slowly. This is due to significant dif-

ferences between the higher derivatives of the

MODAL CHARACTERIS TICS OF CYLINDRICAL SHEL L

R/h = 500 _ • 0.01232 ( 10 PTS ) BOUNDARY
_/R=IO.O .Q • 001076 (20 PTS ) CONDITIONS

v:03 _ -0.01028 (5OPTS) w:O
n=4 _ -0.01021 (100 PTS) M_=O

• O.OfOf7 { EXACT) N_ =0
v,O

AT x=O,_

0021
I

:_ 0.01 !
o' t--__
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ooooI /f
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._ °.°°2L- / \--_O,,O0.EXACT

0.00, [T/
< 0[2" i _
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o -2.4
_; t0, 20, EX-3.0
•_ -3.6

(_ -4.2
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-t2.01- ...... ,o"
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O

O
-7-

0 0.2 0.4 0.6 0.8 ,.0

AXIAL COORDINATE,X/,L 0

l?IeUl{E 2.30.--Comparison of finite difference and exact
(Fltigge) solutions for an SD-SD shell; R/h=500,
l/R = lO, n =4, m= l. (After ref. 2.35)

eigenfunctions, as shown by the plots of the force
and moment resultants in figure 2.30, particularly

for the circumferential (hoop) force resultant N0.

Further results showing the convergence of eigen-
values obtained from finite difference solutions

are shown in table 2.16. In reference 2.35 the

|

#

T-



THIN CIRCULAR CYLINDRICAL SHELLS

TABLE 2.16.--Comparison of Frequencies Obtained from Finite Difference and

Exact (Fliigge) Solutions for a SD-SD Shell; v = 0.3

n l/mR

10

10

R/h

100

5OO

5000

100

5OO

5000

500

5OO

10

0.3277

.3274

.3274

.02520

.02397

•02392

__I

• 1264

•01232

Number of grid points

2O

0•3275

i.3272

.3272

.02282

.02146

.02140

.1243

.01076

5O

0.3275

.3272

.3272

.02210

.02069

.02063

.1237

•01028

100

0.3274

.3272

.3272

.02200

.02058

.02052

.1237

I .01021

Exact

0.3274

.3272

.3271

.02195

.02053

.02047

.1236

•01017
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I

following was generally found for frequency

parameters:

(1) Finite difference solutions will give better

results for a short (small l/mR), thick (small

R/h) shell than for a long, thin one.

(2) The accuracies of the finite difference

results slowly decrease as R/h or n increases.

(3) The accuracies of the finite difference

results rapidly decrease as l/mR is increased.

These statements are substantiated by table

2.16.

Further comparisons of the results obtained

using various shell theories and various solution

techniques were made in an excellent survey

paper by Warburton (ref. 2.123).

2.3.3 Strain Energy Distribution

It is interesting to observe how the total strain

energy which occurs at any instant in the shell

(being a maximum, of course, when cos o_t= 1 in

eqs. (2.20) ; i.e., at maximum amplitude) is appor-

tioned between bending and stretching (see eqs.

(2.17) and (2.18)). Arnold and Warburton (ref.

2.3) plotted curves (figs. 2.31 and 2.32) showing

this apportionment for a circular cylindrical shell

having h/R =0.0525 and n= 2 and 4. In figure
2.31 for n = 2 the strain energy is extremely small

for values of X up to 0.5, resulting almost entirely

from bending. At higher values of X, however, the

stretching energy increases rapidly and becomes

predominant, as may be seen from the shaded

0.050

0,020

O.OlO

BENDING EN/

TOTAL STRAIN ENERGY-_

,4"

1,0 2,0 5.0 4.0

X : m';rR

FIGURE 2.31.--Nondimensional strain energy due to

bending and stretching; h/R=O.0525, n<2. (After

ref. 2.3)

>

0.020

0.010

TOTAL STRAIN ENERGY ,.

_-/-//_/////////////_r_ STRETC.,.GENERGY

_III//_IIIII/V_ I I I I I

1.0 2.0 3.0 4.0

_k= m_rR
4

FIGURE 2.32.--Nondimensional strain energy due to

bending and stretching; h/R=O.0525, n=4. (After

ref. 2.3)
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area representing the bending contribution. For

n = 4, however, the bending effect is predominant

throughout the range 0 < X< 4, always contribut-

ing over 1/2 of the total strain energy. •Compar-

ing the two figures for X=1.2, it is seen that

although the total strain energy is approxi-

mately the same for either n=2 or n=4, the

portions due to bending in the two cases are al-

together different. Looking at figure 2.14 (where

h/R=O.0500 and the Fliigge theory was used)

it is evident that the frequency parameter curves

for n=2 and n=4 cross at the corresponding

value of l/mR=_r/X=2.6. Another plot of the
strain energy as a function of the circumfer-

ential wave number n is shown in figure 2.33

(from ref. 2.3) for a thinner shell (R/h= 100)

and for k = 3.82. One observes that the stretching

energy decreases rapidly as n increases, whereas

the bending energy increases. This results in a

curve for total strain energy which has a mini-

mum at n=7. As seen in figure 2.21, the

corresponding minimum in frequency parameter

occurs also in the vicinity of n = 7 for

1�mR = 7r/3.82 = 0.82

Strain energy apportionment between bending

and stretching for circular cylindrical shells sup-

ported by shear diaphragms was also discussed in
references 2.35 and 2.61.

Figure 2.33 helps to dem6nstrate the rationale

!:

f /
O.OO4 _ /

\ /
0o02- \ TOTALSTR ,N /

,,L/ /

o ....... _'-,- , _---÷---_- ....
12 20 28

FIGURE 2.33.--Nondimensional strain energy due to

bending and stretching; h/R=O.O1, X=3.82. (After

ref. 2.3)

for using the membrane theory for small n and a

theory which considers bending only for large n.

This latter theory (called an "inextensional the-

ory") was proposed by Rayleigh (ref. 2".124) in
1881 and will be discussed in connection with

free-free shells (see sec. 2.4.5).

2.3.4 Neglect of Tangential Inertia

As seen earlier in this section, for wide ranges of
h/R, X, and n (but not for all values) the funda-

mental frequency corresponds to a mode shape

which is primarily radial, and the tangential

displacements are then relatively small. Con-

sequently, one important simplification which

is frequently made in the equations of mo-

tion is to neglect the tangential (axial and

circumferential) inertia terms.

Neglect of tangential inertia terms in the equa-
tions of motion eliminates two of the terms con-

taining 22 in the characteristic determinant (cf.,

eq. (2.21)) and reduces the characteristic equa-

tion (2.35) to a linear equation in _22. The

resulting simple formulas for the frequency
parameter can be written as

Ko+k AKo
_2 = (2.42)

/_1 "-_- k A/_ 1

where K0 and A/_o are as given previously in

equation (2.36) and table 2.4, respectively,

/_1 = _ ()_2-_n2) 2 (2.43)

and values of AKi, according to the various

theories, are given in table 2.17. The single

frequency in every case, of course, describes a
radial mode of vibration.

The effects of neglecting tangential inertia in
the various theories can be seen in tables 2.18

and 2.19. In these tables the percent change in

the frequency parameter _t when tangential

inertia is neglected is given relative to the value

of _ obtained from each shell theory when
tangential inertia is included.

The following general conclusions are apparent:

(1) Neglecting tangential inertia causes all
frequencies associated with radial modes to

increase, with the exception of the axisymmetric
(n=0) case.

(2) For R/h= 20 and any given n and l/mR,

d

,2

it.-
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the frequency changes are approximately the
same for all theories. The approximation becomes

practically exact for R/h = 500.

(3) The frequency changes are essentially

independent of R/h ratio.

(4) The differences are generally more signifi-

cant for long shells than for short ones.

(5) Large differences occur for small n(n=O,

1, 2) and decrease as n increases. Neglecting

tangential inertia is completely unacceptable for

long shells in their beam bending (n = 1) modes.

It must be remembered that tables 2.18 and 2.19

only indicate the changes in frequencies due to

neglecting tangential inertia, and that con-

siderable differences can exist among the fre-

quencies generated by the various theories, as
was discussed earlier in section 2.3.1.

It was pointed out by Forsberg (ref. 2.35) that

neglect of tangential inertia in the beam bending

(n = 1) mode effectively results in leaving half of
the shell inertia out of the calculations. Because

the frequency depends upon the square root of

the mass, having half as much mass yields a

frequency which is _¢/2 greater when tangential

inertia is omitted for long shells and n = 1. This
was also observed in tables 2.18 and 2.19.

The change in frequency spectrum in the case

of axisymmetric (n = 0) motion is 91early shown

in figure 2.34 (from ref. 2.35). The three distinct
modes are replaced by a single mode which is

primarily radial when tangential inertia is

neglected. This causes the significant negative
difference where the transition zone between

longitudinal and radial modes normally occur

(i.e., 2 <l/mR <5).

A comparison of the effects of neglecting

tangential inertia for other numbers of cir-

cumferential waves can also be seen in figure 2.35

(from ref. 2.35), where the lowest g is plotted

versus l/R for various R/h ratios. Results from

the Flfigge theory, with and without tangential

inertia, and the Donnell theory without tan-

gential inertia are shown in this figure. For very

thin shells (R/h = 5000) the effect of neglecting

tangential inertia is essentially negligible, but

the frequency is increased considerably for large

h/R and l/R ratios. Again it is seen that the
differences between the Donnell-Mushtari and

Flfigge theories (this time neglecting tangential

inertia) increase as h/R and 1/R increase.

TABLE 2.17.--Parameters AK1 for the Direct

Calculation of Frequency Parameters (by eq.

(2.42)) when Tangential Inertia Is Neglected

Shell theory A/_I

Donnell-Mushtari 0

k_n2

Love-Timoshenko (1 --p)h 4 + (3 --2_ + p2)___

n 4

Goldenveizer-Novozhilov 2(1 - _)k4+ (2-2v + _2)},2n _

(also Arnold- n 4

+ (1 - v)-_-Warburton)

k4

Biezeno-Gramm el 3 (1 - v)_ + (1 - v)*_2n 2

n 4

+(1-_)-_

Fltigge 0

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

X4 X2n 2

(_ - _)_ + (5- 2_ + _2)-_-
n 4

+(1 --v)_

X4 k_n 2

9 (1 -- _)-_- + (8 -- 5v + v_)--_ -

+[-5(1 -- v)_

v (2 -- 9_ +6v2)._,4

4(1 -- v)

14--23v+7v_ n_
4(1 -- v)

8-- 17p + 10V'n4
4(l--v)

p2

(x_+n 2)8

2 ( 1 -- v i

Houghton-Johns (Simpli- 0

fled Golden.-Novo.)

Kennard Simplified 0

Membrane 0

I

£,
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TABLE 2.18.--Percent Change in Transverse Mode Frequency Parameter by Neglecting Tangential

Inertia Terms; SD-SD Supports, _ = 0.3, R/h = 20

I

_roup

Shell theory l/mR

Name 0.1

Donnell-Mushtari 0.01

Love-Timoshenko .04

Goldenveizer-Nevozhilov .06
Biezeno-Grammel .05

Fltigge .07

Reissner-Naghdi-Berry 0 .02
Sanders -- 2.80

Vlasov .01

Epstein-Kennard -. 53

Houghton-Johns .01

Kennard Simplified .01

Membrane

1 Donnell-Mushtari

2

(a)

.01

Love-Timoshenko .04

Goldenveizer-Novozhilov .07

Biezeno-Grammel .06

Flfigge .07

Reissner-Naghdi-Berry 1 .02
Sanders .04

Vlasov .14

Epstein-Kennard --. 53

t

Houghton-Johns .01

Kennard Simplified .01

Membrane (a)

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

Fltigge

Reissner-Naghdi-Berry
Sanders

Vlasov

Epstein-Kennard

Houghton-Johns

Kennard Simplified

Membrane

.01

.04

.07

.06

.07

.02

.04

.02

-.53

.01

.01

.01

0.25

0.03

.03

.03

.04

.06

.03

.03

.04

.02

.O3

.03

.O3

.O4

.04

.05

.05

.07

.04

.04

.05

.03

1

0.50

.50

.50

.51

.54

.51

.50

.51

.51

.50

.50

.50

2.53

2.54

2.55

2.54

2.57

2.54

2.54

2.54

2.54

.04 2.55

.04 2.53

.04 2.51

.07 4.13

.07 4.16

.08 4.16

.08 4.14

.10 4.21

.07 4.14

•07 4.16

•O7 4.14

•06 4.14

•07 4.17

.07 4.12

• 06 4.10

--9.54

--9.54

--9.54

--9.54

--9.54

--9.55

--9.54

--9.54

--9.35

--9.54

--9.63

--9.54

41.69

41.69

41.68
41.68

41.72

41.68

41.69

41.69

41.70

42.09

41.69

41.68

13.13

13.15

13.15

13.13

13.19

13.14

13.15

13.13

13.12

13.16

13.13

13.12

2O

--4.71

--4.71

--4.71

--4.71

--4.71

--4.72

--4.71

--4.71

--4.61

--4.71

--4.70

--4.71

42.67

42.67

42.67

42.67

42.69

42.67

42.67

42.67

42.67

42.68

42.67

42.67

11.92

11.93

11.93

11.92

11.98

11.93

11.93

11.92

11.89

11.93

11.92

11.91

100

--4.61

--4.61

--4.61

--4.61

--4.61

--4.62

--4.61

--4.61

--4.51

--4.61

--4.61

--4.61

41.48

41.48

41.48

41.48

41.51

41.48

41.48

41.48

41.48

41.49

41.49

41.48

11.82

11.83
11.83

11.81

11.88

11.83
11.83

11.81

11.79

11.83

11.82

11.81

Frequency changes less than 0.01 percent•
b Imaginary frequencies.

L
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TABLE2.18.--PercentChange in Transverse Mode Frequency Parameter by Neglecting Tangential

• Inertia Terms; SD-SD Supports, _ = 0.3, R/h = 20--Concluded

t

Shell theory

Group Name

1 Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

Fliigge

Reissner-Naghdi-Berry

_,Sanders
Vlasov

Epstein-Kennard

Houghton-Johns

Kennard Simplified

4 Membrane

1 Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

Flfigge

Reissner-Naghdi-Berry
Sanders

Vlasov

Epstein-Kennard

Houghton-Johns

Kennard Simplified

Membrane

l/mR

0.1

0.01

.04

.07

.06

.08

.03

.05

.02

-- .54

.01

.01

.01

.01

.05

.08

•07

.08

.03

.05

.02

-- .54

0.25

O. 10

.12

.12

.12

.14

.11

.12.

.11

.01

.12

• 10

.10

.15

.17

.17

.16

.19

• 16

.17

.16

.14

3.78

3.82

3.82

3.79

3.85

3.80

3.82

3.79

3.79

3.83

3.78

3.75

2.89

2.92

2.93

2.90

2.97

2.91

2.93

2.90

2.89

5.84

5.86

5.86

5.84

5.91

5.84
5.86

5.84

5.82

5.86

5.84

5.82

3.25

3.27

3.27

3.25

3.22

3.27

3.27

3.25

3.22

2O

5.44

5.46

5.46

5.44

5.51

5.46,

5.46

5.44

5.41

5.46

5.45

5.43

3.10

3.11

3.11

3.09

3.17

3.11

3.11

3.09

3.06

100

5.42

5.44

5.44

5.42

5.49

5.44

5.44

5.42

5.39

5.44

5.42

5.41

3.09

3.11

3.11

3.08

3.16

3.11

3.11

3.09

3• 06

.02 .17 2.93 3.27 3.11 3.11

.01 .15 2.88 3.25 3.10 3.09

.01 .14 2.85 3.23 3.09 3.08

llabL
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TABLE 2.19.--Percent Change in Transverse Mode Frequency Parameter by Neglecting Tangential

Inertia Terms," SD-SD Supports," v = 0.3, R/h = 500

Shelltheory

Group Name

1 Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

Fltigge

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

3 Houghton-Johns

Kennard Simplified

4 Membrane

1 Donnell-Mushtari

Love-Timoshenko

Gold _nveizer-Novozhilov

Biezeno-Grammel

Fltigge

Reissner-Naghdi-Berry

Sanders

Vlasov

Epstein-Kennard

Houghton-Johns

Kennard Simplified

4 Membrane

1 Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novoz hilov

Biezeno-Grammel

Flfigge

Reissner-Naghdi-Berry

Sanders

V_asov

Epstein-Kennard

Houghton-Johns

Kennard Simplified

Membrane

l/mR

0.1

(a)

(_)
(_)
(a)
(_)
(_)
(-)
(_)
(_)

(a)
(a)

(a)

(a)

(a)
(_)
(_)
(a)
(a)
(_)
(_)
(_)

(,)
(_)

(a)

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

0.25

0.03

.03

.03

.03

.03

.03

.03

.03

.03

.03

.03

. O3

. O4

.04

.04

.04

.04

.04

.04

.04

• 04

.O4

.04

. O4

. O6

.06

.06

.06

.06

.06

.06

.06

.06

.06

.06

.O6

0.50

.5O

.50

.50

.50

.50

.50

.50

.50

.5O

.50

.5O

2.51

2.51

2.51

2.51

2.51

2.51

2.51

2.51

2.51

2.51

2.51

2.51

4.10

4.10

4.10

4.10

4.10

4.10

4.10

4.10

4.10

4.10

4.10

4.10

--9.54

--9.54

--9.54

--9.54

--9.54

--9.54

--9.54

--9.54

--9.54

--9.54

--9.54

--9.54

41.68

41.68

41.68

41.68

41.68

41.68

41.68

41.68

41.68

41.68

41.68

41.68

13.12

13.12

13.12

13.12

13.12

13.12

13.12

13.12

13.12

13.12

13.12

13.12

2O

--4.71

--4.71

--4.71

--4.71

--4.71

--4.71

--4.71

--4.71

--4.71

--4.71

--4.71

--4.71

42.67

42.67

42.67

42.67

42.67

42.67

42.67

42.67

42.67

42.67

42.67

42.67

11.91

11.91

11.91

11.91

11.91

11.91

11.91

11.91

11.91

11.91

11.91

11.91

100

--4

--4

--4

--4

--4

--4

--4

--4

--4

--4

--4

--4

41

41

41

41

41

41

41

41

41

41

41

41

11

.61

.61

.61

.61

.61

.61

.61

.61

.61

.61

.61

.61

.48

.48

.48

.48

.48

.48

.48

.48

.48

.48

.48

.48

.81

11.81

11.81

11.81

11.81

11.81

11.81

11.81

11.81

11.81

11.81

11.81

Frequency changes less than 0.01 percent.
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TABLE 2.19.--Percent Change in Transverse Mode Frequency Parameter by Neglecting Tangential

Inertia Terms, • SD-SD Supports," , = 0.3, R/h = 500--Concluded

3roup

Shell theory

Name

Donnell-Mushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

Fltigge
Reissner-Naghdi-Berry

Sanders

"" Vlasov

Epstein-Kennard

Houghton-Johns
Kennard Simplified

Membrane

Donnell-5![ushtari

Love-Timoshenko

Goldenveizer-Novozhilov

Biezeno-Grammel

Fliigge

Reissner-Naghdi-Berry
Sanders

Vlasov

Epstein-Kennard

Houghton-Johns

Kennard Simplified

Membrane

n
l/mR

0.1

0.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.01

.O1

.01

.01

.01

.01

.01

.01

.01

0.25

0.10

.10

.10

.10

• 10

.10

.10

.10

.10

.10

.10

.10

.14

.14

.14

.14

.14

.14

.14

• 14

.14

.13

•14

•14

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.73

2.85

2.85

2.85

2.85

2.85
2.85

2.85

2.85

2.85

2.85

2.85

2.77

5.83

5.83

5.82

5.82

5.83

5.83

5.82

5.82

5.82

5.83

5.82

5.83

3.23

3.23

3.23

3.23

3.23

3.23

3.23

3.23

3.23

3.23

3.23

3.23

2O

5.43

5.43

5.42

5.43

5.43

5.43

5.43

5.43

5.43

5.43

5.43

5.43

3.09

3.09

3.09

3.09

3.09

3.09

3.09

3.09

3.09

3.09

3.09

3.09

100

5.41

5.41

5.41

5.41

5.41

5.41

5.41

5.41

5.41

5.41

5.41

5.41

3.Of

3.Of

3. Of

3. Of

3. Of

3. Of

3.Of

3.Off

3.0_

3.0_

3.0_

3.0_

7
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Neglecting tangential inertia also allows some

simplification of the equations of motion (ref.

2.125) and permits uncoupling of them. Con-

sidering, for example, the Donnell-Mushtari

equations (2.1) and (2.7), if the inertia terms

are dropped from the first two of the three

detailed scalar equations, it is easily found that

the resulting equations can be manipulated to

give

0 4w ,p(1-v2)R 2_ O_w
kVSw-t- (1-- v ) O_-t- _ v' 0-_ =0 (2.44)

2.0

1.0

0.5

3

0.2

0.1
1.0

PRIMARILY
u=OAT

- n=O, _,=0.3 - '

RADIAL. MOTION -_x = O, Jla

Nx =0 AT x=O,- °_-j

CURVES ARE FOR ALL R/h
AND FOR SYMMETRIC

BOUNDARY CONDITIONS

FLOGGE AND DONNELL EQS
(RADIAL INERTIA ONLY)

I I I I

2 5 10 20 50 100

LENGTH TO RADIUS RATIO ._/o

FIGURE 2.34.--Effect of tangential inertia terms on

axisymmetric (n = 0) mode. (After ref. 2.35)

1.0 _.! FLOGGE THF'ORY '

0.5 ,_-S (TANG. INERTIA INCL.)

-' FLO_;GE THEORY
_. (TANG. INERTIA NEG.)

0.2 _,,_--- DONN ELL THEORY
\\\ [ _s _-_, (TANG. INERTIA NEe.)

. I

i o, %:,_ "_'_1_"L'-7 ...... 7-+....

0.02 "_ "_-- _'_

o_ "_ _"0.01 R/'h=50 _'-%\'_

R/h=5000-/ \_ "%

0.005 -_

SHEAR DIAPHRAGM %_ BOUNDARY CONDITIONS_
0.002 w=O,v=O, Mx=O,Nx=O

ATx=O,£ I
0.001 ' '

0.5 t.0 2 5 t0 20

LENGTH TO RADIUS RATIO ,_/h

•\n =2

K
5O 100

FIGURE 2.35.--Effect upon _ of neglecting tangential

inertia. (After ref. 2.35)

and two other fourth order equations in terms of

u and w, and v and w containing the tangential

displacements which are

03w O_w }

V4u = _"Os_ as oo2 (2.45)
03w

This uncoupling permits the calculation of the

eigenvalues directing from the single equation

(2.44), whereas amplitude ratios are obtained

by substituting the resulting solutions for w into

equations (2.45). Further, whereas the type of

uncoupling shown above in equations (2.44) and

(2.45) can be accomplished for each of the theo-

ries when tangential inertia is neglected, the

Donnelt-Mushtari equations can also be uncou-

pled without neglecting tangential inertia. The

resulting Donnell-type equations, which are more

complicated than equations (2.44) and (2.45) are

given by Yu (ref. 2.32).

2.3.5 Further Simplifications

Another type of simplification in the shell

equations can be made when the circumferential

wave length is small relative to the axial wave

length ,_.e.,

X2<<n2 (2.46)

This simplification was proposed by Yu (ref.

2.32) and seems particularly reasonable for a

Donnell-Mushtari (or shallow shell) type of the-

ory because, as seen earlier in this chapter, the

Donnell-Mushtari theory is less applicable for

small n. Thus, as in reference 2.32, under the

assumption of equation (2.46) the Donnell-

Mushtari coefficients of the characteristic equa-

I

7 _

J,,



tion 5o

(2.36) to give
4O

K2 = 1+:(3-- _,)n2Wkn 4
3o

gl= [(1-_)nKn_+l)+(3-_)kn 6] (2.47) _ 2o

1 8 Io
Ko=-_(1--v)[(l--v2)X4+kn ]

0
0

The modifying constants for equation (2.35)

given in table 2.4 for other shell theories can
similarl_ be simplified by the assumption of

equation (2.46). For example, the modifying
constants for the Fliigge characteristic equation

become (ref. 2.32) so

AK2 = 0 / 40

AK1 = 0 / (2.48) _ 30AK0 = n4(1 -- 2n _)
20 ......

No extensive calculations are available in the

literature which show the effect of Yu's simplifi- Io

cation on the results obtained, although some dis- o
cussion of loss of accuracy is given in references o

2.32 and 2.48. Armenakas (ref. 2.50) examined

the effect of the Yu simplificationwhen tangen-

tial inertia was also neglected. He showed that

for this extensive simplification the frequency

parameter reduces to

(1-_2)X 4
_t_ _-k(n2--X2) 2 (2.49)

for both tl_e Fltigge and Donnell-Mushtari the-

ories. This formula was also obtained by Reissner

(ref. 2.125) by making the same assumptions in

shallow shell theory. In figures 2.36 and 2.37

(from ref. 2.50) the percent change in £ resulting

from neglecting tangential inertia alone (in the

Fliigge theory) and from Yu's simplification in

addition (i.e., using eq. (2.49)) is shown for

R/h = 100 and 10, respectively.

Another simplification of equation (2.35) can
be made when it is known that one of the three

roots is much smaller than the others (cf., refs.

2.33, 2.62 and 2.69), as in the case of large values

of R/h and l/mR (however, often the lowest two

roots are of the same order of magnitude, despite

THIN CIRCULAR CYLINDRICAL SHELLS

(2.35) simplify from those of equations

81

3

I

-----

0.2

i NEGLECTING TANGENTIAL

INERTIA ONLY

----- FROM ¢q.(2.49)

n=l

0.4 0.6 0.8 1.0

mR/,_

FIGURE 2.36.--Percent error in frequency parameter by

neglecting tangential inertia and assuming Xg<<n 2 in

the Fltigge theory; R/h = 100. (After ref. 2.50)

= n =5 _'_

n:8_ n =5,-_

\'% n =4-._,

0.2 0.4 0.6

-- NEGLECTING TANGENTIAL
INERTIA ONLY

----- FROM eq.(2.49)

t
0.8 1.0

rnR/,_

FIGURE 2.37.--Percent error in frequency parameter by

neglecting tangential inertia and assuming X2<<n2 in

the Fltigge theory; R/h = 10. (After ref. 2.50)

frequent statements to the contrary which ap-
pear in the literature). In such cases the cubic

and second degree terms in _22 can be dropped

from equation (2.35), leaving a linear equation

for the fundamental frequency. The frequency

parameter thus obtained is given by

Ko+k AKo
£5= (2.50)

Kl+k AK1

where K0 and K_ are as given previously in equa-

tions (2.36) and AK0 and AK1 as given in table

2.4. The single frequency thus obtained is not the

same, however, as that when tangential inertia

is ignored.
In reference 2.50 the errors introduced by

using either equation (2.49) or equation (2.50)

(for the Fliigge theory) are compared.

l

7"
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Intermediate accuracy can be obtained by

dropping only the cubic term in _2 in equation

(2.35) and solving the resultant quadratic equa-
tion in _2. In reference 2.50 the errors introduced

by using tile linearized form (eq. (2.50)) and the

quadratic forms of simplification of equation

(2.35) were analyzed. The results are shown in
table 2.20.

Another approximate formula arising from a

modification of the quadratic equation in f12 (cf.,

refs. 2.4, 2.126, and 2.127) for small values of _2 is

K0 K2

for the Donnell-Mushtari theory. For other

theories, of course, K0, K1, and K2 in equation

(2.51) are replaced by K0+AK0, KI+AK1, and

K2WAK2. One obtains this formula from a

quadratic equation of the form

- K2_t' + KI_ 2- K0 = 0 (2.52)

by substituting the linear solution _2=K0/K1

for _4 and then solving the resulting linear equa-
tion in _2.

It has been seen above that the number of

"simplifications" and "approximations" which

can be made to simplify the procedure of com-

puting frequency parameters is large and tends

to cause confusion. To help clarify the picture,

these simplifications will be summarized below.

Beginning with a single shell theory, as defined

by a set of equations of motion (i.e., eqs. (2.3),

(2.5), (2.7) and (2.9)) the following types of

simplifying assumptions have been encountered

in various places in this section and in preceding

sections of this chapter:

(1) Neglecting k with respect to unity in

equations of motion.

TABLE 2.20.--Percent Error in Frequency Parameter by Using Linearized and Quadratic

Simplifications of Eq. (2.23); Fli_gge Theory

n Frequency mR/l

equation 0.01 0.03 0.05 [ 0.1 0.20 0.30 0.50 0.60 0.8 1.0 2.0 5.0 10.0

h/R =0.001

Linear _------Les's than 1%-----* --1.6 --7.0 --12.2 --13.1 --12.4 --10.4 --3.9 1.0 1.0
1

w J +1.4 +1.7 +1.3 Lessthan1%

Quadratic

Quadratic Less than 1%

Linear * Less than 1% _ -2.0 --2.7 --3.6 -4.5 --5.1 --3.1 -1.0 --1.0

Less than 1%

Linear

Quadratic

* Less than 1% * -1.0 -1.0 -1.6 --2.2 Less than 1%

Negligible

h/R =0.01

+--------Less than 1%---------+ --3.3 -7.0 -12.2 -13.0 -12.4 --10.4 --3.9 --1.1Linear
1

Quadratic

Linear

Quadratic

Linear

Quadratic

Less than 1% +1.4 +1.7 +1.3 Less than 1%

Less than 1% _ { --1.0 --2.8 --3.6 --4.8 --5.2 --3.2 --1.1

Less than 1%

Less than 1% _ --1.0 --1.7 --2.2 --2.3 --1.0

Negligible
F:

k,

k
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(2) Neglecting tangential inertia in equations
of motion.

(3) Neglecting terms containing k 2 and k 3 in

characteristic equation.

(4) Neglecting k with respect to unity iD char-

acteristic equation.

(5) Neglecting _6 and £4 terms in character-

istic equation (linearization).

(6) Neglecting _6 terms in characteristic

equation.
(7) Modified quadratic form of characteristic

equation, f12= (Ko/K1) + (Ko/K1)2(K2/K1).

(8) Yu's assumption, X2<<n 2.

Most of these assumptions are capable of caus-

ing very large changes in the calculated values

of 9 over some ranges of the shell parameters.
Finally, an interesting simplification of an

altogether different type was suggested by
Simmonds (ref. 2.128) to account for the "beam-

like" (n= 1) vibrations of thin shells and was

demonstrated for the case of shear diaphragm

end supports. The shell was represented in turn

by a set of Timoshenko beam equations (i.e.,

including shear deformation), a set of modified

Euler-Bernoulli beam equations, and a set of

modified Timoshenko equations derived so as

to include Poisson ratio and normal pressure

effects in the computation of overall stress-dis-

placement relations for the beam. A cubic fre-

quency equation in £3 which is identical to that

of membrane shell theory (see sec. 2.3.1) evolved

from the modified Timoshenko equations. Of

course, as seen in section 2.3.2, membrane theory

is very accurate to describe the beam-like mode

t

2,5 ,[_I _\ --MODIFIED TIMOSHENKO THEORY

I _ _\%% ------UNMODIFED TIMOSHENKO THEORY I

L- _\\_-----MODIFIED EULER-BERNOULLI THEORY I

20 , \,\.0+ i

_t.O | \ _'_ _. ASYMPTOTIC VALUES " I

0.5 __0.62

0 I I I I I I I

I 2 5 4 5 6 7 8 9 Iq

,_/R

'FIGURE 2.38.--Frequency parameters of an SD-SD shell

as predicted by various beam theories. (After ref.

2.128)

providing the shell is not exceptionally short.

Results for natural frequencies of a thin shell
according to the three beam theories used in

reference 2.128 are given in figure 2.38. Kornecki

(ref. 2.129) showed that the "beam-likd' (n= 1)

modes of long (l/R>>l), circular cylindrical

shells can be represented by the elementary

beam theory, including rotary inertia, but neglect-

ing shear deformation.

2.4 OTHER SIMPLE EDGE CONDITIONS

We now turn to the remaining 135 cases of

closed circular cylindrical shells of finite length

having "simple" boundary conditions of the type

given in section 1.8 at each end. By assuming

solution functions which are generalizations of

equations (2.20) it is possible to obtain exact

solutions for the frequencies and mode shapes of

free vibration for each of the 135 cases, although

the amount of computational work required is

relatively great. The procedure which will be

followed was suggested by Fltigge (ref. 2.31) in

1934, although he did not solve any specific

problem using it. Subsequently, several other

researchers (cf., refs. 2.17, 2.32, 2.34, 2.35, 2.40,

2.72, 2.73, 2.78) have carried the method through
to its fruition.

Suppose that the Donnell-Mushtari thin shell

theory is to be used. The equations of motion

are then determined by the matrix operator

(eq. (2.7)). Periodic behavior with respect to

time and the circumferential angle 0 is preserved

in the solution functions for u, v, and w, but the

periodic variation with respect to s in equations

(2.20) is generalized to an exponential one; i.e.,

u = Ae x" cos n0 cos _t /
I

v = Be x_ sin nO cos _t _ (2.53)
]

w = Ce x+cos n_ cos _t )

where s=x/R; A, B, C, and X are undetermined

constants; n determines the number of circum-

ferential waves; and _ is the frequency, all as

before. Substituting equations (2.53) into the

equations of motion (eq. 2.3) leads to the same

set of equations given in matrix form by equa-

tion (2.21) except that X2 is replaced by-X_ in

the diagonal elements, and X is replaced by -
in the first column of the coefficient matrix.

T_
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l

For a nontrivial solution, the determinant of the

coefficient matrix is set equal to zero, which

yields an algebraic equation of the fourth degree
in k_:

h8+g6h6"}-g4h4"-}-g:k2_-go=O (2.54)

where (ref. 2.40)

4 3(3--_) 2,_2 i
g4 = an ----i_T-__v n _,. |

/

(2.55)

and _2 is the nondimensional frequency param-
eter given by equation (2.26).

The characteristic equation (2.54) is also ob-

tainable from equation (2.35) by substituting

--k 2 for k2 (in this case, of course, k is not given

by eq. (2.34)) into the terms" of equations (2.36)

and collecting terms having like powers of ks in-

stead of _2. In this manner characteristic equa-

tions corresponding to equation (2.35) can be

obtained for the other shell theories by substi-
tuting --k 2 for k s in table 2.4.

For the usual range of parameters and n> 1,

the roots of equation (2.54) were found by Hu
and Wah (ref. 2.40) to have the form

k -- _ M, ± iks, ± (h3 _ ik4) (2.56)

where kl, k2, k3, and k4 are real, positive num-

bers. Similar roots were found by Forsberg (ref.
2.72) for the more complicated characteristic

equation arising from the Fliigge theory. For a
finite shell there will always be at least two roots

of the form ±iX2. For each root the ratios A/C

and B/C can be found by returning to the origi-

nal matrix equation in A, B, and C. The general

solutions for u, v, and w are then expressible in

terms of eight independent, real constants A1,

As, As, . . . , As as follows (ref. 2.40):

u = {A 171e;_, 8 -- A 271e-X, 8 -- A 3ns sin kss

-}-A472 cos kss+Ase×,'(n3 cos _4s

--74 sin Ms)+A6eX,'(74 cos k4s

-_-78 sin k4s)- A7e-_'(_3 cos h4s

+74 sin k4s)+ A se-X,_(74 cos k4s
--73 sin k4s} cos nO cos _t

v= {A1}le_'+ As}le-_,W A3_ s cos kss

-_-A4_2 sin kss-i-As&,'(}3 cos k4s

--}4 sin k4s)WAee_,'(}4 cos k4s

+}3 sin h4s)+A7e-Xo'(}3 cos h4s

-]-_4 sin k4s)- Ase-X_'(_4 cos }_4s

-- _ sin h4s) } sin nO cos o_t

w= {A_eX,'-_-Ase-X,_+ A_ cos _ss

-']-A4 sin kss-k-A_eX, _ cos k4s

+ A _e_," sin k4s-_- A 7e-X__ cos k4s

+Ase -_" sin k4s} cos nO cos wt

where

}_=GI/D1, }s=Gs/Ds,

R_Q_+R2Q_

Q_S-t-Q2S

RsQ_-RIQs

Q12+Q_ _

with

D1

(2.57)

71=H_/D_, 7s=Hs/Ds,

SIQ_+SsQs

Qls__ Q22 -

S2Q_:S1Q2 r

74= Q_2+Q2 , (2.58)

= (1 -- u) M4-_- M212n2(u-- 1) + (3 -- v)fls]
+ (n2-- fls)[(1 -- _)n 2- 2_2]

G_ = n[M2 (u2 + _- 2) -]- (1 - u)n 2 - 2_ 2]

H_ = - M[klSu (1 -- u) +2v(_ s -- n s) +n2(1 -[- u)]

Ds = (1 -- _)ks _- _,2_[2n2 (u -- 1) + (3 -- u)_2]
+ (n 2- _22)[(1 -- u)n _- 2_s]

Gs = n[ - ks_(u_+ u -- 2) + (1 -- u)n 2-- 2_ s]

H2 = ks[k22_,(1 --u) --2_-'(fl2-- n s) -- n2(1 +_,)]

Q, = (1 - _) { (k3 s - k4_) _- 4k32x42 }

+ (k_ s -- k42) {2n2(v -- 1) + (3 -- u)92}
+ (u 2_ _2) {(1 -- u)n _- 2_ 2}

Q2 = 4kak4(k32- k42) (1 -- u)

+ 2k3k4 {2n2(v-- 1) + (3-- u)_2}

R1 = n{ (ka s-- k42) (us -k v -- 2) + (1 -- u)n _ - 2fl s }

R2 = 2nkaM(u 2+_- 2)

S, = -- k_ {_ (1 -- u) (kn 2-- 3k4 _)

--_ 2_, (_2 -- n2) --{- n2 (1 .._- v) }

Ss = -- k4{ u(1 -- u) (3ka 2- k42)

-b 2u (_22--n_)+n2(1 + v)} (2.59)

¢
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Note that the procedure followed above is the
same as would be used to determine the deflected

mode shapes of statically loaded circular cylindri-

cal shells having arbitrary end conditions. The

corresponding characteristic equation is obtained

in this case simply by setting _=0 in equation

(2.35), with K0 and AK0 defined as before by

equations (2.36) and table 2.4. However, for the

static problem it is found that all of the roots of

are complex (ref. 2.131, p. 228), in contrast with

those (eqs. (2.56)) of the free vibration problem.

To complete the solution of the free vibration

problem, four boundary conditions must next

be applied at each end of the shell, s=O and

s=l/R. Because the boundary conditions must
be satisfied for all values of 0 and t allowed to

vary independently this yields a set of eight

homogeneous, simultaneous, linear, algebraic

equations in terms of the eight unknown con-

stants A1, . . . , As. For a nontrivial solution
the determinant of the coefficient matrix of these

equations is set equal to zero, which yields the

frequency parameters _2. These are the roots of
the characteristic determinant for each particular

value of n. If the boundary conditions at the two

ends are identical, the eighth order determinant

can be replaced by two determinants of the

fourth order by taking the origin of the x coor-
dinate at the middle section of the cylinder and

considering separately modes which are sym-
metric and antisymmetric with respect to the
middle section:

Another procedure for the numerical evalua-

tion of the frequency determinant was suggested

by Fltigge (ref. 2.131). Briefly, the procedure

consists of ,selecting the circumferential wave

number n and the frequency parameter _2 in

advance and finding the proper length of the

.... shell to give the chosen frequency.

Vronay and Smith (ref. 2.80) discussed a

method of applying exact solutions whereby the

arbitrary constants are not redefined as real con-

stants, but are left complex, thereby eliminating
the need to monitor the form of the roots of the

characteristic equation (2.54) during its solution.

Yu (ref. 2.32) showed that the characteristic

equation (2.54) is considerably simplified if one

can assume

Ik21<<n _ (2.60)

This assumption restricts one to longitudi-

nal wave lengths which are large in comparison

to the circumferential wave lengths. The

characteristic equation then simplifies to

(1 -- v) (1 -- v_)), 4= 2_ 3- _212+ (3 -- _,)n2+2kn 4]

+_[(1--v)n2(n2+l)

+ (3 -- v)kn 6] -- (1 - v)kn s

(2.61)

having four roots of the type

=K, -K, iK, -iK (2.62)

where K is a real number. The ratios A/C and

B/C in equation (2.53) are then

A _,[2_12+ (1- v)n 2]

C - 2_ 2 -- (3- y)n2_--_ (1 -- p)n4

(2.63)
B --2n_+(1--v)n 3

C 2e_- (3-,)n2_+(1- _)n 4

Reismann (ref. 2.75) showed that the modes

of vibration of circular cylindrical shells of finite

length, for any of the 136 possible sets of simple

boundary conditions, are related by the orthog-

onality condition

oZ(U_nUi,_+Vi_Vj,_+WinW_,_) dx=O (2.64)

provided that _i_#_'_, where i, j identify sep-

arate modes for a given value of n and U, V, W
are the mode shapes such that

u(x,O,t) = U,_(x) cos nO cos o_t

v(x,O,t) = Vn(x) sin nO cos o:t / (2.65)
w(x,O,t) = Wn(x) cos nO cos o_t

Gontkevich (refs. 2.126 and 2.127) used the

Rayleigh-Ritz method with beam functions (see

sec. 2.4.1 for discussion of this solution method)

to obtain characteristic equations for the six

problems having clamped, shear diaphragm, or
free end conditions at either or both ends of a

circular cylindrical shell. The mode shapes used

are

u = AmXm'(x) cos nO cos _t_
/

v=BmXm(x) sin nO cos _t _ (2.66)
/

w = CmX,,(x) cos nO cos o:t J

where A_, Bin, C_ are amplitude coefficients;

primes are used to indicate differentiation with

respect to the independent variable x; and

Xm(X) is a beam function which is the mth eigen-

function of free vibration of a beam having the

7"
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desired boundary conditions. After employing the Rayleigh-Ritz procedure,

equation in _2 was obtained as follows:

_6_ Ks_4+Kl_:_ K0 = 0

where

a cubic characteristic

(2.67)

um2 ' 1.. 1

K2 = _ -t--_ (;5 -- v)n 2 -_- 1+ 5(1 -- v) _mg,_2+k[n _+ 2 (1 -- v) _,,,gm2+ g, 4_ 2n2#m27m +n 4

+2n2um_(1 -- v) (_m +_',,,)]

_mKl= [ u,J+_(l- v),,_n_ ][ n2+_(1- p)_mUm2+ l ]+_(l- v)_m2gm2- V2"rm2g._2-n2gm2[ --_'_

+2n2ttm2(l--v)(5,_+%_) J+[n2+2(l--v)_mttm2J[t_m2+_(l--v)_mn2+_m]

1

+[ (gm2+_(1--v)_mn2)(n2+_(1--v)_mgm2)--n2ttm2[--_a+v(7_+l_,,,) ]2 ][ tt_*4

--2n2g,_27m+n4+2n21_,_(1--v)(_,_+'ym)]--n2[_tm2_,_Tm(1--v)v--2v2#,_2"y,_2+2(t_2

(2.68a)

(2.68b)

(2.68c)

where k = h_/12R _, as before, and

ttm= emR /l

_m= _ (Xm') 2dx (2.69)

, _/_ = X,_"Xm dx
mJO

and the values of _, am, _ are listed in table

2.21 (ref. 2.127) for the six types of boundary
conditions.

Ivanyuta and Finkelshteyn (ref. 2.110) used

the Donnell-Mushtari shell equations and the

Bubnov-Galerkin approximate procedure with

beam functions to arrive at the following general

formula for frequency parameters for the axi-

symmetric modes of shells having arbitrary

boundary conditions:

14 . _ l_la
_t= k_+(1-- v )/_ (2.70)

where

/
l_ = _b_'_b,_ dx

l -- f_' H.,.2-- I _m Wmdx
do

/:l, = ¢_d'Xm dx

l_14==fo _d°fzXmi_Xmz_2 dx dx ]

(2.71)

where _km= ¢_(x), Xm = Xm(x) are beam functions

separately chosen so that

_m(x)=A_m(x) I

wa(x)=B_Xm(x)J
(2.72)

satisfy all of the boundary conditions at the ends.

k_

7
k,
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TABLE 2.21.--Constants for the Characteristic Equation (2.67)
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|

m

0

1

2

3

4

5

>5

0

1

2

3

4

5

>5

Item

_m

SD- .

SD

1.0

1.0

1.0

1.0

1.0

1.0

Clamped-
clamped

0.549880

.746684

.818051

.858553

.884249

2
1

0 -- --

1 v 4.73004

2 2_ 7.853204

3 3_ 10.995608

4 e_ 4_ 14.137166

5 5_ 17.27876

(2m-bl)

2

Clamped-
free

1.321886

1.471208

1. 252875

1. 181963

1. 141465

1. 115749

2

1 (1)m+_ ,_

0.244094

--.603337

--.744024

--.818169

--.858524

--.869100

2

--1+/ 1_

1.875104

4.69409

7.854757

10.995541

14.137168

17.27880

(2m+1)

2

14

Free-
free

2.211601

1.766169

1.545592

1.424419

1.347244

6

--0.549879

--.744024

--.818051

--.858533

--.884249

2
-14

4.73004

7.853204

10.995608

14.137166

17.27876

(2m+1)

2

Clamped-
SD

0.723422

.856926

.902022

.925136

.939525

1

3.9266O

7.06858

10.2102

13.3518

16.4934

(4m-kl)

SD-
free

1. 742904

1. 42280_

1. 293787

1. 22472_

1. 18189_

3
14

--0. 723421

--. 902021

--. 902021

-- .92513(

--. 93952_

1

--1+ 1

3.92660

7.06858

10.2102

13.3518

16.4934

_mnCl)

The function ¢ is an Airy stress function related

to the stress resultants by

1 02_
ix _ -- --

R 2 002

02_
Ne - (2.73)

Ox 2

1 02_
Nxo -_

R Ox 00)

It is clear that because of the independence of

the beam function ¢ and X that this procedure

allows for more general boundary conditions than

using equations (2.66).

2.4.1 Clamped-Clamped

The boundary conditions for the circular cylin-

drical shell which is completely clamped (the

terms "fixed" or "fully fixed" are sometimes used

in the literature) at both ends are

Ow
u=v=w=--=O at x=O,l (2.74)

Ox

For this problem many authors have used the

exact method for obtaining frequencies and mode

shapes which was outlined in section 2.4 (cf.,

refs. 2.32, 2.33, 2.34, 2.35, 2.41, 2.44, 2.45, 2.72,

2.73, and 2.132 through 2.136). However, partly

because of the complexity of the exact procedure,

even more have used the Rayleigh-Ritz method

or an equivalent (cf., refs. 2.4, 2.16, 2.33, 2.34,

2.42, 2.49, 2.65, 2.78, 2.85, 2.103, 2.107, 2.110,

2.114, 2.126, 2.127, and 2.137 through 2.140). The

Ritz method depends upon selection of a set of
trial functions and determination of the relative

amplitudes of the trial functions by minimization

of a suitable energy functional (refs. 2.141 and

2.142). The trial functions need only satisfy the

"essential" or "geometric" boundary conditions
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(these dealing with generalized displacements) of

the problem. The additional boundary conditions

(sometimes called "natural" or "generalized

force" boundary conditions) are then approached

in the limit as long as the set of trial functions

has sufficient completeness. The Rayleigh pro-

cedure assumes a single trial function (or set
of trial functions in u, v, w in this case) and a

frequency is found by substituting this trial

function into Rayleigh's Quotient (ref. 2.24) in-

volving the maximum potential and kinetic ener-

gies of the system. One procedure equivalent to

t_he Rayleigh-Ritz method for this problem uses

Lagrange's equations and the assumed displace-

ment components to obtain a characteristic

determinant for the frequencies. Another equiv-

alent procedure in this case for a given set of

trial functions is that of Bubnov-Galerkin (cf.,

refs. 2.143, 2.144, 2.145, 2.146, and 2.196). All

these procedures give upper bounds on the fre-

quency parameters. Beam functions (see discus-

sion later in this section) are usually used with

the Rayleigh-Ritz methods.

The series method was used in reference 2.147;

the Southwell method, giving lower bounds on

frequency parameters, in reference 2.148; Bolo-

tin's (ref. 2.149) "dynamic edge effect" method in

reference 2.150; the method of "parallel springs"

in reference 2.111; finite differences in references

2.35 and 2.151; and finite elements in reference

2.132. Experimental results were reported in

references 2.4, 2.33, 2.34, 2.44, 2.45, 2.85, 2.103,

2.107, 2.117, 2.137, 2.139, 2.140, 2.152, and 2.153.

The vibration of a clamped-clamped circular

cylindrical shell was also discussed in references
2.68, 2.154, 2.155, and 2.156.

Warburton (ref. 2.78) used the exact proce-

dure and gave the characteristic equations for

symmetric modes which arises from applying the

boundary conditions (for the Fltigge theory):

bl (tanh 03 cos 2 04-t-coth 03 sin 2 04) cos 02
+b2 (tanh 03 tanh 01

--coth 03 coth 01) sin 0"4cos 04 cos 82

+b3 tanh 81 cos 02

+b4 (coth 03-tanh 88) sin 84 cos 04 sin 02

+b5 sin 03

+b6 (tanh 03 sin 204+ coth 08cos _04) tanh 01 sin 03

-t-b7 (coth 03- tanh 03) tanh 01 sin 04 cos 04cos 02

=0 (2.75)

where

01 = Ml/2R

02 = X_l/2R

03 = X3l/2R

X41
04 _--

2R

and the Xi are the roots identified in equation

(2.56). The corresponding equation for the anti-

symmetric modes is obtained from equation (2.75)

by making the following interchanges:

tanh 0_-coth 01t

sin Or-+- cos 02

cos 02--+sin 02 [

tanh 03_eoth 03)

(2.76)

The coefficients b_ which appear in equation

(2.75) are given by

bl = (lc3-- It1) (/c7X4--/csX3) /

/

b2= (k_x,-k,x3)(k_- k3)
+ k6(ksXl-/c2X4)

b3 = (/cTM-- k2X3)k6"

- (k_-k3) (k3xl- k.,x_)

b4 = (ks--/cl) (/c4X3-- kTX_) t (2.77)

b3 = --/¢8(/c4X3--kTX2) +/_8(k4X4--ksX2) /

-_- (ks -- kl) (k4)_4 -- k8_.2)

b6 = k3(/¢4Xl -/c2X_)

bT=0

with the constants /ci related to the amplitude

ratios by

kl = B/C, with X_= M

ks = A/C, with Xr= Xl

k3 = B/C, with X_= X_

k4 = A/C, with X_= X_

ks+ik_=B/C, with X_= X3-t-iX4

k_+ik3 = A/C, with X_= X3-t-iX4

(2.78)

and, for u= 0.3,

t

\



THIN CIRCULAR CYLINDRICAL SHELLS

A/C= X_{0.35- 0.65£2 +k[0.65 (hr 2 /

_ n 2)2"1"1.405Xr 2- 0.95n 2

.1.0.65] } + {0.35n 2- 0.805X, 2

-£_'1"k[--0.7X,2n 2+0.7xr 4

+0.35n2 + 1.35X_2f_ 2]}

B/C=n{O.35-O.65£2+k[O.65(X_ 2 /_ (2.79)

_ n 2) 2-t- 1.405X_ 2-- 0.95n 2

.1.0.65]} + {0.35n2+O.105X,:

+0.3_t_ +k[--O.35Xr4+O.35n 4

-- XJ_-- 0.35n2_t2 +0.315XJ] }

Approximate solutions (to provide initial values

for iterative solutions) can be found by setting

the hyperbolic functions in equations (2.75)

equal to unity, giving

(bl+bs) cos O2+(b_+bG) sin 02=0 (2.80)

for symmetric modes. Similarly, for antisym-
metric modes

(b_.+b_) sin 02--(bs+bG) cos 02=0 (2.81)

Successive roots taken alternatively from equa-

tions (2.80) and (2.81) have increments 02 of

7r/2. The solutions of equations (2.75) and (2.76)

depend only slightly upon the 01 and 03 terms.

Forsberg (ref. 2.35) used the exact procedure

and obtained results using the Fliiggc and

Donnell-Mushtari theories, with and without

tangential inertia. It was found that for the

axisymmetric (n=0) mode the frequencies are

essentially the same_as for the SD-SD boundary

conditions (see sec. 2.3) when the tangential

inertia is considered, and that the frequency
differs slightly when it is neglected, as shown

in figure 2.34_ For the beam-type (n = 1) modes,
however, there is considerable difference be-

tween the results obtained from the two types
of boundary conditions, as shown in figure 2.39.

It is clear from figure 2.39 that the frequency

increase for clamped ends is almost entirely due

to the added stiffness resulting from restraining
the axial displacement u at the ends, rather than

from restraining the end rotations Ow/Ox. For

large values of 1/R the effect of end fixity dis-

appears in this mode. The effects of neglecting
tangential inertia in the two theories for the

clamped boundaries is seen in figure 2.40. En-

velopes of lowest frequencies according to the

Fliigge and Donnell-Mushtari theories, with and
without tangential inertia, for all n are shown

OFR/h

0.1

0.05

0.023

0.01

0.005

ow/Ox=O

--FLOGGE EQ

...... DONNELL EO

i re=l, .v=0.3

I R/h =I007-_

1.0 2 5 10 20 50 100

LENGTH TO RADIUS RATIO ,._/R

89

FIGURE 2.39.--Effects of SD-SD and clamped-clamped

ends upon the frequency parameter; beam bending

mode (n < 1). (After ref. 2.35)

1.0

"BEAM-TYPE" MODES(n= ! )
CLAMPED ENDS

0.5 w=O,v=O, u =0 -

"_ AND ew/ox=O
OR Mx=O

0.2 X2x, AT x =O' "#
LL VALUES //_'_'\

\\

0.02 \

R/h=20: _--

0.01 ---FLUGGE EQ R/| =t00-

( INPLANE INERTIA INCL.) _

0.005 ------ FLUGGE EQ
( RADIAL INERTIA ONLY

...... DONNELL EQ

0.002 ( RADIAL INERTIA ONLY )

m=l,v;O.3 \

o.ool 1 I
0.5 1.0 2 5 10 20 50 100

LENGTH TO RADIUS RATIO _/R

FIGURE 2.40.--Effects of neglecting tangential inertia on

the frequency parameter for clamped-clamped circular

cylindrical shells; beam bending mode (n =1). (After

ref. 2.35)

l

#
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in figure 2.41. As for the SD-SD supports, in-

creasing the number of longitudinal half-waves

m always increases the associated vibration fre-

quency, as shown in figure 2.42 for n=2,

R/h = 100.

Forsberg (ref. 2.72) made some further com-

parisons between the circular cylindrical shell

having both ends fixed and one having shear

diaphragm supports at both ends (see sec. 2.3).

Exact solutions according to the Fliigge theory

were used in both cases. These comparisons are

shown in figures 2.43, 2.44, and 2.45. In each
case as the number of axial half-waves m is

increased the frequency becomes less depen-

dent upon the type of boundary conditions.
This statement is, of course, qualitatively ex-

tendable to changing the shell length rather

than m. However, for m= 1, figure 2.43 shows

that the clamped-clamped frequency is almost

100 percent higher than the SD-SD frequency

in the range 5 < 1/R < 15. In this range the differ-

ence in minimum frequencies is about 50 percent.

An interesting three-dimensional plot showing

the variation of the frequency parameter as a
function of the parameters n and 1/R is depicted

in figure 2.46 (ref. 2.72) for R/h=lO0, u=0.3,
and m = 1. Two surfaces are shown on the same

figure--one for the clamped-clamped shell, the
other for the SD-SD shell. The difference be-

tween the surfaces, for l/R < 1, is primarily due
to the effect of moment restraint; for l/R>l,

the difference is primarily due to the effect of

axial restraint. The curves for m = 1 given pre-

viously in figures 2.43 through 2.45 are cross

sec$ions of figure 2.46. Although figure 2.46 is

only for one longitudinal half-wave m= 1, for

l/R = 1 there are nine values of n which have

frequencies less than the minimum value for

m=2, and for l/R= 10 there are three values,

as can be seen in figure 2.44.

Yu (ref. 2.32) showed that a considerable sim-

plification of the procedure for finding the eigen-

values results if one uses the Donnell equations

and the assumption that the number of circum-

ferential waves is large relative to the number

of axial waves (in particular, if ]X[2<<n_). In this

case the characteristic equation determining the

frequency parameter £ for clamped-clamped cir-

cular cylindrical shells reduces to

cos e cosh e-- 1 = 0 (2.82)

1.0

0.5

0.2

O.t

0.05v

0.02
B

O.Ol

0.005
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0.001
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_:9 "_ (TANG.INERTIAINCL.)

_s_ a_,_ .... FLUGGE THEORY
(TANG"INERTIANEG.)
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(TANG.INERTIANEG.)

!\\

R/h =20-

BOUNDARY CONDITION

_w=O, owlax=O,u=O,v=O

AT x=O, 2.

m_l ,v:03

1.0 2 5 10 20 50 100

LENGTH TO RADIUS RATIO .$/R

FIGURE 2.41.--Effects of lowest frequencies for clamped-

clamped circular cylindrical shells (n = number of cir-

cumferential waves). (After ref. 2.35)
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FIGURE 2.43.--Comparison of frequency parameters be-

tween shells having clamped and shear diaphragm

supports at both ends; n=2, m>_l. (After ref. 2.72)
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FIGURE 2.45.--Comparison of frequency parameters be-

tween shells having clamped and shear diaphragm

supports at both ends, I/R=lO0; m>_l. (After ref.

2.72)
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(After ref. 2.72)
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92 VIBRATION OF SHELLS

where

and where ), is related to the frequency param-

eter by

(1 -- u)(1 -- u2)X4= 2_6-- _412 + (3 - v)n 2
+kn 4]+e2[(1 -- v)n2(n2+ 1)

+(3-- v)kn6]-- (1-- v)kn s (2.84)

(Yu actually gave 2kn 4, for the term kn 4 in eq.

(2.84), but it was corrected by Koval (ref. 2.33),
and the correct form can also be seen from eq.

(2.36) by neglecting X2 with respect to n2.) Equa-

tion (2.82) is recognized to take the same form as

the characteristic equation of free vibration for

a clamped-clamped beam. Successive roots of

equation (2.82) are

= 1.5061r, 2.5007r, 3.5001r, 4.5001r, . . . (2.85)

Substituting these roots into equation (2.84) per-
mits solution for the corresponding _2. The mode

shapes are given by

[ 1 ]w = 2C sinh e- sin _ cosh e- cos e

[(sinh _--sin _)(cosh Xs- cos Xs)

-(cosh e--cos e)(sinh Xs-sin Xs)]
cos nO cos wt

(2.86)

2v_2+(1--v)n 2 Ow

u = 2_ 4_ (3-- v)n2n2 + (1 -- v)n 4 0---s

2n_22--(1--v)n 3 (l_Ow
v = 2_24- (3 -- v)n2_22+ (1 -- u)n4\n}_

Koval and Cranch (refs. 2.33 and 2.34) used

equation (2.84) to obtain frequencies of clamped, _'_

steel shells and compared results with experi-
ment. Calculations were further simplified by

neglecting the terms containing _26 and _4 in

equation (2.84) (see the relevant discussion in

sec. 2.3.5). The resulting frequency formula is

knS+(1--v2)X 4
_2 = (2.87)

1)(n2+ +_-_kn 6n 2

Numerical results are shown in table 2.22 for

steel shells 6 in. in diameter, 12 in. long, and

0.010 in. thick. Theoretical results were calcu-

lated from equation (2.87). In table 2.22 the

parameter [_/n[ 2 is also given, which was as-
sumed to be much less than unity in the theory

used. The percent difference between the theo-

retical and experimental frequencies increases as

[_/nl 2 increases.
Nodal patterns were determined experimen-

tally by sprinkling a mixture of tiny polyvinyl-

chloride (PVC) pellets and magnesium stearate

(in a fine powder form) in a ratio of 10 parts PVC

to one part magnesium stearate. The stearate
coated the PVC pellets so that they tended to

stick to a curved surface and gather at the nodes.

In this way it was possible to count the number
of axial and circumferential waves over the top

180 degrees of the cylinder. One of the nodal pat-
terns obtained with this technique is shown in

figure 2.47. Nodal lines over the bottom half of

the cylinder were detected either by use of a

medical stethoscope or by lightly running a

finger over the shell surface.

In reference 2.33 a comparison was also made

between the Donnell equations and the Morley

(ref. 2.14) modification of the Donnell equations.

When tangential inertia is neglected and Yu's

assumption (see sec. 2.3.5) is made the Donnell

frequency formula becomes

_2 = kn4+ (1--v) 2(_) 4 (2.88)

whereas Morley's modification gives

_2 = k(n 2_ 1)_.+ (1 -- v2) (2.89)

FIGURE 2.47.--Experimentally observed nodal pattern
for a clamped-clamped circular cylindrical shell; m = 5,
n =11. (After refs. 2.33 and 2.34)
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TABLE 2.22.--Ex _erimental and Theoretical Frequencies (cps) for a Steel Shell; l/R = 4, R/h = 300, h = 0.010 in.

Number of circumferential waves, n

Source

3 , 4 5 6 7 8 9 10 11 12 13 14

Experiment

Equation (2.87)
Equation (2.88)

Equation (2.89)

Equation (2.90)

Equation (2.98)

Ix/hi 2

Experiment

Equation (2.87)
Equation (2.88)

Equation (2.89)
Equation (2.90)

Equation (2.98)

Ix/rip

Experiment

Equation (2.87)

Equation (2.88)

Equation (2.89)

Equation (2.90)

Equation (2.98)

Ix/rip

Experiment

Equation (2.87)
Equation (2.88)

Equation (2.89)

Equation (2.90)

Equation (2.98)

Ix/np

Experiment

Equation (2.87)

Equation (2.88)

Equation (2.89)

Equation (2.90)

Equation (2.98)

Ix/rip

1025 700 522 _ 525 592 a 720 885 1095 1310 1560 1850 2140

1587 926 646 563 606 727 891 1088 1311 1554 1827 2118

1671 951 655 564 603 721 855 1082 1305 1552 1821 2113

1673 955 659 573 614 733 899 1097 1316 1563 1833 2124

1431 872 629 565 617 739 905 1101 1323 1569 1837 2127

1176 783 597 552 611 736 902 1100 1321 1568 1837 2128

0.155 0.087 0.056 0.039 0.028 0.022 0.017 0.013 0.012 0.010 0.008 0.007

-- 1620 1210 980 856 _ 900 995 1140 _ 1365 1578 _ 1865 2160

4365 2515 1645 1197 987 940 1009 1153 1349 1577 1841 2128
-- 2592 1676 1211 992 940 1006 1149 1343 1575 1835 2113

-- 2593 1678 1214 998 948 1015 1160 1356 1586 1847 2134

-- 2084 1460 1118 964 949 1034 1186 1384 1616 1877 2162

0.428 0.241 0.154 0.107 0.079 0.060 0.048 0.039 0.032 0.027 0.023 0.020

-- -- -- 1650 1395 1350 1278 _ 1325 1465 1690 _ 1915 _ 2210

8551 4921 3193 2256 1721 1434 1323 1346 1466 1650 1886 2156

-- 5072 3253 2284 1735 1439 1324 1344 1462 1647 1881 2151

-- 5073 3255 2287 1739 1445 1331 1353 1472 1658 1892 2163

-- 3434 2503 1911 1551 1366 1319 1380 1520 1717 1955 2228

4350 3139 2342 1823 1503 1338 1302 1369 1512 1710 1950 2224

0.840 0.472 0.302 0.210 0.154 0.118 0.093 0.076 0.062 0.052 0.045 0.039

.... 1960 1765 -- 1690 1730 1830 2020 2260

14135 8133 5267 3695 2759 2190 1862 1715 1709 1806 1989 2224

-- -- 5370 3744 2786 2203 1868 1715 1707 1807 1985 2219

-- -- 5370 3745 2787 2207 1874 1724 1716 1816 1995 2230

-- -- -- 2800 2268 1928 1746 1695 1751 1888 2088 2335

1.388 0.781 0.500 0.347 0.255 0.195 0.154 0.125 0.103 0.087 0.074 0.064

...... 2300 2100 2080 2190 2200 2330

21116 12147 7860 5502 4080 3181 2606 2265 2102 2077 2174 2349
.o

2.073 1.166 0.746 0.518 0.381 0.292 0.230 0.187 0.154 0.124 0.110 0.095

£

c_

5o

f:t
i

r

Experimental data obtained from the average of two values. ¢o
50



94 VIBRATION OF SHELLS

with values of X determined by equations (2.83)

and (2.85): The differences between results pre-

dicted by these theories can be seen in table 2.22.
It is seen that the frequencies differ little from

each other. However, when compared with the

results from equation (2.87) in table 2.22, one
observes that neglecting tangential inertia for

the clamped-clamped shell (as was seen for the
SD-SD case in sec. 2.3.4) can cause considerable

difference, particularly for small n.

Weingarten (refs. 2.64 and 2.197) also used the

Donnell equations and neglected tangential iner-
t,in to obtain the following frequency formula:

(1-v2)X4 (2.90)
_2 = k(x2+n2)2-_ (X_+n2) _

It is clear that if Yu's assumption (X2<<n2) is

made, then equation (2.88) results. He used this

formula to compare frequencies with the exper-
imental results of Koval and Cranch. These

numerical results are also included in table 2.22.

Consider now approximate solutions of the

clamped-clamped circular cylindrical shell prob-

lem by use of the Rayleigh-Ritz technique or

equivalent methods. Displacement functions of

the following form may be assumed:

_AmXm'(x) cos nO cos ¢0tlu
/--4

m

= _BmXm(x) sin nO cos _ty (2.91)

m

_,CmXm(X) COS ne cos _tw

z=.4
m

where A,_, Bin, Cm are amplitude coefficients,

primes are used to indicate differentiation, and

Xm(x) is a clamped-clamped "beam function";

i.e., it represents the ruth mode shape of free
vibration of a clamped-clamped beam according

to the classical Euler-Bernoulli theory. Obvi-

ously, equations (2.91) will satisfy the boundary

condition equations (2.74) exactly.
Beam functions are widely used also in the

solution of plate vibration problems (ref. 2.157).

The clamped-clamped beam function is

Xm(X) = cosh X_s-- cos Xms

-- am(sinh Xms-- sin Xms) (2.92)

with s = x/R and k,_ = Retail as before, em are the

roots of the equation

and

cosh em cos em= 1 (2.93)

eosh _m--cos em (2.94)
am = sinh em-- sin em

Accurate values of em and am are given in table

2.23. A comparison of the clamped-clamped mode

shape with that of the SD-SD case can be seen

in figure 2.48 for m = 1.
Two of the advantages of the beam functions

have already been suggested above: (1) the

equation of motion and (2) the boundary con-

TABLE 2.23.--Eigenfunction Parameters for a

Clamped-Clamped Beam

m O_m _m

1 0.98250222 4.7300408

2 1.00077731 7.8532046

3 .99996645 10.9956078

4 1.00000145 14.1371655

5 .99999994 17.2787596

6 1.00000000 20.4203522

m>6 1.0 (2m-}-1)_/2

E

0.4

x/l
0.8 0.9 1.0

FIGURE 2.48.--Comparison of mode shapes between

shells having clamped and shear diaphragm supports

at x =0, I. (After ref. 2.78)
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ditions of the beam are exactly satisfied. Be-

cause the behavior of a longitudinal strip of shell

between its ends is similar to that of a beam,

quite often the beam functions can adequately

represent the shell displacements by single terms

of equations (2.91), rather than requiring a series

of terms. There is one contradiction in using the

clamped-clamped beam functions as in equations

(2.91) to represent the shell boundary conditions,

namely, not only is v = 0, but also Nx0 = 0. Another

advantage of the beam functions is the orthogo-

nality of the integrals of their products and of
products_,of certain of their derivatives over the

interval of interest (0_<s_<l). Those integrals

which do not vanish due to the orthogonality
of the beam functions have been tabulated in a

number of places (el., refs. 2.127, 2.139, 2.158,
2.159, and 2.160).

Arnold and Warburton (ref. 2.4), using their

theory (see sec. 2.1.1) and only a single term of

each summation in equation (2.91) arrived at the

following frequency equation for the clamped-
clamped shell:

_6-K2_4+KI_2-K2=O (2.95)

where

1 2 1
K2 = [_'1+3(1--v)_'2]k +3(3- v)n:+l

+]C[h4+2_'2h2n2 +n 4

+2(1 -- v)_'2_.2+n 2]

1

K1 = _(1 -- v) (_,4+n4)

1

+ (_1-" _)X2n 2+_(1 - ,)n 2

+[_(1-v-2_0_+_]x 2

+k{ [_(1-- v)_'2+_'i]h 6

+[1(7-- v) + (1 -- v)_'22]h4n2

+[_(7-- 3v)_',+_-l]XSn 4

42(3-- v)n6 +2(1 -- v)h4

-- [(3 --v2)_'2 -- rl]X2n 2

--_(3+ v)n4+2(1-- v)r2h2+n2 } (2.96)

1

Ko = 2 (1 -- v)(1 -- _2_2_)h'

+k{_(X-- v)(_,S+n 8)

+ [(1 -- 2v)_'2 + _'1][}_6n2+ #_n 6]
+ [3 -- v -- 2 v_'22]X4n4

- (2- _)[2- (1 + _)_]x'n_
-- [2_ 42(1 -- 2v)_'2]X2n '- (1 -- _)n 6

+ [2(1 -- v) -- 2v2(1 -- v)_-22]},4

2 1 /
+[(1- 2v)_2+_l]X n2+3(1- v)n 4}!

and where

1+ (-- 1) re+lotto 2 1
_'_= - (2.97)

1+ (--1)m+_( 2 sin _,,-- am 2) _

and v, k, n, ft, X, _, and a are as used consistently
elsewhere in this chapter.

The corresponding characteristic equation

(2.95) for the Donnell theory using the clamped-
clamped beam functions was shown by Kraus

(ref. 2.138) to be determined by the coefficients

1 1
K2 = [ _l+3(1-- v)_2 ]_+-2 (3-- v)n2

+ 1+k(h 4+ 2_'2h2n_ +na)

1

K_ = 3(1 -- v)(h4+n 4) + (_'1- P_'2)h2n 2

+_(1 -- v)n2+[_(1 -- v-- 2v2)_2+_l]X 2

+k[_(1- v) (n2+ },2_'2)+n2 + X2_-t]

[X4+n_+ 2k2n2_'_] (2.98)

1

Ko = 3(1 -- v) (1 -- v_ze) X'

+/c{ k2n2[_(1 + v)_-2 -- _'1-- 1(1 -- v) 2_-2 ]

--_(X -- v) (h 4+n4) } [h 4+n4+ 2X2n2_2]

with _, _'2, and X given in equations (2.97) as

before. Equations (2.96) and (2.98) should agree

with each other for terms not multiplied by k.
However, the first term in K0 for one has

1-v2_22, whereas the other has 1--v_22. Un-

7-
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TABLE 2.24.--Length Ratios (I/R) of Clamped-Clamped Shells for a Given _2

from Equation (2.75) and Some Comparisons; v= 0.3

R/h

500

100

_2

8X10-5

1X10 -4

4X10-4

0.003

0.03

0.15

0.0018

0.0021

0.003

0.01

0.04

0.17

Item

Z/R
e

6_

Z/R
e

(R

l/R
e

(R

ilR
e

6_

Z/R
e

6t

Z/R
e

(R

Z/R
e

(R

1/R

e

(R

Z/R
e

(R

l/R

e

6t

Z/R
e

(R

t/R
e

(It

20.5

.45

.953

15.4

• 89

.876

8.20

3.9

.597

4.49

5.9

.524

2.10

8.6

.654

1.03

9.6

.878

15.9

.06

.994

8.45

.58

• 940

5.87

1.8

• 835

3.35

4.4

.654

1.98

5.1

.673

1.03

5.4

.843

m

48.1

.19

.974

35.9

.52

.932

19.3

1.9

• 800

10.8

3.5

.784

5.35

6.5

.866

2.88

6.7

• 963

38.8

.02

.997

20.1

.31

.969

14.0

1.1

.916

8.14

3.5

.846

4.98

5.9

.881

2.78

5.7

• 959

75.7

.13

•982

56.5

.34

.954

30.4

1.2

• 869

17.1

2.3

.861

8.62

4.3

.916

4.73

4.5

.978

61.6

.01

• 998

31.7

.20

.979

22.1

.71

.944

13.0

2.4

•901

8.04

4.0

• 926

4.57

3.8

.975

Notes:

(1) e = Percent error in Rayleigh-Ritz

(2) 5l =Ratio of frequency of SD-SD

frequency.

shell to clamped-clamped shell.

|
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TABLE 2.24.--Length Ratios (l/R) of Clamped-Clamped Shells for a Given _

from Equation (2.75) and Some Corn _arisons; _,= 0.3--Concluded

R/h

2O

500

100

_2

0.0445

0.045

0. 047

0.06

0.08

0.3

0.021591

0.021595
t

0.02161

0.02166

0.02210

0.53977

0.53986

0.5402

0. 5415

0.5505

Item

Z/R
e

5_

Z/R
e

5t

Z/R
e

6t

t/R
e

5l

I/R
e

6t

llR

e

51

l/R

t/R

Z/R

Z/R

Z/R

Z/R

Z/R

Z/R

l/R

z/R

m

13.2
.04

.999

9.41

.08

•997

5.98

.25

.988

3.24

1.1

.931

2.43

1.6

.876

1.14

.91

.788

68.4

2.11

10.5

5.50

2.45

48.7

19.8

10.0

5.07

2.10

36.8

.02

1.000

25.5

.04

.999

15.6

.13

.995

8.25

.80

.970

6.16

1.6

.948

2.93
2.5

.927

204

62.3

30.5

15.4

6.42

146

59.3

29.8

15.0

6.06

60.4

.01

1.0O0

41.6

.03

.999

25.3

.08

.997

13.3

.52

.980

9.92

1.1

.967

4.75

1.7

•955

340

103

50.5

25.3

10.4

243

98.7

49.5

24.9

10.0

Notes:
(1) e=Percent error in Rayleigh-Ritz frequency.
(2) 5t =Ratio of frequency of SD-SD shell to clamped-clamped shell.

97

l

_2

F

6"

2_



98 VIBRATION OF SHELLS

fortunately, the writer has no knowledge of

another reference source to adjudicate this

disagreement.

Numerical results for frequency parameters

using equations (2.95) and (2.98) were also

given in reference 2.138 for the shell used by
Koval and Cranch (as discussed earlier). These

results are presented for comparison in table

2.22. Although all the theoretical results given

in table 2.22 are based upon some form of the

Donnell-Mushtari shell theory, they differ widely

particularly for low values of n.

Warburton (ref. 2.78) compared numerical

_esults obtained by using the approximate
method of reference 2.4 outlined above and the

exact solution determined by the characteristic

equation (2.75). These results are listed in table

2.24 wherein selected values of the square of

the frequency parameter _] are prescribed and

the 1/R ratios corresponding to given values of

m are determined (i.e., the numerical procedure

suggested by Fliigge (ref. 2.31)) from equation

(2.75). The percentage by which the approxi-

mate Rayleigh-Ritz frequency exceeds the exact

frequency is also listed in each instance. The

ratio d_ of the frequency of the SD-SD shell to

1.0

0.5

0.2

I 0.1

LU

• O.O 5

v

0.02
3

0.01

0.005

0.002

0.001
0.2

n=9 n_4

\"_\ I "\_ "_, F_,,,=2o,

"\ 1"4: l

_/.=5oo 24 I\\ bx \

I i iK\
-- EXACT ANALYSIS ]x_ I \, _

...... APPROXIMATE SOLUTIONS. L " _'_
OF ARNOLD AND _'°
WARBURTON _. kk

0.5 t.0 2 5 10 20 50 t00

LENGTH TO RADIUS RATIO.-0/R

that of the clamped-clamped shell is also given.
Poisson's ratio is 0.3. Table 2.24 shows that the

greatest error for the approximate method occurs

for relatively thin (large R/h) and short (small

I/R) shells.This implies a considerable difference
between the behavior of a thin shell and a beam

in the vicinity of the fixed edges. As the number

of axial half-waves m increases, the edge effects

become less important, the behavior for any

support conditions approaches that of a SD-SD

shell, and the Arnold-Warburton approximate

method becomes better. Correspondingly, as m

increases the importance of the hyperbolic func-

tions in equation (2.92) decreases, and the be-

havior is governed by the sinusoidal terms which

correspond to SD-SD supports. The error also

decreases with increasing n; for l/mR>lO and

n= 16, e_<0.01 percent (ref. 2.78).

The approximate solution of Arnold and

Warburton (ref. 2.4) using beam functions was

also compared with the exact solution from the

Fltigge theory by Forsberg (ref. 2.35). The re-

sults are shown in figures 2.49 and 2.50. Here

too the differences are small, being maxima for

small m, n, and 1/R. Unlike the Donnell equa-

0.5 _, "_

\
I \\ \ m-,

FIXED _\ _ -
0.! -BOUNDARY CONDITIONS _ \ \

I w=O,awlax=O,u=O,v=O "k. \ k

AT x=O,Jt I "_ _'_ m= 2 \

0.05 -- EXACT SOLUTION \ '_

.... APPROXIMATE SOLUTION \ \ \

OFARNOLD AND \ \ \

0.02 -- WARBURTON -- m = i_x_ _

o.o,.R,,=,oo
/ n=2 i

u=O.3!

0.005

0.002

0.001
03 0.5 1.0 2 5 I0 20 50 lO0

LENGTH TO RADIUS RATIO ._/R

FmURE 2.49.--Comparison of frequency parameters be-

tween the approximate Arnold-Warburton method and

the exact method using the Fltigge theory. (After ref.

2.35)

FmURE 2.50.--Comparison of frequency parameters be-

tween the approximate Arnold-Warburton method and

the exact method using the Fltigge theory; n = 2. (After

ref. 2.35)

T
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tions, the Arnold and Warburton results repre-

sent the asymptotic behavior accurately as

1/raR--_oo, but are in error for small values

of l/mR where the membrane behavior is

predominant.
Arnold and Warburton (ref. 2.4) proposed the

formula

m_rR
k, = (2.99)

1-1o

to give an "equivai6nt wavelength" for clamped-

clamped shells to replace the expression given in

equation (2.34) for SD-SD shells. The quantity

X_would," of course, be greater than the X for the

corresponding SD-SD shell and would give larger

frequencies when used with the frequency curves

for SD-SD shells. On the basis of comparing

theoretical results obtained from the approxi-

mate solution using beam functions described

earlier in this section and equation (2.99) applied

to theoretical SD-SD results, they determined

the length l0 to be

l( 0.3 _ (2.100)
l°= \m--FO.3]

where m is the axial half-wave length number

(the number of circumferential nodal circles plus

one).

Additional results for lowest freqt}ency param-

eters were given by Gontkevich (refs. 2.126 and

2.127) as shown in figures 2.51 through 2.55.

The Rayleigh-Ritz method using beam functions

is the basis for the results. For the general for-

0.14

0,2 I /

[_ 0,06 _ _ "j -4%oo,//
0.04 _ f

0.02 / 0

o_ _
0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 0,8 0.9 1.0

Xm" • mR/l

FIGURE 2.51.--Lowest frequency parameters for clamped-
clamped shells (see table 2.21 for admissible era); n =2,
0 <c_,_R/1 < 1.0. (After ref. 2.127)

mula yielding these curves, see equations (2.67)

and (2.68) in section 2.4. The curves of figures

2.51 through 2.55 have the axial wave length

parameter hm=emR/l as abcissas, where the Em

corresponding to each m are given in table 2.23.

Of course, em is approximated very closely by

(2m+ 1)_r/2, where m is the axial wave number.

Poisson's ratio is not known, but is probably 0.3.

0.9

0.8

0.7

0.6
0.5

_ 0.4

&

0.5 /0.2

/

0 0.5 {10 1.5 2.0 2.5 3.0 3.5 4.0

Xm : _m R/_

hlR : 0.I

j/_j 0.075

_,_ 0.05

0.01
0

FIGURE 2.52.--Lowest frequency parameters for clamped-

clamped shells; n=2, 0<Xm<4.0. (After ref. 2.127)
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FIGURE 2.53.--Lowest frequency parameters for clamped-

clamped shells; n=3, 0<X_<4.0. (After ref. 2.127)
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Sewall and Naumann (ref. 2.107) also used

the Rayleigh-Ritz technique with beam func-

tions and a strain energy functional equivalent

to that of Arnold and Warburton to obtain low-

est frequency parameters for clamped-clamped
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FIGURE 2.54.--Lowest frequency parameters for clamped-
clamped shells; n=4, 0<X,,<4.0. (After ref. 2.127)
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FmURE 2.55.--Lowest frequency parameters for clamped-
clamped shells; n=5, 0<X_<4.0. (After ref. 2.127)

shells and compared them with experimental

results. However, they employed eight terms in

each of the series of the assumed mode shapes

appearing in equations (2.91) to obtain con-

vergence of the Ritz procedure. The results are

shown in figure 2.56 for a 6061-T6 aluminum

alloy shell having h=0.0255 in., R=9.538 in.,
and l = 24.00 in.

Lyons, Russell, and Herrmann (ref. 2.16) used

the Galerkin procedure to obtain closed form

approximate frequency formulas for clamped-

clamped shells. The shell equations used are those

of Herrmann and Armenakas (ref. 2.15) neglect-

ing shear deformation and rotary inertia which

are defined for circular cylindrical shells by the

the modifying operator (see sec. (2.1.1))

[!0:1[_CMOD]---- 0 (2.101)

0 14-202/005

Approximate mode shapes of the form

27rx

u=Asin _ eosn0coswt

21rx )v = B cos --/--- 1 sin nO cos cot

(..x)w=C cosT-1 eosn0eoscot

(2.102)

(which ref. 2.157 shows to be less accurate than

beam functions in representing plate vibration

modes) were taken. The resulting frequency
formula is

(3--_2)(1-.)X24

9(1 -- _)n'4- 6(3-- _)X22n 24,3(1 -- _,)X24
1 h 2

4._(_) [(k224.n2)24.2n 4- 6n24,3] (2.103)

where X2= 2_-R/l.

Ivanyuta and Finkelshtein (ref. 2.114) used
the Galerkin method with the Donnell-Mushtari

shell equations and a single set of beam functions

to arrive at the following frequency formula:

£_= (1--_2)Xm 4
X,,44- n 44-1. ll0n_Xm 2

4,1(R)2(X,_44,n44.I.110n_X_ 2) (2.104)
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FIGURE 2.56.--Theoretical and experimental frequencies

for a clamped-clamped aluminum shell; R/h=374,

l/R =2.52, h =0.0255 in. (After ref. 2.107)

where, in this case,

(2m+l)TrR
k,,- , m= 1, 2 .... (2.105)

21

Other simplified formulas can be obtained by

making simplifications in the characteristic equa-
tion of the type described in section 2.3.5.

Kondrashov (ref. 2.148) used the Southwell

method (cf., refs. 2.161 and 2.162) to obtain

lower bounds for the frequency parameter a. This

method depends upon finding the frequencies
from two separate problems, one where the bend-

ing stiffness is neglected (giving _01), and another

where membrane effects are neglected (giving w2).
The frequency o_ for the combined problem is

then related to _1 and w2 by

_o2_>co12-k-oJ_2 (2.106)

In reference 2.148 the Donnell-Mushtari theory
was used to derive the following formula for com-

puting the lower bounds on _2:

_2_= (1--v2)C_+kn4C22 (2.107)

where k=M/12R 2, v is Poisson's ratio, and

n=number of circumferential waves, as before,

CYLINDRICAL SHELLS 101

and the coefficients CI and C2 for clamped-

clamped shells are the roots of the equations

(1 + _/C-_I) 3- (1- V_)3
sin Zi}o sinh z2}0

2(1-Cl)V/_-01

-cos Z1_o cosh z2}0-F1 =0 (2.108)

1

cos/_i}0 cosh k2}o _v/C22-----_ sin/cl}0 sinh ]c2}0 = 1

(2.109)

with }0 = nl/R and

. /c,_+v'U,,
Zl= _] 1-CI

ki=v/O2-1,
z,=

J
(2.110)

Some useful values of C1 and C_ are presented in

tables 2.25 and 2.26, respectively. In using the

tables it is generally necessary to interpolate

between values shown for nl/R. The value of

Poisson's ratio for which the tabies apply is not

given in reference 2.148, but appears to be 0.3.

The frequency according to the membrane the-

ory is obtaiped from equation (2.107) by setting
k=0.

As a check on the accuracy of the lower bound

formula given in equation (2.107), Kondrashov

(ref. 2.148) also computed upper bounds for the

Clamped-clamped shell by the Galerkin method

and the Donnell-Mushtari theory. The same trig-

onometric trial functions given by equation

(2.102) were used, yielding the following formula

for frequency parameters for m = 1:

112= (1.066) (1- v2)124
X24+7.60X22n2+3n 4

1 [h\ 2

-t-_-6_k) [(X2=-k-nS)2-l-2n'] (2.111)

where h_=2_rR/l, as before. Some sample fre-

quency parameters computed by means of equa-

tions (2.107) and (2.111) are given in table 2.27

(from ref. 2.148).

It is interesting to compare equation (2.108)

with equation (2.103), which was arrived at from

a different shell theory, and with equation (2.104)

which was obtained from the same shell theory
by using beam functions. In table 2.27 one column

lists values of _2computed using beam functions.

|

T



TABLE 2.25.--Values of the Coefficient C1 in Equation (2.107) for Frequency

Parameters of Clamped-Clamped Shells

1 Number of axial half-waves--m

n_
1 2 3 4 5

2

3

4

5

6

7

8

9

10

12

14

16

18

20

22

24

26

28

30

32

36

4O

42

44

48

5O

0. 5431

•3354

.210

• 1372

•9230 X 10 -I

•6393 X 10 -1

.4541 X10 -1

.3297X10 -1

•2439 X 10 -1

•1405 X 10 -I

.8563X10 -2

•5470 X 10 -3

.3636X10 -_

.2493 X 10 -3

.1768 X 10 -3

•1286 X 10 -3

.9539 X 10 -3
•7435 X 10 -3

•5564 X 10 -a

.4350X10 -a

.2768 X 10 -3

.1840 X 10 -3

•1523 X 10 -3

.1269 X 10 -3

•9040 X 10 -4
•770 X10 -4

0.8250

.6670

.5168

.3932

.2983

.2274

.1750

.1360

.1068

.6784 X 10 -1

.4464X10 -1

.3030X10 -1

.2115X10 -I

.1513X10 -I

.1105 Xl0 -I

0.9160

.8253

•7205

•6141

•5149

.4275

.3533

.2916

.2410

.1663

.1168

.8357X10 -I

.6091X10 -1

.4518X10 -1

.3402 X 10 -1

0.9511

.8951

.8249

.7465

.6656

.5866

.5125

.4452

.3852

.2872

.2145

.1614

.1226

.9049 Xl0 -I

.7303X10 -1

.8240X10 -_

.6246X10 -2

.4790X10 -2

.3762X10 -2

•2980 X 10 -3

.1934 X 10 -3

• 1306 X 10 -3

.1070X10 -2

.9109X10 -3

.6541X10 -3

•599 Xl0 -3

.2602X10 -1

.2018X10 -1

.1610 X 10 -1

.1258X 10 -1

.1010X10 -1

•6706X10-2"

.4607 X 10 -3

•3830 X 10 -3

.3257 X 10 -3

.2364X10 -2

.203 X10 -_

.5729X 10 -1

•4540 X 10 -1

.3680X10 -1

.2935X10 -1

.2390X 10 -1

•1626X10-1

.1138X10 -1

.9500X10 -I

.8167X10 -2

.5997X10 -2

.518 X 10 -2

0•9683

.9310

.8821

.8249

.7625

.6977

.6330

.5705

.5114

•4065

.3207

.2527

.1995

.1583

.1264

.1017

.8228X10 -1

.6650X10 -I

.5510X10 -I

.4556X10 -1

.3175X10 -1

.2266X10-1

.1950 X 10 -1

.1653 X 10 -I

.1229X10 -1

.1067X10-_

TABLE 2.27.--Comparison of Frequency Parameters Obtained from Equations

(2.107) and (2.108), and by Using Beam Functions; R/h =200

l _LB

from eq.
(2.107)

4.0

1.0

0.2132

.1192

.O782

.0630

.0660

.0790

.0994

.1245

.1530

.7370

.5790

.4610

.3740

.3120

.2265

.2382

.2250

.2245

_T

from eq.
(2.111)

0.2175

.1228

.0807

.0652

.0672

.O8O5

.1002

.1250

.1533

.7590

.5970

.4845

.3950

.3300

.2845

.2540

.2395

.2394

Percent
difference
between

_LB and _T

_BF

using beam
functions

0•2395

.1415

.0950

.0748

.0726

.0835

.1016

.1253

.1535

.8710

.6510

.5070

.4110

.3440

.2980

.2685

.2525

.2505

Percent
difference
between

_BV and _LB

11

16
18

16

10

5
2

1

1

15

11
9

9

9

11

11

11

11

|



1
n_

2

3
4

5

6

7

8

9

10

12

14

16

18

20

22

24

26

28

30

32

36

40

42

44

48

50

TABLE 2.26.--Values of the Coe_cient C2 in Equation (2.107) for
Frequency Parameters of Clamped-Clamped Shells

Number of axial half-waves-m

6. 205

3. 145

2. 110

1.661

1.431

1.301

1.220

1. 176

1. 132

1. 086

1.061

1. 046

1. O34

1. 028

1.023

1.019

1.016

1.014

1.012

1.010

1.008

1. 007

1. 006

1.005

1.004

1. 003

16.180

7.630

4.640

3.275

2.504

2.105

1.826

1.668

1.508

1. 340

1. 243

1.182

1.142

1.113

1.092

1.078

1.065

1.056
1.048

1.042

1.033
1.027

1.024

1.021

1.018

1.017

31.050

14.250

8.390

5.680

4.212

3.332

2.765

2.435

2.105

1.748

1.538

1.406

1.317

1.253

1.207

1.172

1.146

1.125

1.108

1.094

1.078

1.060

1.054

1.048

1.041

1.038

50.800

23.050

13.350
8.860

6.470

4.960
4.010

3.410

2.900

2.30O

2.005

1.716

1.557

1.447

1.367

1.305

1.258

1.221

1.192

1.166

1.131

1.106

1.096

1.086

1.073

1.068

75.55(

34.05(

19.54(

12.83(

9.91C

6.99C

5.56_

4.47_

3.891

2.995

2.451

2.10C

1.861

1.694

1.568

1.475

1.402

1.344

1.298

1.261

1.204

1.165

1.148

1.136

1.113

1.104

|

7

,,5

TABLE 2.28.--Experimentally Determined Frequencies for a Clamped-Clamped
Steel Shell; R/h=19.1, l/R=8.13, h=0.101 in.

m

1

2

3

4

5

6

7

8

9

10

11

n

1,240

2,440

8,020

9,440

10,775

11,950

12,980

13,900

2,150

2,560

3,380

4,480

5,740

7,010

8,320

9,490

10,640

3,970
4,160

4,540

5,130

5,910

6,840

7,900

8,990

10,140

11,270

12,410

6,320

6,475

6,720

7,100

7,710

8,350

9,130

10,000

10,965

12,010

9,230

9,380

9,540

9,890

10,310

10,820

11,480

12,220

13,070

13,980

12,600

12,750

12,900

13,220

13,570

14,020

14,600
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The single term trigonometric functions used to

obtain equation (2.108) apparently give closer

upper bounds than the beam functions.

Experimental results for a clamped-clamped
steel shell having l = 15.65 in., R = 1.924 in., and

h=0.101 in. were given in reference 2.4 and are

repeated in table 2.28.
The lowest root of a cubic characteristic equa-

tion in _2 for clamped-clamped shells (cf., eqs.

(2.84) and (2.95)) is usually much smaller than

the two larger roots. This was also seen in the

case of SD-SD shells (see. 2.3). The relative

spacing of the roots is clearly seen in table 2.29

(_rom ref. 2.138) for a particular steel shell

(that used by Koval and Cranch and discussed

earlier in this section) having R = 3 in., h = 0.01

in., l= 12 in., using the coefficients given by

equations (2.98) in equation (2.95). Table 2.29

begins with n = 3. It is clear from observing the

trends in the table, as well as the results for

SD-SD shells, that for n=O, 1, 2 the three
roots can be much closer to each other. As for

SD-SD shells, it is also seen that the higher fre-

quencies (at least, beginning with n = 3) increase

monotonically with an increase either in m or n,

whereas the lowest frequency find a minimum for

some particular value of n. In table 2.29 the

minimum occurs at n=6 for m= 1, and n=9 for

m=3. As for SD-SD shellsthis anomaly can be
explained by consideration of the strain energies

N

>

I

I
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g
o

o
z
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._ = 12 in

h = 0.01 in

E = 50 x IO 6 psi

X = 0.283 Ib/in 3
v =0.5
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NUMBER OF CIRCUMFERENTIAL WAVES-n

FIGURE 2.57.--Distribution of strain energy for a freely-

vibrating clamped-clamped shell. (After ref. 2.138)

I

T- •

TABLE 2.29.--Comparison of the Three Roots (Cyclic Frequencies, in cps) of the

Frequency Equation (Eqs. (2.95) and (2.98)) for a Clamped-Clamped Steel Shell;
R/h = 300, 1/R = 4, h = 0.01 in.

3

4

5

6

7

8

9

10

11

12

13

14

1/2 Axial wave (m = 1)

£

1,176

783

597

552

611

736

902

1,100

1,321

1,568

1,837

2,128

f2

27,071

32,418

38,118

44,071

50,194

56,436

62,763

69,151

75,586

82,056

88,554

95,074

f8

36,866

47,318

58,107

69,055

80,092

91,184

102,313

113,467

124,639

135,825

147,022

158,228

1-1/2 Axial waves (m =3)

4,350 30,578

3,139 36,021

2,342 41,551

1,823 47,242

1,503 53,096

1,338 59,088

1,302 65,192

1,369 71,386

1,512 77,651

1,710 83,973

1,950 90,340

2,224 96,746

f8

46,524

54,848

64,210

74,170

84,489

95,038

105,742

116,555

127,449

138,402

149,401

160,437
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associated with bending and stretching of the

shell (see sec. 2.3.3), as shown in figure 2.57.

Figure 2.57 also shows that the stretching energy

is greatly affected by the number of axial half-

waves m, whereas the bending energy is only

slightly changed.
The behavior of the three modes associated

with the three roots of the characteristic equa-

tion for given m and n can also be seen in table

2.30 (from ref. 2.138). Here amplitude ratios

A/C and B/C (in terms of the displacement

amplitudes A, B, and C, as used in eqs. (2.91))

are given for the same shell described by table

2.29 and figure 2.57. Ratios are shown for a
fixed n (n = 6, the minimum frequency for m = 1)
and various numbers of axial half-waves m.

From table 2.30 it is clear that the motion for

the lowest frequency is predominantly radial
for n=6. For low m, the second frequency is

primarily axial, but as m is increased, it becomes
circumferential.

Kraus (ref. 2.138) also presented an interest-

ing plot which compares frequencies obtained

by four analytical methods and by experiment.
This plot is shown as figure 2.58. The same shell

used previously in figure 2.57 and tables 2.29
and 2.30 is the basis for the figure. The four

curves derived by analytical methods are

t

TABLE 2.30.--Amplitude Ratios of the Three
Modes Associated with Each m and n for

a Clamped-Clamped Steel Shell; R/h=300,

1/R = 4, h = 0.01 in.

m
Amplitude

ratio

A/C
B/C

A/C
B/C

A/C
B/C

A/C

B/C

A/C

B/C

Associated frequency

0.003 37.455

.016 3.379

.004 9.818

.016 3.864

.004 6.801

.016 4.756

.003 5.944

.014 5.964

.002 5.797

.012 7.532

f3

1.296

6.072

3.376

6.694

6.290

7.740

10.053

9.000

14.515

10.292

4OO0

3000

v

z 2000

I000

0
0 2 4 6 8 IO 12 14 16

NUMBER OF CIRCUMFERENTIAL WAVES-n

FIGURE 2.58.--Comparison of frequencies obtained from

various analytical methods and experiment for a

clamped-clamped shell. (After ref. 2.138)

(1) The Rayleigh-Ritz type variational pro-

cedure using the Donnell theory and beam func-

tions, which resulted in equations (2.98) for the
coefficients of the characteristic equation (2.95).

(2) Yu's assumption (X2<<n _) using the Don-

nell theory, with linearization of the character-

istic equation, which resulted in equation (2.87).

(3) Yu's assumption using the Donnell theory,

with neglect of tangential inertia, which resulted

in equation (2.88).

(4) The "inextensional" frequency parameter

given by (see sec. 2.4.5).

ft 2= kn2(n2-1)2 (2.112)
n2q-1

The experimental data of Koval and Cranch

reported earlier in this section are used in figure

2.58. In figure 2.58 after the minimum point is

passed for each m, all of the analytical solutions

agree very closely with each other and the experi-
mental data. Before the minimum is reached,

the variational procedure (which gives theoreti-

cal upper bounds on the frequencies) gives the

closest agreement with the experimental data,
whereas the other solutions become totally in-
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adequate as n is decreased sufficiently. The

effect of neglecting X2 with respect to n _ causes

large errors for the lesser values of n. The effect

of neglecting tangential inertia is small for this

problem.

The modal characteristics of clamped-clamped

cylindrical shells are shown in figures 2.59, 2.60,

and 2.61 (taken from ref. 2.35). In figure 2.59
results for the Fltigge and Donnell theories are

compared for a thin shell (R/h=500) having

MODAL CHARACTERISTICS OF CYLINDRICAL SHELL

R/h = 500 BOUNDARY
,, _/R=IO.O Q =0,01508 (FLOGGEEQ) CONDITIONS

v=0.3 _=0.01541 (DONNELLEQ) w=O
n=4 ow/ax=O

INPLANE INERTIA INCLUDED u=O
v=O

AT x=0, -#

0.02 r

o.o,_

_ JO -00'_"'"__u t _ FLOGGEAND
:_ _ O.'Z2 DONNELL EQS8

^ ? _. /_ FLOGGE ANDz_ -u" F _-_ DONNELLEQS J
-0.2

- 1.0

04 DONNELLEOS
o 0.2 04 06 o8 ,.o

AXIAL COORDINATE, XI_

oooB_-

0 -0.004_- /_- FLbGGE AND

<_J -O, O08p_ DONNELL EQS

._ -o.o12V
-O.Oll r i L i ,

8.0

I-" 6.0 FLLJGGE EO
z 4.0

_ 0 - _

_ -2.0-4.0

-6,0 _ i L I

2°i /j
_ -B.o-4"°_ FL_E EO----a
o -8.0
=_ -10.0
o. -f2.0F-

-14.0 [--
-16.0_- , i _ i L i , i i

o 0.2 0.4 0.6 0.8 1.0
AXIAL COORDINATE ,X/n

FIGURE 2.59.--Modal characteristics for a clamped-
clamped shell; R/h = 500, l/R = 10, m = 1, n =4. (After
ref. 2.35)

1/R = 10, m = 1, and n= 4. No difference can be

seen in the mode shapes, although some'differ-

ences occur for the bending moments, particu-
larly M0. In figures 2.60 and 2.61 a thicker shell

MODAL CHARACTERISTICS OF CYLINDRICAL SHELL

FREQUENCY PARAMETER
R/h=20 WITH INPLANE INERTIA BOUNDARY

_IR:2.0 .Q :0.5117 (FLUGGE EQ) CONDITIONS

_=0.3 _ =0.5188 (DONNELL EQ) w=O
n = 3 WITH RADIAL INERTIA ONLY ew/ox =0

.Q : 0.3273 ( FLOGGE EQ) u=O
v=O

.Q = 0.3346 ( DONNELL EQ) AT x=O,

z _ 0.02 ALL EOSo /--
§ o, -o.o2

8

> -0.1 ALL EQS

N i 0.8- 0.4 0S

_."' 0_)_ , 012 , 0,.4 ,
• . 0.6 0.8 1.0

AXIAL COORDINATE, X/_
0.12,

°0.04 I:-/ INCLUDED

-0.08 I:- FLiJGGE AND DONNELL EQS

-0.12 b RADIAL INERTIA ONLY
-0.16 r , , ,

:_ ,8.o_-

FLOGGE EQ --_

4.0 _ _- DONN_.._/

-4.oF ,
0.08r- __ 1

z 0.06

0.04
b.

o_" -o.o2L- / L_,,; ................... \ /
=o "°'°4V / _CX,_:',_Y2',_,,_ \ /

"o.o_F,./ _; ............... , X_l

IE _.0

" ......... _ WITH AND WITHOUT
-2,0 INPLANE

0 DONNELL EQ INERTIA

= .:f
-,.oF

0 0.2 0.4 0.6 0.8 1.0

AXIAL COORDINATE ,X/_t

FIGURE 2.60.--Modal characteristics for a clamped-

clamped shell; R/h=20, l/R=2, re=l, n=3. (After

ref. 2.35)
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(R/h=20) is being considered and tangential

inertia is both retained and omitted. In figure

2.60 a shell of moderate length is taken (1/R = 20)

and n=3. There is essentially no difference in

MODAL CHARACTERISTICS OF CYLINDRICAL SHELL

FREQUENCY PARAMETER
R/h • 20 WITH INPLANE INERTIA BOUNDARY

,#/R, IO.O .Q =,005787 (FLOGG[. EQ) CONDITIONS
w-O

v-0.3 _ ,0.06757 (DONNELL EQ) aw/ax-O
n ,2 WITH RADIAL INERTIA ONLY

.Q • 0.06491 ( FLOGGE EQ) u-O
v-O

.Q -0.07575 ( DONNELL EQ) AT x,O, .if

8 -o.o4[- _ _ , ,

i -o.,t- ,

i 0.8
-- 0.4 EQS

d
01_ O I/ t t p t I

0 0.2 0.4 0.6 0.8 1.0
AXIAL COORDINATE X/.I

o
-o.2 ,

I

_o__:_ 0.2__0
-o2 \WITH AND WITH(_JT
-OA INPLANE INERTIA x,

<{

K I I /

=E 1.6_-

0.8_- /S DONNELLEQJ iNPLANEiNERTIAi. /-- F't.UGGE EO I WiTH AND WITHOUT

-o.

0.003 • ........ i

_-0.OO3 EO I_D,
._ -0.006 _ /- - -- DONNELL EQ J INERTIA ONLY \ /I

-o.oo9_ .. \ II
_ FLLIGGE AND DONNELL EQS \ II

-0.012 _- iN--Pt_N-E. INERTIA INCLU_:{) - _
:z I

-o.olsh _ , , , I

-06 ...... INPLANE

-3,0

-4.2 L _ I I
0 0.2 0.4 0.6 O.S 1.0

AXIAL COORDINATE. X/,e

FmURE 2.61.--Modal characteristics for a clamped-
clamped shell; R/h=20, l/R= 10, m =1, n =2. (After
ref. 2.35)

the mode shapes among the four types of theories

(equations) used. Slight differences result among
the axial forces N= and bending moments M_

generated during vibration; however, significant
differences arise in the circumferential (hoop)

forces and moments. The forces and moments

MODAL CHARACTERISTICS OF CYLINDRICAL SHELL

R/h = 500 _ = 0.07803 ( EXACT ) 80UNDARY
#/R:2.0 _ : 0.081t8 (ARN. 6 WARD.) CONDITIONS

_=0.3 w=O
n= 8 _.w/Ox =0

lJ=O
v=O

AT x:O, 4

= 0.01 ./_BOTH EQS _

2 o, -oo_
8 I i I {

-o.o4 N.a WARa

_, _ -oo8
-0.12 " EXACT _', _-_.__, I ,

1.0

_' _, 0.8 "XACT

_: 0
0 0.2 0.4 0.6 0.8 L0

AXIAL COORDINATE,X/J_

o04_- _. [
0.O30

0.01 .....

o -o.o_- \/ \ /
-oo_o_- _,_ _ I

_ff -oo4_-_ _--A_N _ w_. "\ I
., -o.o6o_ , - , , , "4

60.0 _- EXACT

.e30.0 EXACT

15.0_ _ ARN. S WARB.

,_ -tS.O

0009 _ _]

ooo6 EXACTs. _ ;_-------__-..
0.003

_0.000 / /// \ ,\
-0.006

-0.009 /_

-0.012_0.015 // ARN. & WARB. xx,/I
-0.018 /

-0.021 r _ _

,oo - /
-100 "\ //
-20"0 /-- ARN. & WARB. /

o -30:0[- _,/ /_

= -4o.oL- /'%. ._

o_ -5°° [-- EXACTJ-60.0 "_"_-- , _'_
I

o o.2 0.4 o.6 o.8 _.o
AXIAL COORDINATE oX/_

FIGURE 2.62.--Comparison of modal characteristics for
a clamped-clamped shell; R/h=500, l/R=2, m=l,
n =8. (After ref. 2.35)
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are normalized with respect to a unit amplitude

of deflection. In figure 2.61 (for n = 2) the differ-
ences in forces and moments are even more

pronounced. The differences in modal character-

istics arising from the Fltigge and Donnell

theories, with and without tangential inertia,
arc elaborated further in table 2.31.

The modal characteristics of the approximate

solution of Arnold and Warburton (ref. 2.4)

using the equivalent of the Rayleigh-Ritz method

MODAL CHARACTERISTICS OF CYLINDRICAL SHELL

R/h = ,500 BOUNDARY
P/R=IO.O .Q -001508 (EXACT) CONDITIONS

v=0.3 ._ -0.01547 ( ARN. E, WARS.) w=O
n=4 aw/_.x=O

u=O
v=O

AT x=O, .e

002_

N .J -0.01 _-

3 -002I L

ul

g.

d

.... BOTH EQS /" _-.
/ ./ \

.-. _7_ "-- ...... Z

o-_.. r

_-o2L. EXACT ,--, J ,
1.0

f EXACT
04

0 ._

0 0.2

0.008 l

°°°;l
-0.004

-0008

-0.012 [,
-oo16_

o14 o_.6 o.B _.o
AXIAL COORDINATE, X/#

"_AR.&WA,B. . . ,_

O"p+93,EXACT,' /
_-- -0.8[ ]_'_ ARN &WARB

-16

-24 , EXACT_,_

" t_J

I

-52

-40

-48 h

' " -- " 1
-coo, f- EXACT ".

_ -ooo_l , --,
-0003| " ARN. & WARB. _\x

_o -0004[ \\
_: -0005_ ; I I

30 ' -EXACT _._
o F=',.;'ARN a WE.-B -- - - /_"1 '_

, eEXA 3;

::I: -I50; T

0 0.2 0.4 0.6 0.8 1.0

AXIAL COORDINATE,X/._

MODAL CHARACTERISTICS OF CYLINDRICAL SHELL

R/n = 500 _._n_D/,RY

2/R=IO.O _ = 0.06258 ( EXACTI CONC;IT!ONS
v,':O

.v=05 _ =0.06492 (ARN.& WARB)
n:_. OW/uX =0

u=O
v=O

AT x:O, ._

= 004 _.f ]./ ARN &WARB - " ---_"Z
0 0 ........
..J .

-004

02

0

-0.2

1.0

• EXACT _.. .

EXACT
ARN &WARB. -"

,-ARN. SWARB/_\

• 0.5 . I_ -o°f_ "._, E×_ " _ -_''i
-10._ , _ i ,

0 0.2 0.4 0.6 0.8 t.O

AXIAL COORDINATE ,X/Z

. 0.08_ / ARN &WARE]. -_

= o.o6_/ X-- ,/_5 i_l
0.04 _L,j /- EXACT /_", "_oo__, / ""

0 ---' --

7-" I/D(AC T _\

6.0 _
4.0 ,, f_ _.\, ]

2.0 // "_ i

/// "Jio o,[V%_.N BL ........ _
__ -_o _wAR
,,_ - .0_2T0-50.2 (,EXACT) i '_ /I I T0-50"2

(:b 0.024_,,_.._ EXACT
z 0.020 I_.
L_" 0 ot6r-'_ --ARN. &WARB.

olo,2[ ',_-
0 0.008_ ", EXAC
a_ 0.004 _ "k T_- ..J- - _ _

-o.oo4_ "-_F----" , _ " _-r"

,i

,2oI- ,/-"\ ,--" .
8.0 _- < '\ ." '<"> I
4 0 L , ," EXACT \ ,',

-4.0[ \ARN. & WARB \\
-80 - ',

_120 I EXACT '\

0 0.2 0.4 0.6 0.8 I.O
AXIAL COOROINATE,X/,_

FIGURE 2.63.--Comparison of modal characteristics for
a clamped-clamped shell; R/h =500, l/R = 10, m = 1,
n =4. (After ref. 2.35)

FIGURE 2.64.--Comparison of modal characteristics for
a clamped-clamped shell; R/h = 500, l/R = 10, m = 3,
n =4. (After ref. 2.35)
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with beam functions are compared with those of

the exact (Fliigge) solution in figures 2.62, 2.63,
and 2.64. As expected, the Arnold-Warburton

solution gives a better estimate for the eigen-
values 2 than for the mode shapes and modal

forces. The Arnold-Warburton solution repre-

sents reasonably well the forces in the interior

of the shell, but the sharp changes at the bound-
aries are not even approximated• For R/h = 500,

l/R=2, m=l (fig. 2.62), the error in 2 is about

4 percent, while the error in the mode shape is

8 percent (comparing the maximum deviation

of any point to the maximum amplitude of the
function) and is clearly visible. The error lies

in the shape of the modes themselves, rather

than in the amplitude ratios A/C and B/C.
This was observed for all values of R/h and l/R

in reference 2.35. In figure 2.62 it is seen that

the circumferential (hoop) stress resultant No is

grossly in error. Fortunately, it is relatively small
over most of the interval 0 < x < l in comparison

with N_, thereby decreasing its effect. In figure

2.63 the shell is relatively longer (1/R = 10) and

the errors due to the edge effects are greatly re-

duced (except for the hoop forces, No). In figure

2.64 the same shell is taken as in figure 2.63, but

now m = 3. This has the effect of increasing the

errors in the modal characteristics, but most of

the error in the mode shapes and generalized
forces are confined to the half w_ve nearest the

boundary. The sharp changes in M_ and Mo are

still not predicted, but No is approximated more

closely than was done for the lower mode (fig.

2.63). Thus, the Arnold-Warburton approach

using a Rayleigh-Ritz type of method gives good

results for the frequencies and mode shapes, but

TABLE 2.31.--Comparison of Modal Characteristics for Clamped-Clamped Shells

Obtained by Various Analytical Methods

I

Exact solutions Approximate solutions

:ase Item With tangential inertia No tangential inertia Finite differences

u max

v max

W max

max

N_ min

max

No min

Mx max
min

p

max

M o min

f_
U max

v max
W max

Nx max
min

max

No min

max
M_ min

max

Mo min

Fliigge Donnell Flfigge Donnell

0.01508

± .01799

--.2507

1

.009127

--.01504

.000162

--.004511

9.291

--4.676

2.783

--15.05

0.3117

± .03482

--.3195

1

.1131

--.1545

.06971

--.06447

16.63

--5.471

4.943

--8.888

0.01541

± .01799

--.2507

1

.009126

--.01504

.000162

--.004512

9.278

--4.966

2.784

i--16.05

0.3188

± .03494

--.3195

1

.1126

--.1541

.07144

--.06513

16.58

--5.652

4.974

--9.886

0.01555

± .01799

--.2507

1

.009130

--.01504

.000162

--.004512

9.293

--4.676

2.784

--15.05

0.3273

± .03374

--.3159

1

.1131

--.1506

.07956

--.06309

16.57

--5.468

4.928

--8.887

0.01589

± .01799

--.2507

1

.009129

--.01505

.000165

--.004513

9.281

--4.966

2.784

--16.05

0.3345

± .03381

--.3158

1

.1127

--.1500

.08174

--.06368

16.53

--5.648

4.958

--9.885

20 points

0.01689

± .01749

--.2507

1

.008903

--.01398

.000204

--.004193

.378

--4.674

.109

_--15.05

0.3105

± .03447

--.3196

1

.1107

--.1362

.06899

--.03991

15.14

--5.438

4.502

--8.878

50 points

0.01540

± .01794

--.2507

1

.009101

--.01510

.000156

--.004530

.691

--4.675

.203

--15.05

0.3117

± .03477

--.3195

1

.1127

--.1460

.06963

--.04279

16.37

--5.466

4.868

--8.886

Arnold-

Warburten

0.01548

± .01803

--.2505

1

.009424

--.01649

.001000

--.004945

.302

--4.681

.0961

--15.05

0.3256

± .03689

--.3161

1

.1190

--.1702

.08088

--.05065

7.219

--6.803

2.121

--9.286

Case 1: R/h=500, l/R= lO, n=4, m= l, v=0.3

b Case 2: R/h=20, l/R=2, n=3, m=l, 9=0.3
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is unable to predict internal forces and moments,

at least with a single beam function as used in

equations i2.91) and (2.92). If equations (2.91)

were generalized to be a finite series of beam

functions, there would still remain the difficulty

of representing the sharply changing moment
resultants M= and Me near the boundaries.

Further comparisons among the modal char-

acteristics obtained by the Arnold-Warburton

and exact approaches can be seen in table 2.31.

The clamped-clamped circular cylindrical shell
was also used as the basis for a finite difference

convergence study in reference 2.35. The Fliigge

e_quations of motion, including tangential inertia,
assumed the same sinusoidal variation with

respect to e and t as in equations (2.91). The

resulting set of ordinary differential equations
in the independent variable s (s = x/1) were then

cast into finite difference form and applied at a

set of equally spaced stations (or grid points)
in the axial direction. Four steps were taken in

the convergence study--10, 20, 50, and 100

equally spaced grid points_yielding eigenvalue
determinants of the 30th, 60th, 150th, and 300th

orders. Results for frequency parameters and

modal characteristics are given in figures 2.65

through 2.67. In figures 2.65 through 2.67 the
word "exact" identifies the exact solution of the

Fliigge equations by the method described at
the beginning of this chapter.

In figure 2.65 the shell is relatively thick

(R/h=20) and long (l/mR= 10); consequently,
the solution is very well behaved. With only ten

grid points, £ is less than 8 percent above the

exact value. With twenty points it is within 2

percCnt. Not only the mode shapes, but the
internal force and moment resultants are also

determined accurately. Only the rapid changes
in M= and M0 near the boundaries are difficult

to approximate. The peak stresses at the bound-

ary were not adequately determined; even when

100 grid points were used, the boundary moment
resultants are less than 90 percent of their exact
values.

However, for a shorter shell (l/mR=2) the

finite difference scheme is much better at repre-
senting the edge effects, as can be seen in table

2.31. With a 50-point grid the boundary value
of M= is within 98 percent of the exact value.

Here also the frequency for a 20-point grid is

only 0.4 percent below the exact eigenvalue. In

this case the shell is short and thick enough so

that edge effects propagate throughout the shell

instead of being localized.

MODAL CHARACTERISTICS OF CYLINDRICAL SHELL

R/h=20 1"2 = 0.05787 (EXACT) BOUNDARY
#/R=Io.o _ = 0.06228 (IOPOINTS) CONDITIONS

v=0"3 _ = 0.05905 ( 20 POINTS ) w=O
n=2 _ = O.05805(50POINTS) _w/ax=O

u=O
= 0.05794 ( 10O POINTS) v=O

AT x =0,

o  O.,OO. X CT
oJ_oo4r.  _20,EXAOT/

i I 1 i /o

_,_° 0 _0, I00, EXACTz_ -0.2 20, EXACT

_ , ,
- 1.0 ' o- '

r _ _-50, I00. EXACT _ /

0 0.2 0.4 0.6 0.8 t.0
AXIAL COORDINATE,X/J2

_ 0 ............ •

._ -0.2
-- 50 100 20, EXACT _ _> /

x -0.4 _/EXACT SOLUTION "_
| I I [ I I

1.6 _,._-- EXACTI---"

08_L_`- "--IOOPTS I0 20 EXACT--_ ,
:E • _ _50PTS ' ' \ 20__j

y:E 0 _:5OPTS /--100, EXACT

-0.s

_,-o.oo6_ ......5o
_ -0"009 _ 100' EXACT '_ '&l

o -oO'2[f/--_O.EXAOT 'O-

c:_ 0.6 _- EXACT I0 20 J

:_ 0 _._ _. 50 .......

o -I.2

-3.o _ , , , _ - ,
0 0.2 0.4 0.6 0.8 {.0

AXIAL COORDINATE ° X/#

FIGURE 2.65.--Comparison of finite difference solution
with exact (Fliigge) solution for a clamped-clamped
shell; R/h=20, l/R=lO, n=2, m=l. (After ref. 2.35)
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A much thinner shell (R/h = 500) is the basis

for figure 2.66. The length parameter l/mR is

kept at 10, although the value of n was changed

to n = 4 to have the mode of minimum frequency

(see fig. 2.41). In this ease the effect of axial

MODAL CHARACTERISTICS OF CYLINDRICAL SHELL

R/h = 500 BOUNDARY

,#/R=IO.O .Q = 0.01508 (EXACT) CONDITIONS
w=O

u'03 -(2 =0.02101 (t0 POINTS) aw/ox=O
n-4 .Q .0.0_674 (20POINTS) u=O

-('2 =O.0t539 (50 POINTS) v=O

.('2 =0.01517 (tOOPOINTS) ATx=O,,_

8

0"'1_ 0"01 t- /--50°100° EXACT_'_L _-oo°_ , ,
°I__ 75o,1oo,EXACT /Jl

1.0 o

_ o4I_ ._- 20,EXACT--__ I
_: J- / _50,100, EXACT _ I

01/, I , I , I I T_,..I
0 0.2 0.4 0.6 0.8 1.0

AXIAL COORDINATE.X/_

=_ 0.008
0.004g

a: 0

2 -o.oo4
•_ -O.OO8

,_ -G.012

=_. t0.0
80

z 6.0
;_ 4.0
o 2.0

o
-2.O

< -4.0

0
z

0.0008

°_" 0.0016

u--° 0.0024

_) 0.0032

o

///_50' IO0' EXACTEXA(;T/ 20_

I I I t I

=EXACT

100 PTS _._/-50, t00, EXACT 20 PTS-- 50 PTS ._

_--t00, EXACT

%'-- 50 PTS

50, EXACT

0.0040 ___JOOIPTS
0.0048 ....

tO PTS--
EXACT

20 PTS--
I I

ct)

F-"

o

o
:g

o 02 0.4 0.6 o.8 I.o

AXIAL C00RDINATE ,X/Z

FIGURE 2.66.--Comparison of finite difference solution

with exact (Flfigge) solution for a clamped-clamped

shell; R/h =500, 1/R = 10, n =4, m = r. (After ref. 2.35)

4oF -%5o,loo 2oy /
_8.0L _.._/-50,100, EXACT f /

restraint on No and the effects of clamping on M_

and M0 are highly localized at the boundary and

causes a 40 percent error in the frequency when

10 points are used, and an 11 percent error for

20 points. What is particularly striking here in

comparison with figure 2.65 is that the eigen-

MODAL CHARACTERISTICS OF CYLINDRICAL SHELL

R/h = 500 _("2• 006258 ( EXACT ) BOUNDARY
#/R=Io.o .Q • 0.08753 ( 10 PTS ) CONDITIONS

_=0.3 -Q • 007131 (2OPTS) w=O
n:4 _ ,0.06419 (5OPTS) Ow/ox=O

.Q • 0.06298 ( I00 PTS ) u :0
v=O

AT x =0, ._

- _^ PTS /_-""" 710 PTS _-

.,_ -0.04 I I _ I i
8

.--_../ - 20, EXACT

> 0.2 \--50,i00, EXACT// _,

_._+___ .... __/.... _-,,< ...........

_, -02 \ _ , , _:_

-- < . / \', _-I0 PTS Y

50, t00, EXACT

0 0.2 0.4 0.6 0.8 1.0

AXIAL COORDINATE ,X/_

. 0.4 _. _ EXACT ---..,./_: _h-

-o.4k_......,O0,EXACT_ 20--

1_ 50.0 FEXACT
_" 40.0
ta 30.0 -

°_ 20-O1_ /t00 PTS 20 PTS_

10-0_=_/J50 PTS e t0 PTS--_

-10.0

o-o.o0_.,O0.EXACT_:.... - _
#'.H

--0"010 _r50 PTS 20 PTS -f '_

o -°.°'_r ',,ooPTS
-o.o2o_ --EXAC,T , , , I

_b
12.0 _ "\'EXACT / "'_"'-'_ 20 PTS I

= ,co % - \
s.0 so ' _ ",_....

: .\ "'. ../_
-12.0 ._ .___. ,_=..:............ _'/" __J

0 02 0.4 0.6 o.s Lo

AXiAt. COORDINATE ,X/2

FIGURE 2.67.--Comparison of finite difference solution

with exact (Fltigge) solution for a clamped-clamped

shell; R/h =500, 1/R = 10, n =4, m =3. (After ref. 2.35)
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functions appear to be equally well represented

in the two cases (the eigenfunctions converged to

within 3 percent of the exact value in u and

within 0.1 percent in v with 20 points used). One

normally expects better agreement between the

eigenvalues (frequency parameters) than the

eigenfunctions (mode shapes); here the error is

caused by large differences in the higher deriva-

tives of the eigenfunctions in the vicinity of the
boundaries.

In figure 2.67 a higher axial mode (m = 3) was

taken for comparison with figure 2.66. It is seen

that the representation of the mode shapes and

force and resultants with the 1O and 20 point

solutions is not as good for the higher mode as it

was for the lowest one; yet the error in the eigen-

value has not changed significantly. The reasons

behind the slow convergence of the eigenvalues in

figure 2.67 are discussed in detail in reference 2.35.

Adelman, Catherines, and Walton (ref. 2.132)

used the clamped-clamped circular cylindrical

shell to determine the accuracy of a finite element

computational procedure. The structural ele-

ments used to represent the shell were them-

selves segments of the shell, and each element
was assumed to follow the Goldenveizer-Novo-

zhilov shell theory. Within each shell element it

was assumed that each displacement function u,

v, w could be expressed as a finite polynomial in
the axial coordinate, x. Tl_at is,

Ew= >: a¢xj
s..,.,q

j=o.._,,..,bix i !

i=Nu

u= >' (2.113)
2

i=0_k_? /

i=N_

y = >_ CiXl

i=O )

Three types of polynomial expansions were con-

sidered, the upper limits of the summations being

(1)

(2)

(3)

Three

shown

(N_, N_, No)= (3, 1, 1)

(N_, N_, N_)= (3, 3, 3) (2.114)

(N_, N,, N.)= (5, 3, 3)

types of element layouts were used as

in figure 2.68. The first had 10 equally

spaced elements. The second and third took cog-

nizance of the rapidly changing higher deriva-

tives of the displacements in the vicinity of the
boundaries and used smaller widths of shell ele-

ments there, as shown in figure 2.68(b) and (c). A

specific shell having the following geometrical

and material parameters was used as an example:
/=12, R=3, h=0.01, E=3OX106, _=0.3,

p=7.33X10 -4

Results for the minimum frequencies obtained

from the various finite element solutions, com-

pared with the exact solution procedure (see sec.

2.4) using the Goldenveizer-Novozhilov theory,

for three circumferential waves (n = 3) are given
in table 2.32. The modal characteristics of the

three finite element solutions using ten equally

spaced elements are compared with the exact

solution in figures 2.69 through 2.72.

Koval (ref. 2.137) discussed the effects of

asymmetry due to longitudinal seams and devia-

tions from a circular cross section in the experi-

mental results obtained for clamped-clamped
shells.

I

L

( a ) (b) (c)

FIGUBE 2.68.--Finite element layouts. (After ref. 2.132)
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0 .2 .4 .6 .8 I.O

x/.-_

FIeUBE 2.69.--Comparison of axial force resultants

arising from finite element solutions. (After ref. 2.132)
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TABLE 2.32.--Comparison of Finite Element and

Exact Lowest Frequencies for a Clamped-

Clamped Steel Shell; R/h = 300, l/R = 4,

h=O.01, m=l, n=3

Type of polynomial
expansion, eq. (2.110)

Element layout,
fig. 2.68

(a)
(a)
(a)
(b)
(c)

Approx. _

Exact _2

1.083

1.015

1.002

1.0001

1.0001

12 | 1

I I_I ^L ,%_', J._il

No x 10.4
-4

l
' |I ----- EXPANSION (3)

_16 Ill .... EXPANSION (I)

-20 tl V
IV , , I I I I I I I

-24 .2 .4 .6 .8 I.'0
×/_

FIGURE 2.70.--Comparison of circumferential force

resultants arising from finite element solutions. (After

ref. 2.132)
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-20O

-400

-600

. i \
k./,_ / z z x \ \\ ,,t

¢ "'/ "t

-- EXACT

----- EXPANSION (3)
------ EXPANSION (2)

.... EXPANSION (1)

I I I I I
-8000 .2 .4 .6 .8 1.0

x/2

FIGURE 2.71.--Comparison of circumferential moment

resultants arising from finite element solutions. (After

ref. 2.132)

500-

200
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----- EXPANSION (3)

---- EXPANSION (2)
------ EXPANSION (I)

I I I I I
.2 .4 .6 .8 1.0

x/_

FIGURE 2.72.--Comparison of axial moment resultants

arising from finite element solutions. (After ref. 2.132)

Clamped-clamped circular cylindrical shells
are also discussed in references 2.59, 2.80, and

2.163.

2.4.2 Clamped-Shear Diaphra_dm

The boundary conditions for the circular cylin-

drical shell which is damped at one end and

supported by shear diaphragms at the other are

U=V=W=--=O at X =
Ox (2.115)

N_ = V = w = M_ = 0 at x =

Much information is available for this problem

by considering the longitudinally antisymmetric
modes of s clamped-clamped shell discussed

previously in section 2.4.1. That is, for m=2,

4, 6, . . . , the shear diaphragm boundary con-
ditions are duplicated at the center (x = 1/2) of

a clamped-clamped shell. In particular, m = 2 for

the clamped-clamped shell corresponds to the
fundamental mode of the clamped-SD shell,

while m = 4 corresponds to a higher mode having
one circumferential "node line" located at some

intermediate value of x (not x=l/4, however).

For example, fundamental frequency informa-
tion can be obtained from the curves for m = 2

in figures 2.42 and 2.50, as well as table 2.22

simply by considering the l/R ratio of the

clamped-SD shell to be one-half of the corre-

sponding clamped-clamped shell.
Kondrashov (ref. 2.148) used the Donnell-

Mushtari theory and the Southwell method to

T

÷
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obtain lower bounds for ft. The frequency param-

eters can be calculated from equation (2.107),

with C1 and C: for clamped-SD shells being the

roots of the equations

1-_lJ sin zl_o cosh Z2}o

-cos Zl}o sinh Z2}o=0 (2.116)

C2-1] /2
C2+ 1J cos/cl}0 sinh k2}0

--sin kl}O cosh k2}o=O (2.117)

Uqth }0 = nl/R, and zl, z_, kl, and k2 are given in

equations (2.110). Some useful values of C1 and

C2 are given in tables 2.33 and 2.34. In using the

tables it is generally necessary to interpolate be-

tween values shown for nl/R. The frequency pa-

rameter according to the membrane theory is

ft 2= (1 -- v =)C1 (2.118)

. LO0 I

o,oL
;, \\ \\ ..f

o.oJ,,,,,7,77,:: i,
I 3 5 7 9 II I] 15

CIRCUMFERENTIAL HARMONIC WAVE NUMBER,n

FIGURE 2.73.--Comparison of lowest frequency param-

eters between clamped-SD and SD-SD shells; R/h=

1000, l/R =3, p =0.3, m=l. (After ref. 2.84)

TABLE 2.33.--Values of the Coe_icient C_ in Equation (2.107) for Frequency
Parameters of Clamped-SD Shells

II

L/

2

3

1

n_

4

5

6

7

8

9

10

12

14

16

18

20

22

24

26

28

30

32

36

40

42

44

48

5O

0.5169

• 2982

• 1750

• 1068

• 6783 X 10 -I

• 4466 X 10 -1

• 3029 X 10-'

.2115N10-'

• .1512 X 10 -1

• 8238 X 10 -2

.4815X10 -2

.2980X10 -2

• 1934 X 10 -2

• 1305 X 10 -_

.9110X10 -s

• 6537 X 10 -8

•4810 X 10 -_

.3613X10 -s

• 2766 X 10 -3

.2151X10 -a

.1357 X 10 -3

• 8970 X 10 -4

• 7400 X 10-4

• 6160 X 10 -4

• 4370 X 10 -4

• 3720 X 10 -4

Number of circumferential nodal circles--m

0. 8250

• 6656

• 5124

• 3853

• 2872

.2145

.1613

• 1226

• 9408 X 10-'

• 5729 X 10-'

• 3634 X 10-'

• 2391 X 10-'

• 1626 X 10 -1

• 1138X10 -l

.8168X10 -2

• 5996 X 10 -2

• 4491 X 10 -2

• 3426 X 10 -2

• 2653 X 10 -2

• 2086 X 10 -2

• 1337 X 10 -2

• 8945 X 10 -2

• 7417 X 10 -3

.6199X10 -s

•4425 X 10 -s

• 3777 X 10 -3

0. 9156

• 8248

.7192

.6113

• 5105

.4215

•3457

.2828

• 2315

• 1563

• 1073

• 751 X 10-'

• 5366 X 10 -1

• 3907 X 10 -1

• 2897 X 10 -1

• 2184 X 10-'

• 1671 Xl0 -1

• 1299 X 10-'

• 1022 X 10-'

• 8138 X 10 -2

.5329X10-2

• 3619 X 10 -2

• 3020 X 10 -2

• 2539 X 10 -2

• 1829 X 10 -2

• 1567 X 10 -2

0. 9514

• 8951

.8246

.7459

• 6647

.5847

• 5094

.4412

• 3803

.2807

• 2070

• 1537

• 1152

• 8721 X 10-'

•6686 X 10 -1

.5182X10-'

•4063 X 10-'

.3217X10-'

• 2577 X 10-'

• 2082 X 10 -1

• 1396 X 10-'

• 9661 X 10 -2

• 8123 Xl0 -2

• 6870 X 10 -2

• 5009 X 10 -2

.4311X10-2

0. 9681

• 9307

.8819

• 8245

.7622

•6966

.6319

•5689

• 5088

.4027

.3156

•2468

• 1933

• 1521

• 1204

.9586 X 10-'

.7697 X 10 -1

• 6223 X 10-'

.5073 X I0-'

.4162X10-'

.2863 X 10-'

• 2021 X 10 -1

• 1713 X 10 -1

.1461 X 10 -1

.1078 X 10 -1

• 9335 X 10 -2 r
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Cooper (ref. 2.84) used the clamped-SD shell

as a specific example for demonstrating a com-

putational procedure for general shells of revo-
lution. Linearized equations of reference 2.164
were used in finite difference form. Numerical

results are shown in figure 2.73, where the lowest

value of the frequency parameter is plotted for
each circumferential wave number n for both the

clamped-SD and the SD-SD shells. The follow-

ing parameters complete the specification of fig-
ure 2.73: R/h = 1000, 1/R = 3, v = 0.3, m = 1. The

clamped-SD shell of figure 2.73 has a minimum

frequency which is 26 percent greater than that
of the SD-SD shell.

Ivanyuta and Finkelshtein (ref. 2.114) used
the Galerkin method with the Donnell-Mushtari

shell equations and a single set of beam functions
to arrive at the following frequency formula:

(1 -- v 2)_,,4

_,m2+ n _+ 1.748n 2_,_

1 [ \h 2 4
+:=l-:l (_,P+n + 1.748m2_m 2)

12\/_/

(2.119)

where

(4m + 1)TrR
_ , m= 1, 2, . .

4l

The modal characteristics of a clamped-SD

shell are shown in figures 2.74 and 2.75 for

R/h=20, 1/R=lO, n=2, re=l, v=0.3 (from

ref. 2.72).
Other sources containing limited information

about the free vibrations of clamped-SD circular

cylindrical shells include references 2.32, 2.33,

2.34, 2.42, 2.44, 2.73, 2.139, and 2.165.

l

TABLE 2.34.--Values of the Coef%ient C2 in Equation (2.107) for Frequency

Parameters of Clamped-SD Shells

2

3

4

5

6

7

8

9

19
12

14

16

18

20

22

24

26

28

30

32

36

40

42

44

48

50

Number of circumferential nodal circles-m
l

n_
0 1 2 3 4

4.640

2.580

1.828

1.510

1.341

13.330

, 6.430

4.002

2.900

2.322

26.950

12.480

7.425

5.090

3.822

45.450

21.400

12.067

8.060

5.881

1.243

1.182

1.142

1.112

1.077

1.055

1.041

1.032

1.025

1.021

1.017

1.014

1.013

1.010

1.008

1.006

1.004

1.003

1.002

1.000

1.000

1.850

1.714

1.558

1.444

1.303

1.222

1.167

1.071

1.106

1.086

1.072

1.063

1.052

1.044

1.039

1.030

1.025

1.023

1.019

1.017

1.015

3.060

2.563

2.228

1.988

1.678

1.495

1.373

1.291

1.237

1.195

1.164

1.139

1.118

1.103

1.092

1.071

1.057

1.051

1.047

1.039

1.036

4.595

3.731

3.145

2.732

2.192

1.868

1.665

1.519

1.424

1.345

1.289

1.243

1.211

1.181

1.161

1.126

1.101

1.093

1.078

1.070

1.063

68.900

31.150

17.950

11.820

8.133

6.500

5.200

4.309

3.675

2.847

2.351

2.028

1.687

1.664

1.538

1.450

1.382

1.328

1.286

1.249

1.197

1.15_

1.144

1.12G

1.111

1.10C
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FIGURE 2.74.--Amplitude ratios for a clamped-SD shell;

R/h = 20, 1/R = 10, n = 2, _ = 0.3. (After ref. 2.72)
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FmURE 2.75.--Axial force and moment resultants for a

clamped-SD shell; R/h=20, l/R=lO, n=2, v=0.3.

(After ref. 2.72)
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• FIGURE 2.76.--Lowest frequency parameters for clamped-

free shells (see table 2.21 for admissible _); n =2.

(After ref. 2.127)
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FIGURE 2.77.--Lowest frequency parameters for clamped-

free shells (see table 2.21 for admissible e_); n=3.
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2.4.3 Clamped-Free

The boundary conditions for the circular cylin-

drical shell which is clamped at one end and free

at the other are (see sec. 1.8)

c3W
U=V=W=--=O

Ox

Mx8

N_= N,o-k--R-= Qx ff

at x = 0 /

1 011I_o= 21f_= 0
R Oo

at x = lJ

(2.120)

Lowest frequency parameters were given by

Gontkevich (refs. 2.126 and 2.127) as shown in

figures 2.76 through 2.79. The Rayleigh-Ritz

method using beam functions and the Donnell-

Mushtari shell theory is the basis for the results.

For the general formula yielding these curves,

see equations (2.67) and (2.68) in section 2.4.
Admissible values of _m for the abscissas of

figures 2.76 through 2.79 are available in table

0.6

0.5

I
--h=0.!
R

1.5 2.0

Xm: _m R/,_

FIGURE 2.78.--Lowest frequency parameters for clamped-

free shells (see table 2.21 for admissible _=); n=4.

(After ref. 2.127)
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FIGURE 2.79.--Lowest frequency parameters for clamped-

free shells (see table 2.21 for admissible e,_); n=5.

(After ref. 2.127)

2.21. It should be noted that the beam functions

satisfy the free edge boundary conditions of the

shell in only an approximate manner.
Sewall and Naumann (ref. 2.107) also used the

Rayleigh-Ritz technique with beam functions
and the Goldenveizer-Novozhilov shell theory to

obtain lowest frequency parameters for clamped-

free shells and compared them with experimental

results. They used seven terms in each of the

series of the assumed mode shapes (i.e., damped-

free beam functions) in equations (2.91) to ob-

tain convergence of the Ritz procedure. The

results are shown in figure 2.80 for a 6061-T6

aluminum alloy shell having h=0.0255 in.,

R = 9.538 in., and l= 24.625 in. Mode shapes of

the lowest frequencies for m= 1 and m= 2 are

depicted in figure 2.81.

Numerical results were also obtained by Res-

nick and Dugundji (ref. 2.85) using an energy

method equivalent to Rayleigh-Ritz, beam func-

|
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NUMBER OF CIRCUMFERENTIAL WAVES,n

FIGURE 2.80.--Theoretical and experimental frequencies

for a clamped-free aluminum shell; R/h=374, l/R=

2.58, h =0.0255 in. (After ref. 2.107)
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FIGURE 2.81.--Mode shape for a clamped-free shell.

tions, and the Sanders shell theory. These are

shown in table 2.35 and figure 2.82 for a 6061 alu-

minum shell (E=9.9X106 psi., p=0.254X10 -_

lb-seeVin 4, _=0.3) having R= 2.91 in., l= 12.02
in., and h =0.0070 in. Good agreement between

theory and experiment was found for n_>5 for

m=l. Below n=5, the experimental results

tended towards the SD-free results. Larger dis-

agreement between the theoretical clamped-free

values and those of the experiment also is ap-

parent as m is increased. These disagreements

were regarded as resulting from insufficient

axial constraint at the boundaries during the

experiments. In figure 2.83 (from ref. 2.85) the

effect of a small change in thickness is seen,
particularly for large n. Theoretical frequencies

are also compared between the clamped-free and

clamped-clamped shells.

Weingarten (refs. 2.64, 2.140, and 2.197) ob-

tained theoretical and experimental frequencies
for clamped-free shells. Theoretical results were

based upon the Donnell theory and used Yu's

assumption (X2<<n 2) (see sec. 2.3.5). Numerical

TABLE 2.35.--Theoretical and Experimental Fre-

quencies (eps) for an Aluminum Shell;
l/R=_.13, R/h=415, h=O.O070 in.

m n Experimental

2 149

3 165

4 158

5 200

6 276

7 374

8 490

9 626

10 .........

11 .........

2 .........

3 984

4 675

5 505

6 436

7 454

8 531

9 642

10 783

11 ..........

2

3

4

5

6

7

8

9

10

11

1223

954

803

745

773

873

Theoretical

Clamped- SD-free
free

489 21

246 60

181 115

207 186

280 272

378 375

494 493

627 626

776 775

941 940

2512 1913

1353 987

827 596

576 429

476 389

479 432

549 525

661 647

799 791

959 953

4968 4544

3081 2694

2013 1712

1401 z 1175

1047 881

857 739

787 7O8

807 757

892 861

1021 1002

I

F _
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FIGURE 2.82.--Theoretical and experimental frequencies
(cps) for an aluminum shell; R/h=415, l/R=4.13,
h =0.0070 in. (After ref. 2.85)
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FIGURE 2.83.--Theoretical frequencies for an aluminum
shell; l = 12.02 in. R =2.91 in. (After ref. 2.85)

results are available from figures 2.84 and 2.85

for a shell made of 1020 steel and having

R/h=400, 1/R= 2.23, and h =0.010 in. Addi-

tional results for a similar shell having R/h = 100

and h = 0.040 in. can be seen in figures 2.86 and

2.87. The effects of imperfect clamping in the

experimental models are again seen in these

figures. Overall structural clamping coefficients
were also obtained experimentally for the models
in references 2.140 and 2.197.

12o0

IOOO

80O

8-

z 600

u_
4oo

20O

0
0

CL-FREE (APPROXIMATETHEORY)-- I
SD-FREE (APPROXIMATETHEORY)....
INEXTENSIONALTHEORY
EXPERIMENTAL

\
/#"

2 4. 6

I
I

f

/

I0 12 14

n(NUMBER OF CIRCUMFERENTIAL WAVES)

FIGURE 2.84.--Theoretical and experimental frequencies
(cps) for a steel shell; R/h =400, l/R =2.23, h =0.010
in., m =0. (Mter ref. 2.64)
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FIGURE 2.85.--Theoretical and experimental frequencies
(cps) for a steel shell, R/h=400, l/R =2.23, h=0.010
in., m>0. (After ref. 2.64)
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FIGURE 2.86.--Theoretical and experimental frequencies
(cps) for a steel shell; R/h=lO0, l/R =2.23, h =0.040
in., m =0. (After ref. 2.64)

Extensive numerical resnlts for clamped-free

shells were obtained by Sharma and Johns (refs.

2.166, 2.167, and 2.168) using the Ritz method

in conjunction with the Fliigge shell equations.
Displacement functions were assumed in the
form

u'= [A1_'(x)+A2¢'(x)] cos n0 cos cot]
I

v=[Bl_(x)+B2_b(x)] sin nO cos cot _ (2.121)
/

_v= [Cl_(X)+C2_(x)] cos nO cos cot )

where _(x) and #(x) are the clamped-free and

clamped-SD beam functions, respectively. Tak-

ing equations (2.121) as they are written leads

to a sixth degree characteristic determinant; set-
ting A2 = B_ = C_ =0 reduces the determinant to

the third degree. Finally, imposing the condi-

tions zero hoop (circumferential) and shear strain

in the median plane leads to the relationships

Ov Ov Ou

0-_+w=0, _ssq-_-_=0 (2.122)
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4 6 8 I0 12 14 16 18 20

FIGURE 2.87.--Theoretical and experimental frequencies
(cps) for a steel shell, R/h =100, l/R=2.23, h =0.040
in., m >0. (After ref. 2.64)
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FIGURE 2.88.--Frequency parameters for clamped-free
shells; m = 1, v =0.3, R/h = 100. (After ref. 2.166)

respectively, and reduces the sixth degree deter-

minant to one of the second degree. Frequency

curves obtained using the third degree deter-

minant are shown in figure 2.88 for m=l,

v=0.3, and R/h=lO0. Envelopes for various

R/h ratios are depicted in figure 2.89. Numerical

results obtained using the sixth degree (sextic),

Y-
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third degree (cubic), and second degree (quad-

ratic) frequency equations described above are

listed in table 2.36 for the swaying (n= 1) and

ovalling (n=2) modes of long shells (such as

smokestacks). Another study was made in refer-

ence 2.169 using the Love-Timoshenko theory

which yielded only small differences from the
above results.

Kondrashov (ref. 2.148) used the Donnell-

Mushtari theory and the Southwell method to

obtain lower bounds for _. The frequency parame-

ters can be calculated from equation (2.107),

with C1 and C2 for clamped-free shells being the

roots"of the equations

C1

_ sin zl}0 sink z2}0

1-}-C1
---- coszl}o cosh Z2}o=1 (2.123)

1-Cx

(A _1)sin Icl}o sink k2_o

--(B+B) cos kx}0 cosh k2}0=2 (2.124)

A_ C2-£11u2rC2-(1-_) _ (2.125)
C2-1J [_C2-£ (1-- _) J

B =C2-(1-_) (2.126)
C2+(1-_)

with G0= nl/R, and Zl, z2, kx, and k2 are given in

equations (2.110). Some useful values of C1 and

C2 are given in tables 2.37 and 2.38. In using the

tables it is generally necessary to interpolate

between values shown for nl/R. The frequency

parameter according to the membrane theory is

_2= (1 -- _2)C_ (2.118)

Other sources containing limited information

about the free vibrations of clamped-free circular

cylindrical shells include references 2.25, 2.44,

2.64, 2.103, 2.156, 2.170, 2.171, 2.172, 2.173,

2.174, and 2.175.

Chapter 5 contains additional information for

a clamped-free conical shell having a zero apex

angle.

2.4.4 Shear Diaphragm-Free

The boundary conditions for the circular

cylindrical shell which is supported by a shear

diaphragm at one end and is free at the other are

Nx=v=w=Mx=O

N M.o

10M_o
-_ M_=0

R d0

at x = 0

at x=l} (2.127)

z R/n : 5OO

%
_ 0.02

0.0{

0 005

0.002

00010 2 01,5 I!0 20 5,0 I0 20 50 lOO

Z/R

FIGURE 2.89.--Frequency envelopes for damped-free

shells; m = 1, _, =0.3. (After ref. 2.166)

Much information is available for this problem

by considering the longitudinally antisymmetric

modes of a free-free shell, which is discussed in

section 2.4.5. That is, for m = 2, 4, 6, .... the

shear diaphragm boundary conditions are dupli-

cated at the center (x =l/2) of a free-free shell.

In particular, m = 2 for the free-free shell corre-

sponds to the fundamental mode of the SD-free

shell, while m = 4 corresponds to a higher mode

having one circumferential "node line."
Numerical results were obtained for this

problem by Resnick and Dugundi (ref. 2.85) and

are shown in table 2.35 and figure 2.82. For

additional discussion of this figure and table see
section 2.4.3.

t
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TABLE 2.36.--Frequency Parameters wR_c/p(1- v2)/E X IO 2 for a Clamped-Free Shell; m = 1, v = 0.3

I

L

10

15

20

25

3O

35

4O

45

R/h
Degree

of 50 100 150 200 250 300
char.

eq.
n=l n=2 n=l n=2 n=l n=2 n=l n=2 n=l n=2 n=l n=2

S 2.0835 1.7081 2.0834 1.0351 2.0834 0.8540 2.0834 0.7808 2.0834 0.7445 2.0834 0.7240

C 2.2042 1.7226 2.2041 1.0619 2.2041 .8871 2.2040 .8171 2.2040 .7826 2.2040 .7632

Q 2.4579 1.7528 2.4578 1.1094 2.4578 .9432 2.4578 .8776 2.4578 .8455 2.4578 .8276

S .9406 1.5867 .9405 .8351 .9405 .6001 .9405 .4921 .9405 .4331 .9405 .3973

C .9984 1.5892 .9983 .8415 .9983 .6096 .9983 .5038 .9983 .4464 .9983 .4119

Q 1.0994 1.5958 1.0993 .8533 1.0993 .6256 ..0993 .5230 1.0993 .4679 1.0993 .4351

S

C

Q

S

C

Q

S

C

Q

S

C

Q

S

C

Q

.5320 1.5632 .5320 .7953 .5320 .5450 .5320 .4238 .5320 ".3539 .5320 .3095

.5655 1.5638 .5654 .7973 .5654 .5482 .5654 .4281 .5654 .3591 .5624 .3154

.6198 1.5660 .6198 .8013 .6198 .5539 .6198 .4353 .6198 .3677 .6198 .3251

.3414 ..5560 .3414 .7838 .3414 .5288 .3414 .4030 .3414 .3290 .3414 .2807

.3631 1.5561 .3630 .7845 .3630 .5300 .3630 .4048 .3630 .3311 .3630 .2832

.3971 ..5570 .3971 .7861 .3971 .5324 .3971 .4079 .3971 .3349 .3971 .2876

.2374 1.5531 .2374 .7794 .2374 .5227 .2374 .3952 .2374 .3194 .2374 .2695

.2526 1.5531 .2326 .7797 .2526 .5232 .2526 .3960 .2526 .3204 .2526 .2706

.2759 1.5535 .2759 .7805 .2759 .5244 .2759 .3975 .2759 .3223 .2759 .2729

S

C

Q

50 S

C

• Q

S,C,Q o

.1746 1.5517 .1746 .7774 .1746 .5200 .1746 .3918 .1746 .3152 .1746 .2645

.1858 1.5517 .1858 .7775 .1858 .5202 .1858 .3921 .1858 .3156 .1858 .2650

.2028 1.5519 .2028 .7780 .2028 .5209 .2028 .3929 .2028 .3167 .2028 .2663

.1339 1.5509 .1339 .7764 .1339 .5186 .1339 .3900 .1339 .3131 .1339 .2620

.1423 1.5509 .1423 .7764 .1423 .5187 .1423 .3902 .1423 .3133 .1423 .2623

.1553 1.5510 .1553 .7767 .1553 .5191 .1553 .3907 .1553 .3139 .1553 .2630

.1061 1.5504 .1061 .7758 .1061 .5179 .1061 .3891 .1061 .3120 .1061 .2607

.1125 1.5504 .1125 .7758 .1125 .5179 .1125 .3891 .1125 .3120 .1125 .2608

.1227 1.5505 .1227 .7760 .1227 .5181 .1227 .3895 .1227 .3124 .1227 .2612

.0863 1.5501 .0862 .7755 .0862 .5174 .0862 .3885 .0862 .3113 .0862 .2599

.0912 1.5501 .0912 .7755 .0912 .5174 .0912 .3885 .0912 .3113 .0912 .2599

.0994 1.5501 .0994 .7756 .0994 .5176 .0994 .3887 .0994 .3116 .0994 .2602

1.5492 0 .7746 0 .5164 .3873 0 ! .3098 0 .258_

_A

Notes:
(1) S =sextic.

(2) C = cubic.
(3) Q = quadratic.

L
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2

3

4

5

6

7

8

9

,, 10

12

14

16

18

20

22

24

26

28

30

32

36

40

42

44

48

5O

T_L_ 2.37.--Values of the Coe_icient C1 in Equation (2.107) for Frequency

Parameters of Clamped-Free Shells

Number of circumferential nodal circles-m
l

nT_
0 1 2 3 4

0. 6854 0. 8786 0. 93550.1830

.6857X

.2934X

.1414X

.7501X

.4300X

2626X

1686X

1129 X

5594X

3071X

1819 X

1144 X

7540f

5170X

3660X

2660X

.1980X

.1500X

.1160X

.7200X

.4700X

.3900><

.3200 X

.220 n )_

.190( K

10 -I .4512

10 -i .2851

10 -1 .1821

10 -2 .1194

10 -2 .8049 Xl0 -1

10-3 .5566X10-1

10-3 .3946X10-1

10-3 .2858X10-1

10-_ .1586X10-1

10-_ .9394X10-2

10-3 .5871X10-2

10-3 .3837X10-2

10-4 .2602X10-2

10-4 .1823X10-2

10-4 .1313X10-2

10 -4 .9685 X 10 -3

10-4 .7287X10-_

10 -4 .5585X10-a

10-4 .4353X10-z

10 -_ .2750X 10 -8

10-5 .1822X10-3

10 -_ .1503 X10 -3

10-5 .1253X10-_

10-5 .8890X10-4

10-5 .7560X10-4

.7512

.6129

.4839

.3747

.2880

.2212

.1708

.1327

.8626X 10 -I

.5285X10 -I

.3509X10 -1

.2402X10 -1

.1689X10-'

.1218X10-'

.8970X10 -2

.6734X10 -2

.5147X10 -2

.3996X10 -2

.3144X10 -2

.2020X10 -2

.1354f10 -2

.1124X10 -2

.9395X10-_

.6717X10 -3

.5734X10-3

.8621

.7714

.6739

.5778

.4883

.4088

.3404

.2827

.1951

.1360

.9629X10-1

.6934X10-1

.5080X10 -1

.3786X10 -1

.2866X10 -1

.2202X10 -1

.1715X10 -1

.1352X10 -1

.1078X10 -1

.7080X10 -2

.4821X10 -2

.4027X10 -2

.3387×10 -3

.2444X10 -2

.2095X10 -2

0.9607

.9578

.8541

.7845

.7100

.6349

.5617

.4928

.4302

.3242

.2430

.1826

.1381

.1054

.8122X10-1

.6323X10-1

.4977X10-1

.3956X10-1

3175X10-I

2571×10-1

1730X10 -1

1200X10 -1

1010X10 -1

8550X10 -2

6243X10 -2

5375X10 -2

123
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TABLE 2.38.--Values of the Coe_cient C2 in Equation (2.107) for Frequency

Parameters of Clamped-Free Shells

Number of circumferential nodal circles-ra
1

n_
0 1 2 3 4

2

3

4

5

6

7

8

9

10

12

14

16

20

22

24

26

28

30

32

36

40

42

44

48

5O

1.473

1. 208

1. 116

1. 073

1. 049

1. 035

1. 025

1.019

1.015

1. 009

1. 006

1.003

1. 002

1.001

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

5. 578

3. 082

2. 200

1.781

1. 556

1.408

1.314

1. 249

1. 203

1. 141

1. 103

1. 079

1. 062

1. 050

1. 041

1. 034

1. 029

1. 025

1. 022

1.019

1.015

1.012

1.010

1. 009

1.008

1. 007

14.70

7.117

4.463

3.232

2.562

2. 156

1. 891

1. 706

1.576

1.403

1. 230

1. 228

1. 180

1. 146

1. 121

1.101

1. O86

1. 074

1. 065

1. 057

1. 045

1. 036

1. 033

1. 030

1. 025

1. 023

28.76

13.36

7. 966

5.471

4. 115

3. 297

2. 766

2.400

2. 138

1.795

1. 587

1.451

1.357

1. 290

1. 240

1. 202

1. 172

1. 148

1. 129

1.113

1.09O

1. O73

1.066

1. 060

1.050

1. 046

47.77

21.80

12.710

8.5O5

6. 220

4. 842

3. 948

3. 300

8. 895

2. 322

1.975

1. 749

1. 594

1.482

1. 399

1.335

1. 286

1. 247

1.215

1. 189

1. 150

1. 121

1.110

1. 100

1. 084

1. O77

t

Additional results were obtained by Wein-

garten (refs. 2.64 and 2.140) and are shown in

figures 2.84 through 2.87. For additional dis-

cussion of these figures see section 2.4.3.

The free vibration problem for SD-free shells
is also discussed in references 2.44 and 2.62.

2.4.5 Free-Free

The boundary conditions for the completely

free circular cylindrical shell are

Nx=N_o+_=Q_

10M_o
+_-_=M_=O at x=O,l (2.128)

where, of course, expressions for the generalized

forces N_, Nxo, M_, M_e, and Q_ must be taken

according to the shell theory being used (see

sec. 1.5).

The free-free circular cylindrical shell is an

appropriate place to discuss the classical and

well-known inextensional theory of shells. The

kinematics of deformation of this theory require
that the middle surface of the shell deforms with-

out stretching. For a circular cylindrical shell

this in turn requires that the generators of the

cylinder remain straight during vibration.

The inextensional theory was used in an early

study by Rayleigh (ref. 2.124) in 1881 to describe
the deformation and vibration of thin shells of

revolution. Rayleigh claimed that, if the shell

were sufficiently thin and vibrating in one of its

lower modes, the middle surface behaves as if it

is inextensible. This hypothesis was subsequently

criticized by Love (ref. 2.25) because of its failure

to satisfy the equations of motion and the neces-

sary boundary conditions. Rayleigh, undaunted,

continued by applying the theory to the circular

cylindrical shell (refs. 2.24 and 2.176).

l
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The theory consists of two sets of vibration

modes for circular cylindrical shells. The first set

is due to Rayleigh and is characterized by the

displacements

u--0 }
v =C sin nO cos oat (2.129)

w = C cos nO cos cot

and was assumed to be applicable for long shells.
Setting the maximum strain energy stored in the

shell during vibration equal to the maximum

kinetic energy, Rayleigh obtained

,, n2(n 2_ 1) 2
_22= £ (2.130)

n2q-1

The second set, more applicable to shells of arbi-

trary length, assumes displacements of the form

u = n C cos n_ cos _0t

v=_C sin n_o cos wt ] (2.131)
!

w = n£C cos n_ cos _t)

where 2 is the length coordinate measured from

the center section of the shell (x=l/2). Using

this set of mode shapes, Love (ref. 2.26) obtained

the following formula for frequency parameters:

24(1 -- v) R 2
1+

kn2(n2__ -1) n2l _
n2+l 12R2 (2.132)

1-_
n2(nS--k l)12

which gives equation (2.130) as a special case as
l/ R--+ _.

Reference_ 2.3, 2.62, 2.78, 2.138, 2.173, 2.177,
2.178, 2.179, and 2.180 also contain discussions

of the inextensional vibrations of circular cylin-
drical shdls.

Beam functions for use with equations (2.91)

the Rayleigh-Ritz or an equivalent technique

are given by

XR (x) = 1 )

[xL(x)
l 2 , (2.133)

X,,(x) = cosh Xms+cos Xms |

- _m(sinh XmsWsin M,s), /m = 1, 2, . . .

[ I; /

l I

t) I
! \

RAYLEIGH LOVE m = I

,, j

INEXTENSIONAL

FIGURE 2.90.--Mode shapes of a free-free circular

cylindrical shell. (Xfter ref. 2.107)

with s = x/R and X,,,= Rem/l as before, Emare the
roots of equation (2.93), am is given by equation

(2.94) and values of em and am are given in table

2.23. The first two mode shapes in equation

(2.133), denoted as XR(x) and XL(X), are the

rigid body translation and rotation modes, re-

spectively, of a free-free beam. In the beam

vibration problem they are trivial modes having

zero frequencies. However, for the circular cylin-

drical shell they yield the Rayleigh and Love
inextensional modes, respectively, as discussed

earlier in this section. The mode shapes of a

free-free shell in the Rayleigh, Love, and m = 1
modes are shown in figure 2.90.

Warburton (ref. 2.78) followed the procedure
outlined in section 2.4 to obtain an exact solu-

tion to the Fliigge equations of motion in the

form of equations (2.53) and satisfied the free-

free boundary conditions exactly. However, in-

stead of using the second of the conditions given

by equation (2.128), which is necessary to be

consistent in the calculus of variations, the con-

ditions N,0 = 0 was used. After substituting into

the boundary conditions, the resulting frequency
equation for the symmetric modes is the one

given previously as equation (2.75), where

0_= MI/2R, etc., as before, and where equations

(2.76) are still used to obtain the antisymmetric

frequency equation. However, the coefficients

bi which appear in equation (2.75) are now
given by

bs=ob'=(l'16-121_)(lnll6--1_21*5) !

ba=(ll_l,a-lgl,6)(lals-121s) I

+(19l,_--lnlia)(1416--l=l,) I!

(2.134)

|

r-

£.
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b4= (Ills- 1815)(111114- l_ol_5)
+ (l_17--1415)(1_2114--110l_6)

be = (l_ls- 1315)(1_21_4--/_0/16)
- (hz7- _4z_)(_1h4- h6t_5)

58 = (l_oll_ -- 191_4)(141s- 131_)

57 = - (/9/z6-- 111l_3)(13la-- 1216)

+ (1_-_9/,0) (1,z6-/:_7)

where

11= k2_l"_ pnkl -- P -_- _o_ 12

12= -- ]C4'Y2"-_vnk3 -- v -- _'y2 2

l_ = -- ]_Tq-- Icsp -- vnk6-- 2_pq

14= kTp-- ksq+ vnks -- V + _ (p 2 -- q2)

16= ,xl 2 - vn2 + vnlc1+ allc_

16= -- '_/2 2 --/jn2-_ - vnk8 -- "_2k4

17= p2 __q2__ vn2_{_ kTp __ ]Csq-{-vnk5

ls = -- 2pq-- kTq-- ksp -- vnk6

19= -- nk2-+ (1 + f_)]clal-- f_na 1

llo = nk4-- (1 +_)k8_'2 +Bn'y2

lu = nks-- (1 +B) (ksq+k6p) +[3nq

lu = --nk7 + (1 -+-B) (k 5p -_ k6q) - f3np

113= 613- (2- v)n2a1+k_al 2

1 1 2 1
+_( - v)n ]c2-_-_(3- v)nkl(Xl

114= 733+ (2- v)n2_t_.+k4_,9. _

1 2 1
' --_(1 -- v)n k_--_(3- v)nka'y2

l_ = -- q(3p 2- q2) + (2-- v)n_q

-- 2pqkT- k6(p _-q2)

--1(3-- v)n(k6q + k6p)

1 2
--_(1-- v)n ks

lx6 = p (p2 _ 3q2) _ (2-- v)n2p

+ k7 (p2 __q2) __2pqk6

+1(1 --v)n2k_

+1(3 -- v)n(k6p-- k6q)
_5
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(2.134)

(2.135)

with the constants /_ related to the amplitude

ratios by equations (2.78), and with the ampli-

tude ratios determined by equations (2.79) for
v=0.3.

In reference 2.78, Warburton compared fre-

quency parameters for free-free shells obtained

by using two procedures:

(1) The exact procedure, using Fltigge's equa-
tions, as described previously in this section.

(2) The Rayleigh-Ritz procedure, using a sin-

gle set of free-free beam functions and the Fltigge
strain energy integrand.

Numerical results are listed in table 2.39 wherein

selected values of the square of the frequency

parameter _ are prescribed and the 1/R ratios

corresponding to given values of m are deter-

mined from equation (2.75). The percentage by

which the Rayleigh-Ritz frequency exceeds the

exact frequency is also listed in each instance.
The ratio of the transverse deflection at one end

of the shell (x =l) to that at the center section

(x =l/2) in the corresponding vibration mode is

also given for the exact solution. It is seen that

typically the percentage error in _2 increases as

l/R decreases. However, for n = 2 the frequency
increases to a maximum and then decreases as

l/R increases further; this is shown in table 2.39

for R/h=500, but was found typical for n=2

with three other values of R/h in reference 2.78.

For the range of parameters considered in the in-

vestigation, the maximum error found was ap-

proximately 10 percent and occurred for m= 2,

n=2, and 1/R_4. The error tends to decrease

with increasing n, although for large n(> 12), it is

essentially independent of n, as shown in the

table for n= 16. It is interesting to note that

the maximum error in the frequency determined

by the approximate Rayleigh-Ritz procedure is

of the same order, and occurs for the same pa-

rameters, as was found in a similar approximate

analysis for clamped-clamped shells (see table

2.24), even though the clamped-clamped beam

functions satisfy the clamped shell boundary

conditions exactly, while the free-free beam func-

tions only approximate the free boundary con-
ditions for a shell• This is in contrast to what is

found in the vibration of rectangular plates (ref.

2.157) where the effect of free edges is to increase

the error in the approximate frequencies obtained

J

F"

_J
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TABLE 2.39.--Length Ratios (1/R) of Free-Free Shells for a Given _ from

Equation (2.75) and Some Comparisons; v= 0.3

n R/h _2

4X10-_

1XlO-4

2 500 0.001

5OO

6

100

0.2

0.5

4)<10-4

4.8X10 -4

0.01

0.06

0.01

0.0105

0.015

0.08

Item

z/R
V

Z

l/R

e

Z

t/R
e

Z

Z/R
e

Z

_/R
e

Z

UR
V

Z

Z/R
e

Z

l/R

e

Z

Z/R
e

Z

Z/R
e,

Z

l/R

e

Z

Z/R
e

Z

Z/R
e

Z

Z/R
e

Z

61.5

1.4

--1.64

21.9

3.9

--1.64

12.1

3.7

--1.62

2.57

6.7

--1.40

1.58

6.6

--1.24

22.3

.05

--1.40

8.30

.62

-1.61

5.46

1.8

--1.62

2.37

4.1

--1.58

1.41

5.4

--1.49

15.7

.11

--1.11

6.77

.29

--1.38

3.19

1.1

--1.52

1.41

4.2

--1.48

m

143

.66

1.41

50.8

1.8

1.40

28.0

2.3

1.38

5.59

8.5

1.11

3.27

6.9

1.02

50.7

.03

1.34

19.1

.32

1.41

12.6

1.0

1.40

5.44

3.4

1.34

3.17

5.8

1.25

34.7

.06

1.11

14.9

.17

1.35

7.18

.81

1.39

3.15

4.6

1.27

Notes:

(1) e = Percent error in Rayleigh-Ritz frequency.

(2) Z=w(l)/w(l/2).

224

.43

-1.41

79.8

1.2

--1.41

44.0

1.7

--1.39

8.67

6.4

-1.15

5.01

5.2

--1.08

79.1

.02

--1.34

30.0

.22

--1.42

19.8

.70

--1.41

8.52

2.5

--1.35

4.94

4.5

--1.27

53.7

• 04

--1.11

23.0

.11

--1.35

11.2

.59

--1.39

4.90

3.6

--1.28

127

l

r



128 VIBRATION OF SHELLS

TABLE 2.39.--Length Ratios (l/R) of Free-Free Shells for a Given 92 from

Equation (2.75) and Some Comparisons; _= 0.3--Concluded

16

R/h

2O

5OO

100

_2

O. 249

• 255

.27

.5

•021591

•021595

.02161

•02166

•02210

•53977

•53986

•5402

.5415

.5505

Item

Z/R
e

Z

1/R
e

Z

Z/R
e

Z

l/R

e

Z

l/R

e

Z

Z/R
e

Z

l/R

V

Z

Z/R
e

Z

_/R
e

z

Z/R
e

Z

Z/R
e

Z

t/R
e

z

Z/R
e

Z

l/R
e

Z

19.6

.12

-- .83

7.96

.31

-1.13

4.71

.47

--1.21

1 •60

1.1

--1.33

71.6

0

-- .10

24.3

.02

-- .33

13.4

• 04

-- .61

7.66

• 10

-- .91

3.40

• 24

--1.21

51.4

0

-- .11

I

22.6

.02

-- .27

12.6

• 05

-- .50

7.29

.12

-- .80

3.41

.29

--1.08

m

45•7

.06

• 83

17•0

.19

1.13

9.90

.34

1.21

3.41

1.2

1.29

2O7

0

.10

65:4

.01

.33

33.4

.02

.61

17.6

• 05

.91

7.37

.14

1.21

149

0

.11

62.1

.01

.27

32.4

• 02

•50

17.2

• 05

.80

7.37

.16

1.08

Notes:

(1) e =Percent error in Rayleigh-Ritz

(2) Z=w(1)/w(1/2).

frequency.

71.9

• 04

-- . 83

26.0

.12

--1.13

15.1

.24

--1.21

5.23

.95

--1.29

343

0

-- .10

107

0

- .33

53.4

.01

-- .61

27.5

• 03

-- .91

11.3

.09

--1.21

246

0

-- .11

102

0

-- . 27

52.2

.Ol

-- .50

27.1

• 03

-- .80

11.3

.11

-i .08

i

T
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by the Rayleigh-Ritz method using beam func-

tions. In reference 2.78 it was also reported that

the frequencies obtained by the Rayleigh-Ritz

method were in good agreement with experimen-

tal values obtained from a series of experiments

with free-ended shells having R/h = 19.1 and dif-

ferent lengths, giving a difference in frequency in

excess of 5 percent for only six modes out of a
total of 66.

In addition to the mode shape deflection ratios

w(l)/w(1/2) given in table 2.39, some examples

of mode shapes for m = 1 are given in figure 2.91

(from ref. 2.78). For n=2 and l/R large, the

mode shape is given by curve I, which is coinci-

dent with the free-free beam mode shape (values

of w(1)/w(l/2) for the free-free beam are --1.645,

1.405, and -- 1.414 for m = 1, 3, 5, respectively).

As 1/R decreases the mode shape diverges from
curve I and tends towards curve II, which cor-

responds to l/R = 1.59, lO0<_R/h<500. For in-

termediate values of 1/R the mode shape lies

between curves I and II and essentially passes
through the intersection point of curves I and

II. For large values of n and 1/R a curve such as

V is typical of the mode shape; as 1/R decreases

the shape progressively changes, passing approxi-

1.0

o

I- n=2, _/R>>I, 100__R/h_<500

- 1.0 -- 2_- n=2,-/,/R=159,100_<R/h_<500

i 33_- n=16, _/R= 3, R/h =100

I _ - n=t6, _/R=I0, R/h=lO0

_- n=t6,_/R = 226, R/h =100

-I.5

0.5 0.6 0.7 0.8 0.9 1.0

x/4

FIGURE 2.91.--Mode shapes (radial components) for '

free-free shells; m = 1. (After ref. 2.78)

mately through curves IV and III. Specifically,

curve V corresponds to n= 16, R/h= 100, and

1/R=22.6. If l/R is reduced to approximately

10 or 3 and other parameters are left unchanged,

then the mode shapes correspond to curves IV

and III, respectively. For 1/R=constant and

n increasing, the curves tend further away from

curve I. For intermediate values of n, such as

n = 6, curve III also corresponds to a mode shape

for 1/R = 15.7 and R/h = 100. As 1/R is reduced

the mode shape approaches curve I and then,

for very low values of 1/R, tends to cross curve I

and give a curve similar to curve II. For n and

1/R large, the axial nodal circle moves towards

the end of the shell. The mode shapes of the

axial and circumferential displacements u and v

were not investigated in detail in reference 2.78,
but it was found that when both n and l/R are

small, v(1/2)/w(1/2) decreases slightly as I/R in-

creases and tends to 1/n as 1/R--* oo ; v(1)/w(l) is

slightly less than 1/n; u(1)/w(l) is small and de-

creases with increasing l/R or n.

Lowest frequency parameters were given by
Gontkevich (refs. 2.126 and 2.127) as shown in

figures 2.92 through 2.96. The Rayleigh-Ritz
method using beam functions and the Donnell-

Mushtari shell theory is the basis for the results.

For the general formula yielding these curves,
see equations (2.67) and (2.68) in section 2.4.

Admissible values of em for the abscissas of fig-
ures 2.92 through 2.96 are available in table 2.21.

0.1

0.08

0.06 _ / 5 .0

rr"

0.04 _J
tt _ _ f

0.02

O_

¢/

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Q8

Xm=_mR/Z

FIGURE 2.92.--Lowest frequency parameters for free-free

shells (see table 2.21 for admissible e_); n = 2, 0 _<X_ _<

0.8. (After ref. 2.127)
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, i- / //
o.s _-"- ./

./ ./
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,4

0 0.5 L0 1.5 2.0 2.5 5.0

FIGURE 2.93.--Lowest frequency parameters for free-free

shells (see table 2.21 for admissible _m) ; n = 2, 0 _ X,_

3.5. (After ref. 2.127)

),m=ernR/Z

FIGURE 2.95.--Lowest frequency parameters for free-free

shells (see table 2.21 for admissible e_) ; n =4, 0 _< X_ <

3.0. (After ref. 2.127)
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0.6 _" /

/
/

/
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FIGURE 2.94.--Lowest frequency parameters for free-free

shells (see table 2.21 for admissible e_), n =3, 0<X__<

3.0. (After ref. 2.127)

FIGURE 2.96.--Lowest frequency parameters for free-free

shells (see table 2.21 for admissible e,,), n =5, 0<X,__<

3.0. (After ref. 2.127)
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Sewall and Naumann (ref. 2.107) also used the

Rayleigh-Ritz technique with beam functions

and the Goldenveizer-Novozhilov shell theory to

obtain lowest frequency parameters for free-free

shells and compared them with experimental re-

sults. However, they employed nine terms in

each of the series of the assumed mode shapes

appearing in equations (2.91) to obtain conver-

gence of the Ritz procedure, except for the

modes which are similar to Rayleigh and Love

inextensional modes. For the latter modes, only

a single term of the series was required for con-

vergenee..over most of the range of n values,

with the exception of the range 10<n<15 for

the Love-type mode. This rapid convergence of

the method for the Rayleigh and Love-type

modes to modes which are, for all practical pur-

poses, the Rayleigh and Love modes themselves

(as given by equations (2.129) and (2.131)), is a

strong indication of the accuracy of these ap-

proximations. The results are shown in figure

2.97 for a 6061-T6 aluminum alloy shell having

h=0.0255 in., R=9.538 in., and /=25.125 in.

In this figure it is seen that the Rayleigh and

Love modes have very nearly the same fre-

quencies. For figure 2.97 the measured frequencies
for the two inextensional modes were obtained

with an air shaker; experimental frequencies for

6OO

500 • _

4(?O

w

u.

2OO

I00

i
0 2 4 6 8 I0 12 14 16

NUMBER OF CIRCUMFERENTIAL WAVES, n

FIGURE 2.97.--Theoretical and experimental frequencies

for a free-free aluminum shell; R/h =374, l/R =2.63,

h =0.0255 in., (After ref. 2.107)

the higher modes (m = 1, 2) were obtained with an

electrodynamic shaker.

Gr_itzmacher, Kallenbach, and Nellessen (ref.

2.62) proposed an interesting method of obtain-

ing frequencies for circular cylindrical shells hav-

ing arbitrary boundary conditions. The procedure

consists of using the characteristic equations for

an SD-SD shell (as given for the various theories

by eqs. (2.35) and (2.36) and table 2.4) and use

the appropriate values of X arising in the beam

functions for the desired boundary conditions

instead of the X for an SD-SD shell. They dem-

onstrated this procedure for a free-free shell and

compared the frequencies obtained with experi-

mentally measured ones. The Flfigge character-
istic equation (see table 2.4) is taken in its

linearized form (neglecting _6 and _4 terms). In

addition the theory of Coupry (refs. 2.12 and

2.13) is used (a theory which arrives at a sym-

metric form of Love's equations of motion in an

fE

n=6 ________ _

EX!E MENT
n=2

0 2

krn=_rnR/.£

FIGURE 2.98.--Theoretical and experimentally deter-

mined frequencies parameters for a free-free shell;
v=0.35, R/h=2.94, l/R=2.17. (After ref. 2.62)
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n=4

-- FLUGGE THEORY

----- COUPRY THEORY

o EXPERIMENT

FIGURE 2.99.--Theoretical and experimentally deter-
mined frequencies parameters for a free-free shell;
v=0.35, R/h = 17.6, l/R = 11.42. (After ref. 2.62)

n=6

2 n=5 _

ioo /

6

_I0-' -- FL[JGGE THEORY

¢_ 8 n=lo/ ----- COUPRY THEORY

i0 -2

o EXPERIMENT

0 3

),rn=CrnRI£

FIGURE 2.100.--Theoretical and experimentally deter-

mined frequencies parameters for a free-free shell;

v =0.35, R/h=8.48, 1/R =11.8. (After ref. 2.62)

FIGURE 2.101.--Theoretical and experimentally deter-
mined frequencies parameters for a free-free shell;
I,--0.35, R/h=2.5, l/R=13.3 (After ref. 2.62)
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n=4

n=_3

.._. " n=2
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COUPRY THEORY

EXPERIMENT

n=l

2

Xrn=,%R/,£

FIGURE 2.102.--Theoretical and experimentally deter-

mined frequencies parameters for a free-free shell;

=0.35, R/h = 14.5, 1/R =43.5. (After ref. 2.62)

Unclear manner). Theoretical and experimental
results obtained for various shells are shown in

figures 2.98'through 2.103 for v = 0.35. Admissible

values of e_ for the figures are available in table
2.21. The usefulness of the theoretical results in

figure 2.101 is questionable because it applies to

shells having a thickness ratio (R/h = 2.5) beyond

acceptable limits for eighth order shell theory.

Figure 2.103 used measured frequencies for eight
shells having

2.5<R/h<44.5

and

lO.2<l/R<_ 143

Kondrashov (ref. 2.148) used the Donnell-

Mushtari theory and the Southwell method to

obtain lower bounds for t2. The frequency param-

tY

10°

2

I0 -f

8

6

4

_FLUGGE THEORY

COUPRY THEORY

o EXPERIMENT

2 !

Fioum_ 2.103.--Theoretical and experimentally deter-

mined frequencies parameters for a free-free shell;

n = 1; v = 0.35; experimental values are from eight shells.

(Mter ref. 2.62)

eters can be calculated from equation (2.107),

with C1 and C2 for free-free shells being the roots

of the equations

COS Zl_0 cosh z2_0

-_-_¢/C1/(1--C1) sin zl_0 sinh z:_0= 1 (2.136)

cos kl_o cosh k2_o

1( 1)-_ C--_ sin k_(o sinh k2(o=O (2.137)

[C,+l]'"[c,-(1-a],C= LC-_- lJ L_ (2.138)

with _0= nl/R, and zl, z2, kl, and k2 are as given
in equations (2.110). Some useful values of Cz

and C2 are listed in tables 2.40 and 2.41. In using

these tables it is generally necessary to interpo-
_.
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late between values shown for nl/R. The fre-

quency parameter according to the membrane

theory is

_2_= (1 -- ,2) C1 (2.139)

Experimentally determined frequencies ob-

tained by Grinsted (ref. 2.181) for R/h=78.2,

l/R = 2.4, and h=0.064 in. (the material is not

known, but presumably is steel) are shown in

figure 2.104.

The modal characteristics of a particular free-

free shell having R/h=20, l/R=8.1, _=0.3,

m = 1, and n = 0 (axisymmetrie) are shown in fig-

ure 2.105 (from ref. 2.73). The value of 9 associ-
ated with these curves is 0.3671 and was obtained

from the Fltigge theory by the exact method. It

is interesting to compare the various generalized

displacements and forces shown in the plots with

the corresponding plots for an SD-SD shell,

TABLE 2.40.--Values of the Coe_cient Cz in

Equation (2.107) for Frequency Parameters of
Free-Free Shells

l

n_

2

3

4

5

6

7

8

9

10

12

14

16

18

20

22

24

26

28

3O

32

36

40

42

44

48

5O

Number of circumferential nodal circles (re+l)

0. 8107

.6199

.4327

• 2863

.1860

.1216

• 8096 X 10 -1

• 5522 )< 10-t

• . 3859 )< 10 -1

• 2020 X 10 -1

.1144 X 10 -1

.6918)<10 -2

.4412 X 10 -2

• 2938 )< 10 -2

.2029×10 -2

.1445 X 10 -2

• 1056 )< 10 -2

.7888 × 10 -3

• 6012 )< 10 -a

.4659 )< 10 -3

.2923 X 10 -3

.1924 )< 10 -s

• 1585 X 10 -a

• 1318 X 10 -3

.9320 X 10 -4

.7920 X 10 -4

0. 9065

.8042 '

• 6840

.5619

.4493

• 3529

.2742

• 2124

• 1646

.1004

.6298 )< 10 -1

• 4087 X 10-x

-.2741 X 10 -1

• 1894 X 10 -1

• 1345 )< 10 -1

• 9782 )< 10 -2

• 7272 X 10 -2

.5506 X 10 -2

• 4242 )< 10 -2

• 3317 X 10 -2

.2109 )< 10 -_

.1403 X 10 -2

• 1160 X 10 -_

• 9677 )< 10-3

.6885 X 10-3

.5866 X 10 -s

0.9501

.8909

.8146

.7277

.6375

• 5494

•4672

•3937

• 3295

.2291

• 1592

• 1117

• 7957 X 10 -x

.5759 X 10 -1

•4240 )< 10-1

• 3174 X 10- x

• 2414 X 10 -t

• 1864 X 10 -1

• 1458 X 10-1

.1154X10 -1

.7494)< 10 -2

.5054 X 10 -2

• 4206 × 10 -2

.3526 X 10 -_

• 2529 )< 10 -_

.2162 X 10 -2

where a radial constraint (w = 0) would be ap-

plied at the ends. The SD-SD shell gives sinus-

oidal variations in all quantities plotted (see secs.

2.3 and 2.3.2). The only noticeable deviation

from sinusoidal patterns in figure 2.105 is seen
in the force distributions. The moment resul-

tants M= and M0 show very slight distortions at

the boundary. The circumferential (hoop) force

resultant N0 is not zero at the boundary, but is
very small. The largest distortion from sinusoidal

behavior is in the shearing force Q=, which would
yield a cosine curve for the SD-SD shell.

For n=l (beam bending mode) the modal
characteristics of a free-free shell are shown in

figures 2.106 and 2.107 for 1/R=5, v=0.3, m= 1,

n = 1. The curves fit both R/h = 20 and 500, and

= 0.3583 for both thickness ratios, showing the
importance of overall beam bending behavior

compared with localized bending through the

shell wall. Local bending near the free edges is
seen in figure 2.107.

Free vibrations of free-free circular cylindrical

shells are also discussed in references 2.3, 2.7,

2.44, 2.45, 2.103, 2.134, 2.139, 2.182, 2.183, and
2.184.

s,ooo I
I

7,ooo i

 ,ooo ' \,\ , . :Y
>..- 5,0oo , _ _

oz

3,ooo %..

ZJi
I 2 3 4 5 6

2,000

1,000

?

o
o 7 8 9

FIGURE 2.104.--Experimentally observed frequencies for

a free-free shell;.R/h=78.2, 1/R=2.4, h--0.064 in.

(After ref. 2.181)
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TABLE 2.41.--Values of the Coej77cient C2 in Equation (2.107) for Frequency
Parameters of Free-Free Shells

2

3

4

5

6

7

8

9

10

12

14

16

18

20

22

24

26

28

3O

32

36

40

42

44

48

5O

Number of circumferential nodal circles (m 4-1)l

n_
0 1 2 3 4

2.263

1.682

1.423

1.282

1.200

1.148

1.113

1.088

1.071

1.047

1.032

1.021

1.016

1.014

1.011

1.009

1.007

1.006

1.004

1.002

1.001

1.0

1.0

1.0

1.0

1.0

7.170

3.950

2.770

2.191

1.860

1.650

1. 507

1. 408

1. 342

1.236

1.173

1.132

1.103

1.087

1.073

1.061

1.051

1.042

1. 037

1. 032

1.024

1. 020

1.018

1.015

1.012

1.010

16.840

8.230

5.195

3.765

2.975

2.485

2.160

1.932

1.764

1.541

1.404

1.308

1.245

1.202

1.167

1.142

1.122

1.104

1.091

1.078

1.061

1.050

1.043

1.041

1.034

1.030

32.550

14.730

8.830

6.100

4.595

3.685

3.080

2.670

2.365

1.967

1.724

1.557

1.446

1.365

1.302

1.255

1.217

1.187

1.164

1.143

1.112

1.092

1.081

1.076

1.062

1.058

51.20(

23.45(

13.71(

9.21(

6.766

5.28(

4.30(

3.63_

3.15_

2.521

2.13(

1. 874

1.69_

1.56_

1.474

1.40£

1. 343

1. 294

1. 257

1.22_

1.17g

1.146

1.131

1.12G

1.10G

1. 092
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FmURE 2.105.--Modal characteristics of a free-free shell;

R/h=20, l/R=8.1, v=0.3, n=O, m=l. (After ref.

2.73)
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mode shape of figure 2.106. (After ref. 2.73)

2.4.6 Edges Not Necessarily Clamped, SD, or Free

Thus far only six cases of circular cylindrical

shells of finite length having some combination

of clamped, shear diaphragm, or free edges have

been considered. The remaining 130 possible

combinations of simple boundary conditions will

now be taken up. Remembering the possible
conditions

(a) u=O or (b) N_=O (2.140)

(a) v=0 or (b) N_e-t-_--_°=0 (2.141)

1 OM_o
(a) w=0 or (b) Q_4 .... 0 (2.142)

R O8

Ow 0
(a) 0_-= or (b) M_=0 (2.143)

A somewhat more compact notation will now be

used to aid in labeling future problems:

Ow

W,x _- _X-X o

N M_e
S_o -- _o-5-_- (2.144)

10M_o

V_-Q_+_ O0

Eight symbols will be needed to completely define

the boundary conditions at both ends of a shell.

In order to have immediate recognition of the

conditions being considered, the notation given

in equations (2.140) through (2.144) will be used

for identification. The complete description of a

problem will be given by a single set of paren-

theses in the format shown in the examples below:

Clamped-free: (u v w w, - N, S,0 V, M_)

Clamped-SD: (u v w w_ -- N, v w M_)

In spite of the vast number (130) of distinct

problems encompassed by this section, significant
information is available below for most of them.

(u S_0 V_ w._ - u S_0 V_ w,_) shells have the

same frequencies as (N_ v w M_ - N_ v w M_)

shells (i.e., SD-SD). The displacement functions

given by equations (2.20) with X=m_rR/1 are

simply shifted by _/2 with respect to the longi-

tudinal coordinate s, giving

T
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u =A sin Xs cos nO cos cot]

v = B cos Xs sin nO cos _t

w = C cos ks cos nO cos _t

(2.145)

which satisfy the (u S_0 V, w_ - u S,0 V, w.,)

boundary conditions exactly. Physically stated,

the boundary conditions for this shell are met at

the antinodal section (e.g., x=l/2 for re=l) of
an SD-SD shell. All modal characteristics

of (u S,0 V_ w_ - u Sx8 V_ w_) shells are similarly

shifted by Ir/2.
Because in most cases the modes having the

lowest frequencies are predominantly radial in

nature (A/C, B/C<<I), lines where w=O are

usually called "nodal circles." In the case of

antisymmetric modes (m = 2, 4, . . .) of a circular

cylindrical shell having symmetric boundary

conditions, the nodal circle occurring at x = 1/2

also has v = 0, and the shear diaphragm boundary

conditions are exactly reproduced at that section.

Similarly, in the case of symmetric modes

(m= 1, 3, . . .) for symmetric boundary condi-

tions, the complementary (u S_e V_ w ,) boundary
conditions are exactly reproduced at x=l/2.

This leads to the following two useful statements

which can be applied to obtain further informa-

tion from the problems having symmetric (with

respect to x =1/2) boundary conditions:

(1) Frequencies and modal characteristics of

a circular cylindrical shell having shear dia-

phragm (Nx v w M_) boundary conditions at one

end and any of the 16 possible sets of boundary
conditions at the other end can be obtained

directly from the antisymmetric modes of the

problem having the same boundary conditions
at both ends.

(2) Frequencies and modal characteristics of

a circular cylindrical shell having complementary

(u S_e V_ w_) boundary conditions at one end and

any of the 16 possible sets of boundary conditions
at the other end can be obtained directly from

the symmetric modes of the problem having the
same boundary conditions at both ends.

Thus, for example, the results for the symmetric

modes of a (u v w w,x - u v w w._) shell can be ap-

plied to the problem of a (u v w w_ - u Sx0 V_ w._)
shell.

Kondrashov (ref. 2.148) used the Donnell-

Mushtari theory and the Southwell method (cf.,

refs. 2.161 and 2.162) to obtain lower bounds for

the frequency parameter _. This method depends

upon finding the frequencies from two separate

problems, one where the bending stiffness is

neglected, and another where membrane effects

are neglected. The sums of the squares of the two

frequencies is then known to be less than or equal

to the square of the actual frequency. The follow-

ing formula was derived for computing lower
bounds on _2:

_2 = (1 -- v2)Cl_-kn4C22 (2.146)

where k = hV12R 2, _ is Poisson's ratio, n = num-

ber of circumferential waves, and C1 and C2 are

coefficients depending upon the particular bound-

ary conditions of the shell. The coefficient C1

arises from the membrane solution and depends

only upon the membrane constraints (u, v, N_,

S_0). Similarly, C_ is found from the bending solu-

tion and depends only upon the boundary condi-

tions involving w, w,_, V_, and M_. There are

10 distinct membrane problems possible using all

combinations of boundary conditions. Similarly,

there are 10 distinct bending problems. When put

together, these yield the 136 possible, distinct

shell problems. Although Kondrashov gave ex-

tensive results, he only considered four sets of

membrane conditions and six sets of bending
conditions. Each set of conditions leads to a

characteristic equation for the determination of

either C1 or C2. Four membrane and four bending

characteristic equations have already been given

for the clamped-clamped, clamped-SD clamped-

free, and free-free problems. The remaining two

bending equations include one for (w M, - w M,)

boundary conditions given by

sin kl}0=0 (2.147)

and one for (w Mx - V_ M_) boundary conditions

given by

C--_-lJ LC_-_J sin kl(0 cosh k_o

-- cos kl_0 sinh k2_o=O (2.148)

with _o=nl/R and kl and k2 given in equations

(2.110). Roots of equation (2.147) are kl(o=Ir,

2rr, 3_r, .... Roots of equation (2.148) are given

in table 2.42. The types of membrane and bend-

ing boundary conditions which can be accommo-

g

r _
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TABLE 2.42.--Values of the Coefficient C2 in Equation (2.107) for
(w Mx -- V_ M_) Boundary Conditions

l Number of axial half-waves-m

n)_
0 1 2 3 4

1.416

1.201

1.114

1.070

1.047

1.033

1.025

1.019

1.015

1.007

1.005

1.000

1.000

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

5. 190

2. 970

2.158

1. 764

1. 542

1. 402

1.312

1. 247

1.201

1. 140

1. 102

1. O77

1. 061

1. 048

1. 041

1. O33

1. 029

1. 025

1. 021

1.017

11014

1.012

1. 009

1. 008

1. 007

1. 006

13. 720

6. 760

4. 305

3. 155

2.521

2. 132

1. 877

1. 698

1.57O

1. 400

1. 296

1. 227

1. 178

1. 147

1.121

1. 102

1. 086

1. 073

1. 064

1. 056

1. 042

1. O38

1. 032

1. 030

1.022

1.018

27.410

12.730

7. 665

5. 300

4. 022

3. 238

2. 775

2. 375

2. 120

1. 787

1. 584

1.447

1.355

1. 288

1. 240

1. 202

1.172

1.148

1.128

1.112

1. 086

1. 072

1.061

1. 059

1. 046

1. 044

47.70(

20.90(

11.22(

8.25f

6.03(

4.64(

3.87_

3.28_

2. 864

2.30_

1.96_

1. 744

1.59(

1.48(

1.39_

1. 334

1.28_

1. 247

1.214

1.18_

1.141

1.12_

1.10_

1.10(

1.08_

1.07

dated by Kondrashov's results are summarized
in table 2.43.

For example, one can find frequency param-

eters for (u v w Mx - N_ v w w,x) shells by using

values of CI and C_ from tables 2.33 and 2.34,

respectively, in equation (2.146). Thus the lower

bounds predicted by this method are exactly the

same as for the clamped-SD case. Both cases

have the same separate membrane and bending

problems. In using the tables care must be exer-

cised in using numbers of axial half-waves which

are compatible with the combined boundary con-

ditions for the shell problem. Of course, the mem-

brane and bending solutions are not entirely

compatible in axial wave length to begin with;

the accuracy of the bounds will be limited par-

ticularly in those modes where the bending and

stretching strain energies are of comparable
magnitude and coupling is significant.

Forsberg (ref. 272) wrote an excellent paper

TABLE 2.43.--Sources of Characteristic Equations

and Their Roots for Use in Equation (2.1_6)

Boundary

conditions

UP --UV

uv -- Nzv

u v -- N_ N_:o

N_ S_o -- N_ S_o

W W,x -- W W,x

w w,_ -- w Mz

w w,x -- V_ M_

V_ M_ -- V= M_

w M_ -- w M_

w M_ -- V_ M_:

Characteristic

equation

eq. (2.108)

eq. (2.116)

e.q (2.123)

eq. (2.136)

eq. (2.109)

eq. (2.117)

eq. (2.124)

eq. (2.137)

eq. (2.147)

eq. (2.148)

Roots

table 2.25

table 2.33

table 2.37

table 2.40

table 2.26

table 2.34

table 2.38

table 2.41

zr, 2zr, 37r . . .

table 2.42

comparing the significance of types of boundary

conditions upon free vibration frequencies and

modal characteristics. The following 10 problems
were considered in detail. _'i ¸.

•,:'_ ,_ _- T._ I_. L
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Case: 1. N_vwM=-N=vwM= (SD-SD)
2. N=ywM_-uvwM=

3. uvwM_-uvwM=

4. N= S=o w M= - N= S=e w M=

5. u S_o w M_ - u S_o w M=

6. N=vww,=- N_vww,_

7. q_YW, z -- UYWW,x

(clamped-clamped)

8. N= S_o w w = - N_ S=o w w,=

9. u S=o w w,= -- u S_o w w,=

10. N_ v w M_ - u v w w,= (SD-clamped)

Results were obtained by the exact procedure

using the Fliigge equations of motion. Tangential
inertia terms were retained.

The effect of edge moment restraint (w,= = 0) is

illustrated in figure 2.108. In this figure fre-

quency envelopes (lowest frequencies) are plotted
for various R/h ratios for cases 1 and 6. It is seen

that the effect of fixing the slope at the boundary
rapidly diminishes as l/R increases and is more

important for thicker (small R/h) shells. The

effect of moment restraint is also seen in figures

2.39 and 2.40, where, for the beam bending mode

(n=l), relaxation of the w,= condition for the

clamped-clamped shell (case 7) causes changes in

£ which are too small to plot.

The effect of axial constraint at the edge (u = 0)

is illustrated in figure 2.109. Here _he frequency
parameter envelope for an SD-SD shell without

axial constraint is compared with that of one

having axial constraint at one or both ends. In

direct contrast to the previous case, the effect of

axial constraint is significant even for very long
shells and all values of R/h. The minimum fre-

quency for c'ase 3 is about 40 to 60 percent higher

than that of case 1 throughout most of the region
of interest.

The physical reason for the difference in the

influence of u=0 as compared with w,= can be

understood by examining the modal characteris-

tics. From the modal characteristics of clamped-

clamped shells (cf., figs. 2.59 through 2.72) it is

seen that the influence of the condition w,== 0

is localized to the boundary region (unless the

shell is relatively short and thick), whereas the

membrane forces caused by u=0 perpetuate

throughout the length of the shell.
Consider next the relation of the circumfer-

ential restraint v=0. The effects of this con-

10
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FIGURE 2.108.--Effect of slope restraint (w,==0)
upon envelopes for £. (After ref. 2.72)
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FIGURE 2.109.--Effect of axial restraint (u =0)

upon envelopes for £. (After ref. 2.72)

2

i
IOO

straint can be observed in figures 2.110 and

2.111. In figure 2.110 various types of "simple

support" conditions are used (i.e., all have
w=M==O at both ends). In figure 2.111 all

have "clamped" types (i.e., w=w,==O at both
ends) of boundary conditions. It is clear from

these figures that the effects of v = 0 are more

I

#

_ _"v'-" "_',-......... "r_ _ _ -,r ,r,'- ,..'-- _ _ T:- _ "-_ ""
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FIGURE2.111.--Effect of circumferential restraint upon
envelopes for £; "clamped" ends. (After ref. 2.72)

important for short and thick shells and be-

come less important than the effects of u = 0 for

long shells. As pointed out in reference 2.72 the

greatest change in frequency due to relaxing
the condition v = 0 occurs for n = 1.

In another very useful paper (ref. 2.73) Fors-

berg investigated the accuracy of representing a

shell by a rod for the axisymmetric (n = 0) mode

and by a beam for the overall bending (n= 1)

mode. Solutions using these beam and rod models

were compared with the exact solutions from

Fltigge's theory. For the n=0 and n= 1 modes,

the response of the shell is governed almost

entirely by the membrane behavior. This means

that the modal characteristics are essentially

independent of the bending stiffness (i.e., inde-

pendent of R/h) and those boundary conditions

involving the tangential displacements (u, v) or

the force resultant (N=, S=o) are the ones of

prime significance. In general the boundary re-

straints placed upon w, w.=, M=, and V= have no

significant influence on the frequencies; their
effects on the moment resultants are localized

to a small zone near the boundary. This permits

the beam and rod representations of shell prob-

lems to be suitable over wide ranges of interest.

However, if one is interested in modes having

short axial wave lengths (l/mR<l) the beam

and rod models may be inadequate. These state-

ments are elaborated upon below.

For n=0 the equations of motion uncouple,

regardless, of the boundary conditions (cf., eqs.

2.21), yielding a second-order differential equa-
tion involving v only and a sixth-order set in-

volving u and w. The torsional frequency is the

same if v=0 at x=0, l or if S=0=0 at x=0, l.

Having both ends fixed results (from symmetry)

in having the middle section (x = l/2) free, and

vice versa. If v=0 at x=0 and S_0=0 at x=l,

then the effective length of the mode shape is

twice as long and the frequency is half as great.

These frequencies are shown in figure 2.112.

Considering the radial and longitudinal modes
for n=0, figure 2.112 shows that for small axial

wave lengths the bending stiffness does make a

difference in £; however, for l/mR>l the fre-

quency varies by less than one-half of 1 percent

(ref. 2.73). The boundary conditions on u do

have significant influence on £, even for those

modes which are predominantly radial. If the
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shell is axially restrained at one end (u--0) and

is axially free at the other (N==O) and if

l/mR>3, the minimum frequency is one-half

that obtained when u = 0 at both ends (see fig.
2.112). The restraints placed on w cause less

than 0.5 percent change in _. In the transition

region 1 < l/mR < 5 the amplitudes of the radial

and longitudinal displacement components are

nearly equal. This coupling is due entirely to

the Poisson effect--bending effects are negli-
gible. If _=0, the equations of motion would

effectively (depending to a small extent upon

the shell, theory used) reduce to three uncoupled

equations of motion representing torsional, ra-

dial, and longitudinal behavior independently.
The effects of neglecting tangential inertia terms

were already seen in figure 2.34. Reference 2.73

shows that one could make reasonable estimates

of natural frequencies in the axisymmetric mode

by considering the shell to be a bar for longitu-
dinal motions and to be a ring in plane stress for

small l/mR, or plain strain for large 1�mR, and
that these approximations break down in the

transition region 1 < l/mR < 5.

Generally speaking, regardless of the boundary

conditions, the lowest of the three frequencies
arising for n = 1 corresponds to motion which is

I0.0
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FIGURE 2.112.--Axisymmetric (n = 0) frequency parame-

ters for arbitrary boundary condition; m=l. (After

ref. 2.73)

beam-like (ref. 2.73). For very long shells, v and

w are essentially equally large, and the motion

consists of rigid body translations of cross sec-

tions. As the shell becomes shorter, the circum-

ferential displacement v becomes gradually larger

than w up to an I/mR ratio of about 5; for still

shorter shells v decreases until, for very short

shells (l/R _0.1), v is nearly zero and the motion

is almost entirely radial. As in the case for n = 0,

the behavior is governed primarily by the mem-

brane stiffness of the shell and the tangential
boundary conditions. For n= 1; v is not uncou-

pled, and its presence in the boundary conditions
is very significant.

If v=0 at both ends of the shell, then _ is

essentially independent of the bending stiffness

of the shell unless the axial half-wave length be-

comes small enough (e.g., l/mR < 1 for R/h= 20,

1/mR<O.1 for R/h=500) (ref. 2.73). The fre-

quency spectrum for beam-type of behavior is
shown in figure 2.113. Three cases are included

for which the shell acts as (1) a free-free beam,

(2) a simply-supported beam, and (3) a clamped

beam. The transverse conditions involving w, w=,
Vx, M= have no measurable influence on the

2.0

k /R'"==O I N;OR.:o
\1\ LMx=O "1 VxORw:O

I.O __W/_X=O_ AND --'-T V =O

0.5-1M_ OR a,/ax =o __ ",. I._"FREE-FREE BEAM"

,k;oRo-o I IX'q,/US,NO _LOGGE'SSRE,,
iv, oR..o I I \\1\ EOUATfONS;AT.=O,_-
L v:O, I I -- Vx=Mx=Nx=S x =O

0.2 _XX LOWEST NON-ZERO0 --

I I I I\\\;REO'=A×IALNOOES,
O.I I I I .. I _x _!NDEPENDENT OF R/h

!_ "SIMPLY SUPPORTED BEAM" _"_ I\_,

USING FLUGGE'S SHELL EQS.; / _ _, I

I% O.OS--AT_:O,Z --lk \1
/" ,, ORv_:o IX Xl
L_ a./axORM,=O I \ k

N_=O,_=O ' \ I\
0.02 -- (VAUD FOR HIGHER AXIAL MODES IF J/R -'_ \

" IS REPLACED BY .I/mR INDEPENDENT ]_ \
1:_ OF R/h I\ \

001 I I I I\ \

"CLAMPED BEAM" USING ----'-"-_

FL(JGGE'S SHELL EQS.; \

0.005 - AT x=O OR _,wOR Vx=O _ \

0.,,,ORM,=O.;;02;?_ \ \
] FOR ALL (HIGHER MODES APPROACH \

/CASES" / "SIMPLE SUPPORTED BEAM" _ \

o.oo_rTM " i - ,NOEPEN_NTOFR,, I \ \
v:O.3o.ooi/ / I I , 1 \

0.2 0.5 LO 2 5 I0 20 50 IO0

LENGTH TO RADIUS RATIO _/R

FIGURE 2. ll3.--Frequency spectrum for beam-like (n = 1)

modes of circular cylindrical shells; m--1. (After ref.

2.73)

T'

=

!

_A

ir_ TM



142 VIBRATION OF SHELLS

frequency spectrum (ref. 2.73). The shell is

forced to behave as a clamped beam by requiring
u = 0 at the boundaries.

Comparison of the shell frequencies with beam

frequencies is made in figure 2.114 (ref. 2.73) for

the "simply supported" beam. The simple (Euler-

Bernoulli beam theory) approximation gives good

results only for long shells (l/mR > 20). This is

consistent with the usual assumptions of simple

beam theory regarding limits of the length/depth

ratio. Inclusion of shear deformation and rotary

inertia effects (Timoshenko beam theory) greatly

improves the accuracy of the beam approximation
and makes it acceptable as low as l/mR = 7. It is

important to note that the shell equations

automatically include the shear deformation and

rotary inertia effects of the overall cross sections,

even though the local effects through the shell

thickness are neglected in the eighth order shell

theory. Similar comparisons were made in refer-

ence 2.73 for the clamped-clamped beam, and
behavior essentially the same as figure 2.114 was

found. For an even more sophisticated beam

model to represent the beam-like modes of a

shell, see the discussion of the work by Simmonds

(ref. 2.128) in section 2.3.5.
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The importance of the circumferential displace-

ment v in the n = 1 mode is shown in figure 2.115

(from ref. 2.73). Two sets of curves are depicted.

One set has v = 0 as a boundary condition at both

ends of the shell; the other set has S_e=O, and

gives a considerable drop in frequencies except

for long (l/R>20) shells where beam theory

becomes applicable. When S=e = 0 on the ends the

frequency also becomes strongly dependent upon

the bending stiffness and the boundary condition

on the slope (w=) becomes of primary importance.

Figure 2.116 is a sketch of the deflected shape
for the case when S=0 = 0 at the boundaries. This

mode involves large shear distortion at the

boundary and relatively little deformation in the

middle of the shell. By contrast a shell supported

by shear diaphragms would have a sinusoidal

mode shape. It should be noted that although
there is a high shear distortion near the bound-

aries when the shell is not tangentially restrained,

this is essentially a distortion of the shell cross

section rather than a shearing of the shell wall.
Since the distortion of the shell cross section takes

place in a region about 75 times as long as the

shell wall thickness, it is certain that the shear

effects on the shell wall can be neglected. One

should also note that the slope w.= near the bound-

ary is very large compared to the slope computed

for other mode shapes which have one axial half-

wave and a unit radial deflection. The amplitude

I
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FIGURE2.116.--Sketch of deformed shell when S=0=0 at
boundaries; m = 1, n = 1. (After ref. 2.73)

of vibration can always be kept small enough so

that the resulting motion is linear; however, it is
evident that nonlinear behavior will occur for

smaller amplitudes for this mode sjaape than for
the more usual case.

To better understand the dynamic behavior of

a cylindrical shell in the beam-type mode, it is

necessary to examine the modal displacements

and modal forces that correspond to the minimum

frequency. In figures 2.117 and 2.118 (from ref.

2.73) result_ are presented for a shell having an

R/h ratio of 20 and l/R ratios of 5 and 10. Two

sets of boundary conditions are considered, SD-
SD and (N=v VxM=). There is no noticeable

difference in the mode shapes and force distribu-

tion, although the amplitude ratio A/C is dif-

ferent, and the frequency is extremely close for

these two sets of boundary conditions. This again
emphasizes that the behavior when v =0 at the

boundaries is essentially extensional in character.

The maximum bending stress is less than 7 per-
cent of the maximum membrane stress. For the

shell which is not radially restrained, there is a

slight distortion in the moment diagram which is

barely noticeable in figure 2.118. As in the axi-
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FIGURE 2.117.--Mode shapes for SD-SD and
(N= v V= M= -- N= v V=M= ) shells; R/h --20 and 500,
_=0.3, re=l, n =1. (After ref. 2.73)
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symmetric case the noticeable change in force

distribution occurs for the shear force Vx and

again as in the above case, this change is entirely
local in character. In figures 2.119 and 2.120 the

J,,
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same two cases are shown; the only change is

that for this example S=o =0 at the boundaries.
However, this causes a drastic change in modal

character. As the l/R ratio is reduced, the effects
of the radial restraint at the boundaries becomes

more and more localized and, as it becomes

small, this mode becomes a simple lateral rigid

body translation with end effects. This mode

represents essentially a lateral translation of a

beam on soft shear springs at the boundary. This

characteristic is reflected not only in the mode

shape but also in the internal force distribution.

The higher modes of this shell when S_o=O

at the boundaries again represent essentially the

behavior of a free-free beam on shear springs.

The second mode represents a rigid body rota-
tion of a beam about its center with weak shear

springs at the boundary as can be seen in figure

2.121. The third mode (m=3) introduces appre-

ciable flexible deformation of the shell as a beam,
but is similar to the lowest non-zero mode for a

free-free shell shown previously in figure 2.106.

It is clear then that the dependence of the fre-

quency and force distribution on the bending

stiffness when S,o = 0 arises only from the high
shear distortion which occurs near the bound-

ary, which can be represented as a very weak

shear spring.

One of the important quantities used in de-

termining forced response by modal analysis is

the generalized mass. The generalized mass is
defined as

_,= / (u2+v2+w 2) dm
.Iv ol.

where the dependence of time has been removed

and # obviously depends upon n.

For a simply supported beam having a unit

transverse displacement, one can easily show
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FIGURE 2.121.--Higher beam bending (n = 1) mode shapes
(n=2, 3) for a (N=S=ow M= -- N=S=ow M=) shell;
R/h =500, l/R =5, v=0.3. (After ref. 2.73)
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that the generalized mass for all the modes is

equal to one-half and is independent of the l/R
ratio of the beam. For a clamped beam having a

unit transverse displacement, the integration is

more complicated, but the formula is relatively

simple and one finds that for the lowest mode

the beam equations yield a Value of _=0.39.

These values are plotted in figure 2.122 (from

ref. 2.73). Use of Timoshenko beam theory when

rotary inertia is included leads to a generalized
mass which varies with l/R for the beam; the

generalized mass increases as the length de-

creases, as indicated in figure 2.122. From shell
theory i_t is found that the generalized mass ap-

proaches beam theory results asymptotically for

a long shell. As the shell becomes shorter the

behavior is adequately represented by the Timo-
shenko beam theory for shell with a l/R ratio

greater than about 7. For shorter shells the devi-
ation between shell theory and beam theory be-

comes significant. The behavior outlined above

holds exactly for higher modes of a freely sup-

ported beam (use l/mR in fig. 2.122), and is

essentially the same for a clamped beam. The

significance of the deviation between shell theory

and beam theory and its importance in deter-

mining forced response quantities has not been

entirely established.

The (u v w M, - u v w M_) shell has received a
small amount of attention in the literature. In

addition to the analysis by Forsberg (refs. 2.72

and 2.73) described earlier in this section, the

small effect of relaxing the clamping restraint
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FIGURE 2.122.--Comparison of generalized mass as
predicted by beam and shell theory. (After ref. 2.73)

(w.,) at the boundary was also shown in figures

2.39 and 2.40 of section 2.4.1. Ivanyuta and
Finkelshtein (ref. 2.114) used the Donnell-

Mushtari shell equations and the Galerkin ap-

proximate procedure with a single set of beam

functions to arrive at the following equation for
frequency parameters :

us= (1-,2)Xm2(m R/0 
2.29 (X_4+ n4 + 1.110n2X_ 2)

1/h\ 2

+_) (X_2-t-n2) 2 (2.149)

where X_ is given by equation (2.105). Lower

bounds for this problem can also be computed

by using equation (2.146). These are also the

"freely supported" boundary conditions posed

in references 2.32, 2.33, and 2.34, although the

condition u = 0 was not enforced, and the SD-SD

problem was eventually solved along with the
statement that the condition "u =0 is the least

essential one." As we have seen elsewhere in this

section, the condition u = 0 is indeed a very im-
portant one.

The axisymmetric modal characteristics for

the lowest frequency of a (u w M_ -- u w M_) shell

are depicted in figure 2.123 (from ref. 2.73) in
comparison with those of the SD-SD shell. It is

interesting to note that

(1) The fundamental mode in this case has a

nodal circle at x = 1/2.

(2) The curves for u and N_ are essentially

the same as those for the SD-SD shell, except
shifted by _r/2.

(3) The curve for w is also shifted by Ir/2 but,

in addition, has boundary zones where w must

rapidly change to zero to meet the boundary
conditions.

(4) The rapid change in w near the bound-

ary causes large curvature changes and, conse-

quently, large M_ near the boundary, although
the maximum bending stress is still less than 21

percent of the maximum direct stress (ref. 2.73).
(5) In spite of the large differences in w and

M= from those of the SD-SD shell, the axial

effects predominate, and the frequencies only

differ by 0.5 percent.

The axisymmetric modal characteristics for

the lowest frequency of a (N_ww_-uwM=) shell

remembering that the circumferential displace-

|
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FIGURE 2.123.--Axisymmetric (n=0) modal character-

istics of a (u w M= --u w M=) shell compared with an

SD-SD shell. (After ref. 2.73)

ment v is uncoupled for n = 0) are displayed in

figure 2.124 (from ref. 2.73). Here the edge effects
are much more localized than those of figure 2.123

because the shell is much thinner (R/h= 20, in

comparison with R/h=500). The small, but
abrupt change in M= near x = 0 is due to the con-

dition w= = 0. The larger change near x = l arises

from requiring both u and w to be zero at x = l.

The (N= v w w= -- N_ v w w_) case was used by
Filippov (ref. 2.97) to demonstrate the solution

of free vibration problems for circular cylindrical

shells by the series method. A set of equations of
motion for the shell attributed to Galerkin was

used. For R/h=83.3, 1/R=2, _=1/6, re=l,

n=4, a frequency increase of 2.0 percent from
the SD-SD frequency was calculated.

The (u v w M_ -- N= S=o IT=M=) shell was used

to model a storage tank in references 2.185 and

2.186. Methods for computing frequencies and

mode shapes were developed according to the

membrane theory, and procedures for including

the bending strain energy were subsequently

added. No specific numerical results were given.
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2.5 ELASTIC SUPPORTS

Boundary conditions of elastic supports at the

ends of a circular cylindrical shell are generaliza-

tions of the simple boundary conditions discussed

in the previous sections of this chapter. In com-

plete generality, the boundary conditions for this

case (neglecting damping effects, of course) can
be written as

At x=O:

N=- kiu = 0 (2.150a)

N=o-F-M-_-k2v=O (2.150b)

1 OM=o
Q=_ R O0 -k3w=O (2.150e)

At x=l:

M=+k4_x =0 (2.150d)

N=+ksu=O (2.150e)

N M=o
_e-l----_-A-k_v=O (2.150f)

w
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10M_o
Q_ R 08 t-kTw=O (2.150g)

M k Ow
_-- S_xx=0 (2.1505)

where kl, . . . , k8 are the distributed stiffness

coefficients associated with the elastic supporting

structure. It is assumed that the supporting struc-

ture has axisymmetric stiffness with respect to the

axis of the shell; otherwise ki, . . . , ks would
not be constants, but functions of 0. Careful

attention must be given to the signs of the terms

containing the spring constants in equations
(2.150)'-if meaningful results are to be obtained.

All of the 136 sets of boundary conditions dis-

cussed previously in this chapter can be obtained

as special cases of equations (2.150) by simply

setting the appropriate constants k_ equal to
either zero or infinity.

The distinction is carefully made here that the

stiffness of the support structure must be capable

of being represented by the distributed spring con-

stants kl .... , ks. Consider a circular cylindri-
cal shell with a stiffening ring at the end. If it is

necessary to consider the equations of motion of

the ring simultaneously with the equations of

motion of shell, with conditions of continuity of
generalized forces and displacements enforced at

the junction, the ring-shell combination is con-
sidered herein to be a structure." Vibrations of

structures containing shells as structural ele-

ments are purposely omitted from this work

because of the obvious geometrical complexities
and limitless combinations which can arise.

The problem of the circular cylindrical shell

supported elastically is possible of being solved
exactly in all its generality by the procedure out-

lined in section 2.4. That is, once the Xi are deter-

mined as the roots of equation (2.54), thereby

satisfying the equations of motion, the boundary

condition equations (2.150) can then be written,

yielding an eighth order determinant, the roots

of which are the frequency parameters. However,

in the general determinant arising from equations

(2.150) there would be no simplification and its

expanded form would be extremely lengthy. Brit-

vec (ref. 2.187) followed this procedure for the

special case when all the k; are zero except k4 and

ks, and also admitted damping terms into the

moment boundary conditions. In reference 2.187

h
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"" " " //I///,
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7

FIGURE 2.125.--Solid (a) and flanged (b) elastic end

constraints. (After ref. 2.4)
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the resulting eighth order determinant is given
in detail, but will not be repeated here. No

numerical results were given.

Arnold and Warburton (ref. 2.4) studied circu-

lar cylindrical shells having elastic end restraints

of the two types depicted in figure 2.125. Figure
2.125(a) shows a cylinder with a solid end, (b) a

flanged end. The inertias of these types of ends
can, of course, be neglected because the motions

at the ends are negligible. Using the "equivalent
wave length" concept Arnold and Warburton

wrote equation (2.99) as

X. = (mWc) _-_ (2.151)

where, of course, c=mlo/l-lo to be consistent

with equation (2.99). For the cylinder with

solid ends they proposed

C = 0.3e -qhld (2.152)

as an empirical relationship for c, with d as shown

in figure 2.125 and q a constant to be determined.

To study the effect of changing d, and to deter-

mine c, experiments were conducted on a shell

having R=1.924 in., h=0.101 in.,/=7.81 in. by

changing d on one end such that the ratio hid

took on the values 0.050, 0.101, 0.202, 0.376,

0.595, and 1.000. On the other end, SD-SD

boundary conditions were duplicated. The results

l
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of these experiments are shown by the dashed

curves in figure 2.126. In figure 2.126 the per-

centage difference in frequency from that of the

SD-SD shell is plotted versus end thickness d.

The solid curves are obtained by taking q = 2 in

equation (2.152), and using 0.15 instead of 0.3

because the SD boundary condition is the same
as a nodal circle for the m = 2 mode of a shell of

twice the length having solid ends at x = 0 and l,

giving

Xe= (m+0.15e-2h/d)_ (2.153)

aS the basis for the curves. Of course, d/h----_O is

equivalent to an SD support at the solid end.

For two cases, n=4, m=2 and n=4, m=3, the

experimental and theoretical curves are essen-

tially coincident, and have been shown by a

single solid curve in figure 2.126.

Miserentino and Vosteen (ref. 2.188) used

Arnold and Warburton's "effective wave length"

concept to compare extensive results obtMned

for clamped-clamped shells with theoretical

results for SD-SD shells using the Donnell-

NIushtari theory.

In reference 2.4 flanged ends (fig. 2.125) were

accommodated by a formula giving an equivalent
thickness for solid ends as follows:

d [" _2__1 , ]1/3
= [(_+1A dl (2.154)

where v=R2/R1 and dl, R1, R2 are shown in

figure 2.125. The formula is based upon treating
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FIGURE 2.126.--Effect of end thickness on frequency;
R/h=19.1, l/R=4.05, h=0.101 in. (After ref. 2.4)
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the flange as a circular plate in bending. As

d_--_0, d--*0 as for an SD support. And as n--_ _,

d-+0.82 d_; thus, using equation (2.154) a flange,

however large, can never give the same degree

of end restraint as a solid end having the same
thickness. Experiments were conducted on a steel

shell having R=1.924 in., h=0.101 in., and

l= 15.65 in. having flanges at both ends, and the

results are shown by the points in figure 2.127.
The solid curves are based on theoretical results

using equation 2.154.

In reference 2.151 an attempt was made to

simulate an aluminum shell having clamped ends

by machining integral rings at each end of an
aluminum shell. The shell dimensions were

/=6.00 in., R=4.69 in., h=0.026 in. and the

rings were each 1 inch long and 1/2 inch thick.

However, these rings were insufficiently rigid and

were actually elastic constraints giving the fre-

quencies shown in figure 2.128.

Considering the beam bending mode (n= 1)

of a circular cylindrical shell, it was pointed out

in reference 2.73 that the vibration frequencies

and modal characteristics are strongly influenced

by the degree of circumferential restraint (i.e.,

the magnitudes of ]_2 and k6) at the boundaries

(cf. sec. 2.4.6). In reference 2.73 a ring of square

cross section having a side equal to 8 times the

shell thickness is necessary to provide enough

circumferential stiffness to simulate the simple

boundary condition v=0. Quantitative results

are shown in figure 2.129 where a stiffening ring
of square cross section is added to each end of a

shell. The width and depth of the ring are denoted

by H. The other boundary conditions at x = 0 and

x=l are w=M==u=O. The mass of the ring is

T

,r-



THIN CIRCULAR CYLINDRICAL SHELLS 149

¢o

)-

z
hA

O
hA
0_
U_

4000

5000

2OOO

I000

m=NUMBER OF AXIAL HALF-WAVES

. rN=3
m=2 _,k e

,, 't, /
..,(,,,-\, //

\', I
°-/

EXACT SOLUTION FOR CYLINDER
WITH ELASTIC END RINGS

: ----EXACT SOLUTION FOR CYLINDER
WITH FIXED ENDS

e EXPERIMENTAL DATA

0 I I I I I I I

0 2 4 6 8 I0 12 14

NUMBER OF CIRCUMFERENTIAL WAVES, n

FIGURE 2.128.--Comparison of theoretical and experi-

mental frequencies for clamped-clamped and elastically

supported cylinders; R/h = 180, l/R = 1.27, E = 107 psi.

(After ref. 2.151)

o.16

0.15

0.14

(0,13

0.12
n.-

&
O.II

0.10

v=O AT x=O,J

/.....---.

f

/
/

/
/

/

R/h =20, Z =7

n=l,m=l, u=O.5

/, I
---SxO=O AT x=O,Z

I I
2 4 6

_ H"H h

ELASTIC RING
RESTRAINED TO
PROVIDE TANGEN-
TIAL ELASTICITY
ONLY, i.e. AT
x:O,-&:

w=Mx=u=O
RING INERTIA

IS OMITTED

0"090 8 I0

RATIO OF LENGTH OF SIDE OF RING TO SHELL

THICKNESS H/h

FIGURE 2.129.--Effect of circumferential stiffening upon

frequencies; R/h=20, l/R=7, m=l, n=l, p=0.3.

(After ref. 2.73)

neglected. The frequency parameter £ is plotted

versus H/h between the limiting boundary
conditions S=0 = 0 and v = 0.

Circular cylindrical shells with elastic end

supports are also briefly discussed in references

2.49, 2.98, and 2.189.

2.6 ADDED MASS

In this section the effects of adding lumped
mass to a shell will be considered. Information

for at least the following two types of problems
is available:

(1) The rigid ring mass attached to either one
or both ends of the shell. In this case the mass

enters through the shell boundary conditions.

(2) An internal point mass. This is accom-

modated in the equations of motion by a double
Fourier series solution.

An internal rigid ring mass usually implies sep-

arating the shell into two portions and combin-

ing them by means of equations of continuity.

Such a configuration is considered herein as a
structure and will not be discussed.

Consider the axisymmetric longitudinal mo-

tion of circular cylindrical shells. The primary

effect of stiffening rings in these modes is to add

additional mass to the system, thereby reducing

the overall frequency. The magnitude of the fre-
quency reduction depends upon the location of

the ring; a ring placed at either a longitudinal

or circumferential displacement nodal circle will

add no significant mass to the system for that
mode.

Forsberg (ref. 2.73) considered the case where

ring masses mi and ms which are large compared

to the total mass of the shell M= are attached

at the ends of the shell as shown in figure 2.130.

If half of the mass of the shell is lumped at each

end as shown, then the frequency parameter for

the spring-mass system shown can then be ob-
tained from

m I M S m 2 M M

o) SHELL WITH END MASSES b) SPRING - MASS MODEL

FIGURE 2.130.--Modeling of a shell having large

end masses. (After ref. 2.73)

l

#
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£2=,1 2, (ml+m_-FM,)M8
,-v)[_,\(R) ' (2.155)

The variation of _ with l/R according to equa-

tion (2.155) is plotted by dashed lines in fig-
ure 2.131 for several values of the total mass

mr=mi+ms+M., for mi=2m_ and v=0.3. The

solid curves represent the lowest frequencies

arising from solution of the shell vibration prob-

lem having the boundary conditions

Ow 02u

w=_x=N_+m,-_=O (2.156)

where mi=--ml at x=0 and +ms at x=l and

R/h=500. In figure 2.131 the accurate fre-

quencies for mT/M, = 10 are slightly greater than

those predicted by equation (2.155) for large
l/R ratios.

The modal characteristics obtained from the

shell equations for the above problem are shown

in figure 2.132. As the ratio of the total mass to

the shell mass (mr/M,) increases, the node for the

longitudinal displacement gradually approaches

the one-third point of the shell length. The radial
displacement gradually increases until it is al-

most uniform along the length of the shell, except

for sharp changes near the boundaries. As mr/M,
increases, N_ changes from a sinusoidal variation

to be nearly uniform along the length, and M_

becomes more localized and sharply changing at

the boundaries. However, the bending stresses

5
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are still less than 60 percent of the membrane

stress at t_m boundary.

Bukharinov (ref. 2.190) also studied the prob-
lem of the circular cylindrical shell which con-

nects two rigid end masses. An exact solution of

the Donnell-Mushtari equations of motion was

used, along with the boundary conditions given

by equations (2.156). The characteristic equa-

tion yielding frequencies of axisymmetric (n = 0)
longitudinal modes was found to be

tan.(_)= (mI+ms_(£1_
mlm2(£l_ 2 (2.157)
M, _ \R/ --1

where mi and ms are the rigid masses and M, is

the mass of the shell, as in figure 2.130.

The free vibration problem of the circular

cylindrical shell having end masses was also

briefly discussed in references 2.191. The problem

for the shell having one end free and the other

end attached to a rigid mass was formulated in

reference 2.192, but no results were obtained.

l

7
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The SD-SD shell with a concentrated mass was

considered in reference 2.193. A number of papers

and reports exist which deal with stiffened cir-

cular cylindrical shells, where the stiffness have

both flexibility and mass. However, such con-

figurations are considered to be structures and
will not be included here.

Some interesting results were given in refer-

ence 2.166 for the case of the clamped-free shell

having a single stiffening ring at the free end.

The stiffening ring was of the same material as

the shell, thereby being elastic as well as having
mass. The increased rigidity of the system, even

for the elastic ring, usually more than compen-
sated for the added mass of the ring and increased

the frequencies in the swaying (n = 1) and ovalling
(n= 2) modes. This problem was also studied in

references 2.167, 2.168, and 2.169.

Closed circular cylindrical shells are frequently

fabricated by the simple procedure of curling a
fiat sheet about a cylindrical radius. The shells

are then closed by means of a butt or lap joint

which lies in the axial direction. This type of

fabrication can result in significant asymmetry

in mass or stiffness or both, which causes experi-

mental results to deviate from expected theoret-

ical values. This problem is frequently discussed

in the literature of cylindrical shell vibrations,

for example, in references 2.29, 2.33, 2.34, 2.37,
and 2.194.

2.7 NONCIRCULAR BOUNDARIES

AND CUTOUTS

Consider first the case where a closed circular

cylindrical shell of finite length is cut by two sur-

faces other than planes perpendicular to its gen-
erators. No results are known to exist for such a

problem.

Brogan, Forsberg, and Smith (ref. 2.151) ana-
lyzed the interesting problem of the circular

cylindrical shell having a rectangular cutout

defined by the boundaries x = 11, x = l__,0 = ___ as

shown in figure 2.133. Because the cutout de-

stroys the axisymmetry of the shell geometry, an
analytical solution would require all the Fourier

components in 0, and the problem would require

using both space variables x and _ in uncoupled
form. Therefore, finite difference solutions were

employed. An energy approach was used, rather

x

S_ 2

FIGURE 2.133.--Circular cylindrical shell

having a rectangular cutout.

than taking the equations of motion, giving the

following advantages:

(1) Only first and second order finite difference

approximations are required.

(2) Boundary conditions are simplified; in

particular, stress-free edges are natural boundary
conditions.

(3) A symmetric matrix system is guaranteed.

Finite difference meshes using as many as 4209

degrees of freedom were used, although most of
the idealizations used 2196 unknowns. The shells

were intended to be clamped-clamped, but actu-

ally were supported elastically at both ends as

discussed previously in section 2.5 (see fig. 2.128).
A study was made of six different shell con-

figurations with cutouts ranging from a 10 ° arc

to a 120 ° arc and having a length of one-tenth
of the length of the shell. These cutouts were

centered at the mid-span. The results of the ex-

perimentally determined frequency spectra are

given in table 2.44 and are displayed graphically

in figure 2.134. The results for the zero degree

cutout (the complete shell) are a repeat of the

data contained in figure 2.128. In figure 2.134 the

frequencies have simply been arranged in ascend-

ing numerical order with the appropriate mode

shape noted at the right-hand side of the figure.
For the complete shell, the motion is sinusoidal

in the circumferential direction and there is no

difficulty in identifying the mode shapes. For the

shell with the cutout it was somewhat surprising
to find that many of the modes were still reason-

ably distinct and had a sinusoidal appearance. _7

L
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TABLE 2.44.--Experimentally Determined Frequency Spectra for a Shell

(a/h = 180, 1/a= 1.27, E = 107 psi) with Different Size Cutouts a

No hole 0.l/X10 ° 0.1/×22.5 ° 0.1/X30 ° 0.1/×60 ° 0.1/×90 ° 0.1/×120 ° 0.3/X120 °

1182(8,1) 1180(8,1) 1168(S) 1179(S) 1163(8,1) 1150(8,1) 1132(8,1) 1104(8,1)

1225(7,1) 1222(7,1) 1214(7,1) 1216(7,1) 1208(S) 1201(7,1) ]198(7,1) 1199(7,1)

1230(9,1) 1228(9,1) 1224(S) 1224(S) 1215(9,1) 1210(9,1) 1210(9,1)

1349(10,1) 1345(10,1) 1343(10,1) 1342(10,1) 1338(10,1) 1335(10,1) 1332(S) 1280(S)

1362(6,1) 1359(6,1) 1352(S) 1355(S) 1355(S)

1528(11,1) 1523(11,1) 1521(11,1) 1521 (S) 1518(S) 1512(11,1) 1510(11,1) 1449(11,1)

1594(5,1) 1598(5,1) 1589(5,1) 1590(S) 1592(S) 1568(5,1) 1541(5,1) 1533(5,1)

1750(12,1) 1740(12,1) 1741(12,1) 1742(12,1) 1740(S) 1735(12,1) 1734(12,1) 1719(12,1)

1882(4,1) 1919(4,1) 1922(S)

2011(13,1) 2003(13,1) 1996(13,1) 2005(S) 2007(S) 2001(13,1) 2000(13,1) 2030(13,1)

2056(10,2) 2049(10,2) 2065(AS) 2072(AS)

2090(9,2) 2086(9,2) 2074(AS)

2102(11,2) 2098(11,2) 2100(AS) 2070(AS) 2068(11,2) 2062(11,2) 2066(11,2)

2218(8,2) 2214(8,2) 2184(8,2)

2230(12,2) 2229(12,2) 2185(AS) 2172(AS) 2190(AS) 2172(12,2) 2135(12,2) 2127(AS)

2302(14,1) 2295(14,1) 2288(14,]) 2295(S) 2293(14,1) 2290(14,1) 2282(14,1)

2412(13,2) 2409(13,2) 2382(AS) 2368(AS) 2375(AS) 2342(13,2) 2311(13,2) 2305(13,2)

2452(7,2) 2445(7,2) 2430(AS) 2480(AS) 2460(AS) 2460(AS) 2395(AS)

2621(15,1) 2613(15,1) 2610(AS) 2610(S) 2600(15,1) 2605(S) 2570(S)

2649(14,2) 2645(14,2) 2632(14,2) 2630(AS) 2604(14,2) 2550(AS) 2460(AS)

2785(6,2) 2773(6,2) 2750(AS)

2930(15,2) 2927(15,2) 2925(AS) 2920(AS) 2870(AS) 2860(AS) 2840(AS) 2840(AS)

2965(16,1) 2958(16,1) 2948(16,1) 2940(S) 2930(AS) 2936(16,1) 2940(S)

2992(11,3) 2984(S) 2960(S) 2975(S) 2980(S) 2970(S)

3004(12,3) 2989(12,3) 2990(S) 2990(S) 3000(S) 2991(12,3) 2990(S) 2990(AS)

3031(10,3) 3025(10,3) 3025(S) 3020(S) 3020(S) 3015(S) 3020(S) 3010(S)

3101(13,3) 3094(13,3) 3085(13,3) 3085(S) 3090(S) 3095(13,3) 3100(S) 3100(S)

3175(9,3) 3170(9,3) 3170(S) 3155(S) 3160(S) 3155(9,3) 3150(S) 3200(S)

a For the 0.3/ cutout, the hole centerline is located at x =0.6/; for all other cases the hole centerline is located at

x = 0.5/.

Notes:

(1) Data are given in cycles per second.

(2) The dominant wave form in the mode shape is identified wherever possible by the notation (n, m) after the value

for the frequency; when no particular wave form could be distinguished, the axial variation is noted by (S) for a sym-
metric mode and (AS) for an antisymmetrie mode.

The_e were, however, a number of modes which

were either badly distorted or were too irregular
to be identified in reference 2.151 as any specific

wave form. Such irregular wave forms have been

denoted in table 2.44 as simply symmetric or

antisymmetric modes (with respect to the axial

behavior).
In some cases, for certain size cutouts, mode

shapes became irregular while, for larger cutouts,

the wave form again assumed a distinct "sinus-

oidal" pattern. Other modes having a specific

dominant wave form could be traced throughout
the series of cutouts and a very gradual decrease

in frequency was noted in these eases. Based on

these results and based on the gradual shift

downward in the overall frequency spectrum, it
was assumed that the unidentified modes would

follow this same pattern of a gentle, rather than

a drastic, shift in frequency. Hence, the data

points plotted in figure 2.134 were connected to-

gether by straight lines to indicate the effect of

the increase in cutout angle on the frequency for

a given mode. For those cases in which the mode

shape could not be identified with a given wave

form (which occurred in about 20 percent of the

cases plotted in figure 2.134) the adjacent fre-

quencies were selected on the assumption that

the change would be gradual with increasing

angle of cutout.

It is interesting to note the very gradual de-
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FIGURE 2.134.--Experimentally determined frequencies

for symmetrically located rectangular cutouts. (After

ref. 2.151)

crease in the natural frequency with" the increase

in cutout angle even though the shell is relatively
short (l/R = 1.27). As an example, for the 120 °

hole the minimum natural frequency decreased

only 4 percent from the value for the complete
shell. However, the asymptotic value for a 360

degree cutout (i.e., a shell with a ring support

at one end and free at the other, having a length,
l = 2.7 in.) is relatively close to that for the com-

plete shell. For certain modes this asymptote

has been plotted in figure 2.134 (denoted by a
triangle).

One would expect the greatest effect of the

cutout to occur for the axisymmetric (n=0) or

beam type (n = 1) modes. However, for this shell,

these modes were of a sufficiently high frequency

that they could not be experimentally observed

in reference 2.151. Indeed, a long shell would
have to be studied to determine the effect of

cutouts on these modes. Such modes are of con-

siderable practical interest, and, although not

included in the work of reference 2.151, deserve
further investigation.

Excellent agreement was obtained in reference

2.151 in the comparison of the finite difference

results and the experimental data. The finite dif-

ference results were obtained using a grid having
11 equally spaced grid points in the axial direc-

tion and 60 equally spaced intervals in the 0

direction (2196 degrees of freedom), covering the

one-quarter of the shell surface bounded by
0_x_0.5l, 0_<O_<_r. Results are shown in table

2.45 and in figure 2.135 where six modes have

been selected for comparison. As seen in figure

2.135 the analytical and experimental results
have a maximum discrepancy for n = 5 and n = 13.

The discrepancy noted in figure 2.135 is a result

of inability to represent the experimental bound-

ary conditions exactly. The boundary conditions
have maximum effect for low values of n for the

TABLE 2.45.--Comparison of Analytical (Finite Difference) and Experimental
Frequencies for Shells Having Symmetrically Located Rectangular Cutouts

T

Dominant Angle of cutout, 2_, degrees

moue snape I 0 30 60 9O 120
I

n m

8 1

10 1

11 1

5 1

12 2

13 2

Exper.

1182

1349

1528

1594

2230

2412

Anal.

1195

1346

1513

1646

2197

2365

Exper.

a 1179

1342

1521

a 1590

a 2172

a 2368

Anal.

1183

1341

1507

1639

2191

2371

2327

Exper.

1163

1338

1518

1592

2190

2375

Anal.

1171

1338

1504

1639

2155

2326

Exper.

1150

1335

1512

1568

2172

2342

Anal.

1162

1335

1500

1632

2295

Exper.

1132

1332

1510

1541

2135

2311

Anal.

114_

133[

1497

1621

2122

227_

Experimentally determined mode shape was highly irregular.
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FIGURE 2.135.--Comparison of analytical (finite differ-
ence) and experimental frequencies for symmetrically
located rectangular cutouts. (After ref. 2.151)

present geometry. The discrepancy for n= 13 is
caused by having only five finite difference sta-
tion,s in a circumferential half wave. For a fixed

grid size, the error will always increase for higher
n for this reason.

Contrary to the experimental data, no increase

in the frequency for a given dominant wave form

was noted analytically for any of the modes

studied. However, both experimentally and ana-

lytically some of the modes were shown to be
insensitive to the existence of a cutout, particu-

larly (n=5, m=l), (n=10, m=l), and (n=ll,

m = 1). The modes having antisymmetric behav-
ior in the axial direction (m = 2) appear to be the

ones most affected by the cutout, as can be seen

in figure 2.135.
As has been noted above, certain modes be-

come difficult to identify for certain sizes of cut-

VIBRATION OF SHELLS

out. This occurred, in one instance, for the mode

(13,2) and thus prevented the construction of a
unique curve for the variation of frequency ver-

sus arc width of cutout (shown by the dashed

line in figure 2.135). For very small cutout angles

(less than 10 °) the wave form for the mode n = 13,

m=2 is quite distinct. For very large cutouts

(for instance: 90 °) the wave form for this mode
is also reasonably clear although it is no longer a

sinusoidal variation.

Comparisons between experimental and theo-
retical results were made in reference 2.151 for

certain of the mode shapes. All results are based

on a normalization to a maximum radial deflec-

tion of unity. Figure 2.136 shows the modal char-
acteristics for n = 8, m = 1 for the 120 degree by

0.1/cutout. This mode has the minimum natural

frequency for this shell. This is the only mode

showing this particular behavior, which looks like

a damped sinusoidal motion along the circle at

x = 2.7 in. This general trend was noted for all

of the (8, 1) modes for cutout angles in excess of

10°. It is interesting to note the nearly linear
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axial variation of w for 0 = 0. The correspondence

between the analytical and experimental results

in predicting the radial component of the mode
shape is excellent. The membrane stress resul-

tants are also shown for several points in the

shell. Although not shown, the bending stress
resultants have a similar smooth behavior. No
stress concentrations were found for this con-

figuration. The stresses at the edge of the hole
(0 = 60 °) were much lower than those shown for

a point 0.25 inch from the edge (0 = 63°).

Figure 2.137 shows a comparison between ex-

perimentally and analytically determined mode

shapes for n = 11, m = 1 for the 90 degree cutout..
This mode is typical of many in which the over-

all wave form is quite distinct and only slightly
modified by the presence of the hole. The usual

effect is that the amplitude is slightly larger in
those regions directly above or below the hole and

diminishes as one moves away circumferentially
from the hole although the opposite behavior
was observed in some cases. The axial variation

is more strongly affected, in that it remains essen-

tially linear in the region over the hole while
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FIGURE 2.137.--Modal characteristics for the mode

(n= 13, m= 1) on a shell having a 90 ° cutout. (After

ref. 2.151)
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becoming sinusoidal in the region away from the

hole. As in the previous case the stress resultants

are well behaved throughout the shell.

Figure 2.138 shows the results for n = 13, m = 2

for the 90 degree cutout. Here the strongest influ-
ence is on the axial mode shape. The axial varia-

tion is approximately linear for e <45 ° with the

maximum value reached at the middle of the

shell. Away from the hole the axial variation is

essentially siausoidal with a node point at the

middle of the shell as expected for the asymmet-
ric mode. For the n = 13, m = 1 mode the hole has

a very small influence on the natural frequency.
For the m = 2 mode however, the size of the hole

has a much stronger effect on the natural fre-

quency. The significant change in the axial wave
shape is the probable explanatiou _°or this. The

circumferential wave form is also quite distorted

for this mode shape and is one identified as irreg-

ular on figure 2.134. There is a good agreement
between the analytical and experimental results
in this case.

Most of the modes observed in the analytical
and experimental studies had the maximum am-

plitudes in the portions of the shell directly
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FIGURE 2.138.--Mode shapes for the mode (n = 13, m = 2)

on a shell having a 90 ° cutout. (After ref. 2.151)
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above or below the cutout. However, several

modes were noted in which the motion was very

small in regions near the hole, the maximum

amplitude being reached on the back side of the

shell away from the cutout. Such a mode is

shown in figure 2.139. This mode has no strong
wave form and is one which in the experimental

program was termed irregular, but based on the

frequency and on its dominant wave form it ap-

pears to be associated with the mode which the

complete shell would be (n = 8, m = 2). In figure
2.139 the radial displacement is shown for two
different values of the axial displacement (x = 1.5

which is at the point of maximum amplitude for

the axial variation and at point x=2.7 which

is the upper boundary of the cutout). In addi-

tion, the radia" displacement is shown for two
different cutou_ angles: 30 ° and 120 °. The axial
variation in both cases is essentially a sine wave

with a node at the midpoint of the shell except

over the region of the cutout where the radial

displacement varies linearly from zero at the

edge of the shell to a maximum at the cutout.
This is the same behavior which has been ob-

served for other modes.

The final configuration examined in reference
2.151 was a shell with a cutout having an arc

width of 120 ° and a length of 0.3 times the

length of the shell. This cutout was asymmetri-
cally located in the axial direction with its cen-

EDGE OF CUTOUT

+1 I / 50°'CUTOLJT _

uJ 0 40 80 120 160
,,.3
< CIRCUMFERENTIAL COORDINATE, 8~ DEG.
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+1, , . ! ' 1-,I

-J 120 ° CUTOUT ] x=l.5

, I
-I

0 40 80 120 160

CIRCUMFERENTIAL COORDINATE, 8 ~DEG.

FIGURE 2.139.--Analytically determined mode shapes for

the mode (n=8, m=2) for two different cutout sizes

(2e=30 °, 120°). (After ref. 2.151)
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ter at x=0.6/. The experimentally determined

frequency spectrum for this configuration is also

given in table 2.44. The trend is that the fre-

quency for most of the modes either remains the

same or drops slightly compared to the value for

a 120 ° by 0.1/ cutout. However, in several in-

stances the frequency did increase.

The analytical studies of this configuration
were limited because of the increased computer

run time required to generate the eigenvalues

and eigenvectors. The run time is approximately
five times that for the symmetrically located cut-

out. However, two modes, (n=8, re=l) and

(n=7, m= 1), were examined in detail, and the
results are summarized here. For the (8, 1) mode

the analysis predicted a frequency of 1128 cps

compared to an experimentally determined value
of 1104 cps and for the (7, 1) mode the analytically

determined frequency is 1230 eps compared with

the experimental value of 1199 cps, the differ-

ence being about 2 percent.
The comparison of the mode shapes produced

analytically and experimentally for the (8, 1) mode

showed excellent agreement for the radial com-

ponent of the displacement. The comparison be-
tween test and theory for the displacement at

the edge of the cutout is shown in figure 2.140.

The results in figure 2.140 also show that the
motion is much smaller on the lower edge of the

cutout (x=4.5) than it is at the upper edge of

the cutout (x=2.7). The lower portion of the

shell is in fact barely participating in the motion
in this mode. The axial variation away from the

hole is essentially sinusoidal as can be seen in

the plot for O= 180 °. The axial variation of the

displacement over the hole 0_<60 ° is essentially
linear, reaching its maximum at the edge of the
hole. The behavior for this configuration is essen-

tially identical to that for the (8, 1) mode shown in

figure 2.136. The nonsymmetrie axial variation
is the major difference between these two cases.
The variation of the stresses for this case showed

no particular stress concentration arising from

the hole or any other unusual behavior caused

by the cutout. It should be noted that a high
stress concentration is to be expected very lo-

cally in the corner of any of the cutouts studied
here and such effects would be noticed if the

finite difference grid were continually refined to

predict the stress distribution in the immediate

l



THIN CIRCULAR CYLINDRICAL SHELLS

EDGE OF CUTOUT
I

o
THEORY j

-m [
0 40 80 120

CIRCUMFERENTIAL COORDINATE , 8 ~ DEG.

I

_ /THEORY

x= 2'.7

160

fx=30

40 80 120 160

CIRCUMFERENTIAL COORDINATE, e ~ DEG.

EDGE OF CUTOUT
I

i J
e=6o°... Y'-"_ I

"_/_1 _' THEORY:

o
-,  z..j i =,soo;

0 I 2 3 4 5 6

AXIAL COORDINATE, x ~ INCHES

LQ

o
03

<
(Z

FIGURE 2.140.--Mode shapes for the mode (n=8, m= 1)

on a shell having a 120 ° asymmetrically located cutout.

(After ref. 2.151)

vicinity of this sharp corner. The stresses gen-

erated by this concentration evidgntally decay

very rapidly as one moves away from the vicinity
of the corner.

No other work is known which studies the

effects of cutouts upon the free vibration fre-

quencies and mode shapes of circular cylindrical
shells.

2.8 OPEN CIRCULAR CYLINDRICAL SHELLS

An open circular cylindrical shell of length 1

and included angle e0 is shown in figure 2.141.
The shell boundaries shown in figure 2.141 are a

special case where the lateral edges are generators
of the shell and the ends are circle arcs which are

the intersections of the shell surface with planes

which are perpendicular to the shell axis. Thus,
if one were to view the shell from a point in its

symmetry plane, e = 00/2, the boundaries would

appear as a rectangle. The special configuration

of figure 2.141 is chosen, of course, because
virtually all of the results reported in the litera-
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ture are for such boundaries. One exception to

this (the case where the lateral edges are taken
to be helices) will be discussed later in this section.

The equations of motion given previously by

equations (2.1) through (2.9) apply to open
circular cylindrical shells as well as to closed

shells. The general boundary conditions given by

equations (2.140) through (2.144) are applicable

to the ends x = 0 and x = s. Along the lateral edges

0=0 and O=Oo the following possible simple

boundary conditions may arise (see sec. 1.8):

(a) u=0

(a) v=0

(a) w=0

aw

(a) -_=0

or (b) Nox=O' (2.158)

or (b) N0=0 (2.159)

aMo= 0
or (b) Q0+-_-x = (2.160)

or (b) Mo=O (2.161)

In addition, at the corners resulting from the

intersection of the edges, the following equation
must be satisfied:

M=ow = Mo_w = 0 (2.162)

which has significance if w_0 on any two inter-

secting edges (e.g., a free corner).

As noted earlier in this chapter there were 136

possible combinations of the simple boundary

conditions in equations (2.140) through (2.144)
yielding distinct problems for closed shells. For

open shells there exist 136 combinations for each

combination of equations (2.158) through (2.162),
thereby yielding (136)2 or 18 496 distinct possible
problems! Nevertheless, it will be seen later in

this section that the majority of the references
deal solely with one of these 18 496 sets of

FIGURE 2.141.--Open circular cylindrical shell.
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boundary conditions--that is, when all four edges

are supported by shear diaphragms.
When the angle 00 becomes relatively small in

comparison with 27r, then the shell is considered
to be shallow. Otherwise, it is open and deep.

The phrase "curved plate" frequently found in
the literature usually identifies a shallow shell.

For shallow shells the assumption is made that

the terms containing the transverse shearing

force resultants are negligibly small compared

with the other terms in the first two equations

of motion, equations (1.112a) and (1.112b).

Because this corresponds to the case when the

bending moments (from equations (1.115a) and

(1.115b)) have negligibly small influence upon
these tangential equations of motion, the result-

ing theory is sometimes called the "momentless

theory" or "technical theory" of thin shells (cf.,

ref. 2.19). However, this assumption was also
used to derive the Donnell-Mushtari equations

of motion (sec. 1.6.3). Thus, the Donnell-

Mushtari and shallow shell equations are equiva-

lent for circular cylindrical shells.

2.8.1 All Edges Supported by Shear Diaphragms

From section 1.8 the boundary conditions for

this case are seen to be

Nz=v=w=Mx=O aloffg x=O, 1 (2.163a)

No=u=w=Mo=O along O=O, Oo (2.163b)

These boundary conditions are satisfied exactly

by choosing displacement functions of the form

u=A cos ks sin nO cos c0t]
/

v =B sin ks cos nO cos o_t_ (2.164)
|

w = C sin ks sin nO cos _t J

where s=x/R, as before, h=m_R/l (re=l,

2, . . .), and n is not an integer, in general, but

is given by

k_
n=-- (k=1,2,...) (2.165)

00

In equation (2.165) k is one more than the num-
ber of longitudinal node lines along the shell.

Substituting equations (2.164) into the equa-

tions of motion (2.3) for a particular shell theory

yields the same sets of homogeneous equations

given in section 2.2 such as equations (2.21) for

OF SHELLS

the Donnell-Mushtari theory, and the same

characteristic equations as given by equations

(2.35) and (2.36) and table 2.4.

In the special case where 00 is 7r divided by an

integer, then the frequencies and mode shapes
determined by solution function equations (2.164)

and (2.165) is the same as those for the closed t

shell solution equations (2.20), except for the

reference plane from which 0 is measured. Thus,

the results given in section 2.3 for closed shells

having shear diaphragm supports at both ends

for n= 1, 2, 3, . . . are applicable to open shells

having 00=_, _/2, 7r/3, . . . , respectively. In

addition, numerical results for values of n which

are not integers can be obtained from those

figures of section 2.3 having n as a continuously

varying parameter (e.g., figs. 2.20, 2.21, and 2.22).

Similarly, results for closed shells of infinite

length given previously in section 2.2 are directly

applicable to open shells having Oo=Tr, 7r/2,

7r/4, . . . . Frequency formulas such as those

given by table 2.1 for infinite shells and by

equations (2.42), (2.49), (2.50)_ and (2.51) and

tables 2.13 and 2.17 are directly applicable for

arbitrary angle 00 by using n as it is defined in

equation (2.165).
The Donnell-Mushtari or shallow shell theory

is most frequently used to analyze circular

cylindrical shell panels. It was seen previously in

section 2.3 that this theory is inaccurate for small

nonzero n (n = 1, 2, 3), particularly for long shells

(1/R>2). For open shells n can take on even

smaller non-zero values. For example, from equa-

tion (2.165) the lowest value (no longitudinal

node lines) of n for 0o=37r/2 is 2/3. For Oo=2_"

(n= 1/2) the shell is not closed; i.e., there is no

continuity of the quantities v, N_0, Q0 and Ow/O0

across the longitudinal edges. Furthermore, it is

possible to have 00>27r without significantly

changing the cylindrical curvature, provided

h/R<<l.

No published results are available for 0 < n < 1

even though the same characteristic equations

and computer programs used for SD-SD closed

shells can be used straightforwardly. In section

2.3.1 frequencies obtained from the various

theories were compared for several integral values

of n. The same computer programs were sub-

sequently used to determine lowest frequency

parameters for n=l/3, 1/2, and 2/3. These

g
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results are shown in tables 2.46 and 2.47, where
the effects of tangential inertia are included. Data

are given for three of the most widely used shell
theories: Donnell-Mushtari, Fltigge, and mem-

brane. Thickness ratios (R/h) of 20 and 500,

v =0.3, and 1�mR =0.1, 0.25, 1, 4, 20, and 100 are

chosen to allow direct comparison with n=2,
3 .... by means of tables 2.6, 2.7, and 2.8.

Tables 2.6 and 2.7 showed that for shells having

moderate length/radius ratios (l/mR = 1, 4) the
three theories agreed closely with each other and

with results from the three-dimensional elasticity
theory for both values of R/h and for all n. In

tables 2.46 and 2.47 the agreement among the
theories for the nonintegral values of n are also

apparent for l/mR=l, 4. For these values of

l/mR the monotonic behavior of the function

over the closed interval 0_<n<l for all three

TABLE 2.46.--Lowest Frequency Parameters f_= o_RX/p(1 - v2) /E for Deep, Open Shells Supported
on All Edges by Shear Diaphragms; Tangential Inertia Included; R/h = 20, v = 0.3

Theory

Donnell-

Mushtari

Fli]gge

Membrane

Donnell-

Mushtari

Fltigge

Membrane

Donnell-

Mushtari

Fltigge

Membrane

0.1

14.2782

14.2649

.953802

14.2802

14.2669

.953668

14.2830

14.2697

.953479

0.25

2.47132

2.46663

.952985

2.47281

2.46809

.952137

2.47491

2.47014

_950952

1�mR

0.946544

.945521

.935728

.930899

.929793

.919689

.910330

.909109

.898540

O.422183

.422137

.422169

.381416

.381341

.381375

.337827

.337681

.337723

2O

0.0514333

.0515972

.0514301

.0368447

.0371231

.0368056

.0274266

.0275360

.0271806

100

0.00268829

.00483989

.00263976

.00232640

.00512219

.00167343

.00374949

.00459872

.00117104

7

TABLE 2.47.--Lowest Frequency Parameters _ = o_RX/P(1-v2)/E for Deep, Open Shells Supported

on All Edges by Shear Diaphragms; Tangential Inertia Included; R/h = 500, v= 0.3

n

1

1

2

Theory'

Donnell-

Mushtari

Flfigge

Membrane

Donnell-

Mushtari

Flfigge

Membrane

Donnell-

Mushtari

Flfigge

Membrane

0.1

1.11106

1.11097

.953788

0.25

0.957341

.957324

.952986

0.935745

.935744

.935728

.919707

.919705

.919689

0.422169

.422168

.422169

.381375

.381374

.381375

2O

0.0514301

•0514304

.0514301

1.11098

1.11089

.953653

1.11088

1.11079

.953466

.956504

.956487

.952137

.955334

.955317

.950952

l/mR

.898560

.898558

.898541

.337723

.337723

•337723

.0368056

.0368061

.0368056

.0271810

.0271812

.0271806

100

0.00263984

.00264474

.00263976

.00167468

.00168460

.00167343

•00117967

.00118447

.00117103
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theories is also notable. The large errors in the

membrane theory for low values of n are repro-

duced, as well as the large errors in the membrane
and Donnell-Mushtari theories for R/h = 20 and

large l/mR (100)• For 1�mR, _ is seen to be non-
monotonic over 0 _ n _ 1 for the theories.

The effects of neglecting tangential inertia for

the same shells are shown in tables 2.48 and 2.49.

For closed shells it was seen in tables 2.18 and

2.19 that neglecting tangential inertia caused a

maximum change of --9.5 percent in _ for

n=0 (l/mR=4) and +42.7 percent for n=l

(l/mR=20). Comparing tables 2.48 and 2.46

(R/h= 20), for example, it is interesting to note
that neglecting tangential inertia causes only

positive changes in _ for nonintegral values, and
that these changes are considerably greater (for

example, 222 percent increase for n=1/3,

1�mR = 100, according to the Flfigge theory)•
Sewall (ref. 2•198) used the solution functions

" TABLE 2.48.--Lowest Frequency Parameters _ = wRX/p(1 -- v_)/E for Deep, Open Shells Supported

on All Edges by Shear Diaphragms; Tangential Inertia Neglected; R/h = 20, v = 0.3

n

1

2

Theory

Donnell-

Mushtari

Flfigge

Membrane

Donnell-

Mushtari

Flfigge

Membrane

Donnell-

Mushtari

Fltigge

Membrane

0.1

14.2790

14.2747

.953845

14.2810

14.2767

.953711

14.2838

14.2795"

•953524

0.25

2.47208

2.46806

.953267

2.47361

2.46956

•952430

2.47575

2.47167

•951261

1�mR

0.954256

.953555

.943319

.941768

.940991

.930372

.924892

.924007

.912833

0.808405

.808354

.808336

.678938

.678848

.678822

.554664

.554480

.554453

2O

0.173355

.173884

.173344

.0857841

.0864238

.0856925

•0506287

.0508296

.0501739

100

0.0085533

.0153958

.00839890

.00521490

.0114806

•00375119

.0067677_

.0083004_

.00211364

TABLE 2.49.--Lowest Frequency Parameters _ = wR_c/p(1- v2)/E for Deep, Open Shells Supported on

All Ed /es by Shear Diaphragms; Tangential Inertia Neglected; R/h = 500, v=0.3

n

1

1

2

1�mR

Theory
0.1 0.25 1 4 20 100

Donnell-

Mushtari

Flfigge

Membrane

Donnell-

Mushtari

Flfigge

Membrane

Donnell-

Mushtari

Flfigge

Membrane

1.11111

1.11102

.953832

1.11104

1.11109

.953697

1•11093

1.11084

.953510

0.957625

.957608

.953268

.956799

.956782

.952431

.955645

.955628

•951262

0.943337

.943336

.943319

.930391

.930389

.930372

.912852

•912851

.912833

0.808337

.808336

.808336

.678823

.678822

.678822

.554453

.554453

.554453

0.173344

.173345

.173344

.0856926

•0856936

•0856925

.0501746

•0501749

.0501739

0.00839915

.00841474

•00839890

•00375399

•00377621

.00375119

• 00212927

• 0021379_

.0021136_
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given by equations (2.164) and (2.165) along with
the Donnell-Mushtari theory and neglected tan-

gential inertia to obtain numerical results explic-
itly for cylindrical panels supported on all edges

by shear diaphragms. These results are shown in

figure 2.142 wherein a modified frequency param-
eter is plotted as a function of nl/mOoR for

shallow shells having included angles 00= 5.4 °,

7.2 ° , and 10.7 °.

The free vibrations of open circular cylindrical

shells are also discussed in references 2.19, 2.38,

2.66, and 2.199 through 2.212.

2.8.2 Lateral Edges Having SD Supports

Consider next the generalization where an

open circular cylindrical shell has shear dia-

phragm supports at the sides 0=0, 00 (see fig.

2.141) as defined by boundary condition equa-

tions (2.163b), but has arbitrary edge conditions

along x=O,l. The exact solution procedure out-

lined in section 2.4 for closed shells having arbi-

trary edge conditions is also applicable for this

case. That is, solution functions in the form of

equations (2.53) can be taken, (interchanging

sin nO for cos nO) with n not generally an integer,

but determined by equation (2.165). The proper
values of t are then determined from the roots

of an eighth degree characteristic equation (2.54)
as before, and the amplitude ratios A/C, B/C

and the frequency parameters £ are determined

from the equations of motion, as in sec. 2.4.

Thus a great deal of information is already

available in the subsequent subsections of section

2.4 for open shells having n= 1, 2, 3 ..... (i.e.,

00=Tr, _r/2, 7r/3, . . .) because the longitudinal

node lines generated are equivalent to shear dia-

phragm supports along these lines. For example,

the abundant data available for clamped-clamped

shells in the figures and tables found in section

2.4.1 can also be used for cylindrical shell panels

having clamped ends and lateral edges supported

by shear diaphragms. Moreover, simplified fre-

quency formulas such as equations (2.87), (2.88),

(2.89), and (2.90) can be applied for values of n

which are not integers.

2.8.3 Ends Having SD Supports

An exact solution of the free vibration problem

7

;7: L
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is also possible for a circular cylindrical shell having its curved edges x =O,1 (see fig. 2.141) supported

by shear diaphragms and arbitrary fixity conditions along the longitudinal edges. Thus the boundary

conditions along x=O,l are given by equations (2.163a). These conditions are satisfied exactly by
choosing

u=A cos Xsen° cos_ot v=B sin Xsen° coscot w=C sin Xsen° cosoJt (2.166)

with s = x/R and X = mrrR/l (m = 1,2, . . .). Substituting equations (2.166) into the equations of motion

gives, for example, for the Donnell-Mushtari theory (el., eqs. (2.7))

(l+v)Xn 'X 7F_l Fol
2

n 1 H-k(- X24-n2)2--[t 2 C 0

The coefficient matrix in equation (2.167) can

easily be put into symmetric form simply by

multiplying the last two equations through by
negative one. For a nontrivial solution the deter-

minant of the coefficient matrix in equation
(2.167) is set equal to zero, thereby yielding an

eighth degree characteristic equation for the

proper values of n. The vibration frequencies and

amplitude ratios A/C and B/C are then deter-

mined by applying the four boundary conditions

which exist at each of the sides 0 = 0 and 0 = 00.

In spite of the straightforwardness of the ap-

proach outlined above and its obvious parallelism

to the solution procedure outlined {n section 2.4,
the only work using it known to the writer is that

by Heki (ref. 2.172). In that work the solution is

derived in detail for the Donnell-Mushtari the-

TABLE 2.50,--Frequency Parameters for a Cylin-

drical Shell Panel Having Its Straight Edges Free

and the Others Supported by Shear Diaphragms

Number of

longitudinal
half-waves, m

Type of
mode

Antisym.

Symmetric

Antisym.

w_pRl_%,/g(1 -- v2)

m 2rr2E h

0. 088

.220

2.28

Symmetric .172

Antisym. .182

3 Symmetric .190

3 Antisym. .228

/

+ ] f =299

- ] f'= 300

f __.________._ f = 474-- ---- f'= 470

t 4- i_.__ + _ f=840

/ + I - f'=850

/ + i - f : 860

f' = 870

/- _+ i:-/

L+j.-;+I
/ - ','+ t - / f'=1550

/- '+',' - I

_ _'___--_ _--T_'_ f =1450
I- _'_ I -"-+-_ 1 ""_- -I f'= 1460
/+,-_+ /

CROSS-SECTION

Li+ f =1550

........ f'=1490
(+ I%1

NODAL PATTERNS

f : THEORETICAL

f': EXPERIMENTAL

FIGURE 2.143.--Mode shapes, nodal patterns, and cyclic

frequencies (theoretical-f, experimental-f') for a cylin-

drical shell panel having its straight edges free and the

others supported by shear diaphragms. (After ref.

2.172)

l

lr-
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TABLE 2.51.--Modal Characteristics for a Cylindrical Shell Panel Having Its

Straight Edges Free and the Others Supported by Shear Diaphragms

m L
cps

299

474

1530

840

860

1320

1450

Symmetry
Function of

function

u Antisym.

v Symmetric

w Antisym.

N_X10 -3 Antisym.

N_eX10 -8 Symmetric

NeX10 -3 Antisym.

MeX10 -6 Antisym.

u Symmetric

v Antisym.

w Symmetric

N_X10 -3 Symmetric

N_eX10 -3 Antisym.

NeX10 -3 Symmetric

MoX10 -3 Symmetric

u Antisym.

v Symmetric

w Antisym.

N_X10 -3 Antisym.

N_oX10 -3 Symmetric

NeX10 -3 Antisym.

MeX10 -6 Antisym.

u Symmetric

v Antisym.

w Symmetric

N_X10 -3 Symmetric

N_eX10 -3 Antisym.

NeX10 -3 Symmetric

MoX10 -o Symmetric

u Antisym.

v Symmetric

w Antisym.

N_X10 -3 Antisym.

N_eX10 -3 Symmetric

NeX10 -3 Antisym.

MeXIO -e Antisym.

u Symmetric

v Antisym.

w Symmetric

N_X10 -3 Symmetric

N_eX10 -3 Antisym.

Ne×10 -3 Symmetric

MeX10 -6 Symmetric

u Antisym.

v Symmetric

w Antisym.

N_×10 -3 Antisym.

N_eX10 -3 Symmetric

Ne X10 -3 _ Antisym.

MeXIO -e Antisym.

0°_

edge

0.035

-.311

1.559

--.542

0

0

0

.041

--. 276

1.576

--. 638

0

0

0

• 030

.179

1.63

-- .46

0

0

0

.039

--. 209

1.555

--1.207

0

0

0

• 052

--. 239

1. 543

--1.615

0

0

0

• 048

--. 200

1.64

--2. 244

0

0

0

.061

--. 200

1. 606

--2.38

0

0

0

Amplitudes of function O =

5 ° 10 °

0.002 --0.014

--.179 --.079

1.273 .979

--.033 .226

--.050 --.037

.004 .012

--.03 .08

.012 --.002

--.156 --.072

1.169 .798

--.195 .034

--.054 --.064

.004 .013

.043 .366

.016 --.003

.187 .154

.52 --.28

--.25 --.04

.04 .05

--.O7 --.01

1.2 4.1

.000 --.012

--.094 --.018

1.105 .671

0.004 .379

--.183 --.133

.028 .058

.02 .49

.005 --.013

--.122 --.043

1.125 .735

--.149 .437

--.217 --.159

.038 .093

.08 .59

--.004 --.015

--.077 --.004

1.11 .62

.188 .735

--.33 --.10

.11 .21

--.27 .66

--.003 --.013

--.079 --.010

1.070 .576

.07 .66

--.38 --.19

.11 .24

--.26 .98

15 °

--0.020

--.007

.740

.314

--.013

.015

.07

--.007

--.022

.440

.122

--.049

.020

.778

--.019

• 071

--.98

.30

.02

-- .02

6.0

--. 009

• 022

.281

.302

--. 027

• 064

1.04

-- .016

• 004

•406

• 549

--. 041

•121

1.12

-- .010

.029

• 22

•470

.17

.19

1.39

--.008

.018

• 188

.50

.07

• 26

2.02

20 °

--0.017

.044

.483

.273

.025

.014

.09

-•008

.003

.158

.129

--.031

.026

1.185

-.023

--.032

-1.13

.37

--.03

-.02

6.2

--. 002

• 032

--. 026

• 058

.036

•048

1.45

-- .012

.027

• 184

.420

• 114

• 107

1.20

.000

• 033

--.06

--. 001

.27

.09

1.56

--. 002

• 021

--. 024

.21

.21

.20

2.15

25 ° 30 °,
center

--0.010 0

.072 0.081

.237 0

.156 0

.O54 .063

.008 0

.07 0

--.006 --.006

.007 0

--.035 --.092

.104 .105

--.012 0

.029 .030

1.469 1.570

--.015 0

--.116 --.150

--.72 0

.25 0

--.07 --.09

--.01 0

3.9 0

.006 .008

.021 0

--.219 --.286

--.165 --.247

.041 0

.027 .019

1.66 1.72

--.006 0

.036 .038

.060 0

.219 0

.203 .236

.061 0

.77 0

.008 .011

.023 0

--.21 --.26

--.352 --.494

.21 0

.00 --0.05

1.46 1.41

.001 0

.014 .01C

--.065 0

.04 0

.25 .26

.11 0

1.33 0
÷
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ory neglecting tangential inertia and is illustrated

by the problem where the two longitudinal edges

0=0, 00 are completely free. Numerical results

were obtained for a steel shell having the follow-

ing physical parameters (expressed in the c.g.s.

system): p=7.8, R=10.0, _=0.3, E=2.1X1012,

I = 20.0, h = 0.100, 00 = 60 °. Nondimensional fre-

quency parameters are given in table 2.50. Modes

are labeled either symmetric or antisymmetric

with respect to the line 0= 00/2. In figure 2.143

the mode shapes are shown, along with theo-

retical and experimentally measured cyclic fre-

quencies for the physical parameters given above.
Modal" characteristics associated with each of

these frequencies are listed in table 2.51.

2.8.4 Other Boundary Conditions

Problems involving open circular cylindrical

shells not having two opposite sides supported

by shear diaphragms (or the boundary condi-

tions complementary to SD supports as dis-

cussed in sec. 2.4.6) are not capable of exact

solution by analytical methods, and approxi-

mate techniques must be used. For this purpose

the Ritz method using beam vibration eigen-

functions is frequently employed.
Gontkevich (refs. 2.127 and 2.202) developed

a method of analysis for open circular cylindrical

shells which need not be shallow: The Rayleigh-
Ritz method was used along with displacement

components in the form

u = A,.nX,_'(x)®n(#) cos wt]

• v=BmnXm(x)OJ(O) cos _t_
w = C.._X..(x)O_(o) cos _t )

(2.168)

where the Xm(x) are conventiOnal beam func-

tions and O_(0) are the eigenfunctions of free
vibration of circular beams determined for the

appropriate boundary conditions at O=0, 80. In
references 2.127 and 2.202 a characteristic de-

terminant is given in a general form for arbi-

trary boundary conditions. The characteristic
determinant is

all a12 a13

at2 a22 a23 =0
ala a2a an8

(2.169)

where, after sorting through several misprints in
reference 2.127, it appears that

l--v

all = #m20_-+-_-&_26_-- _8._22

1--,

a12--]£rngn(T_m_n _ 1,"Ym"Yn)

a13 _- -- 1)l.tm'YmOn

a22 = _t_2n_+--_-gm2 _m_n (2.170)

a23 =g={ -- 7_ +/c[g=2,=

+ 2(1 - _)gj_ + ,,_,_,_] }

+ g,4_= + 2 (1 -- p)gm2_mg2n_n]

-- 0_2

and k=h2/12R 2 as before. The straight beam

eigenfunction constants _, 3'_, and g_=amR/l

to be used in equations (2.170) were given pre-
viously in table 2.21. The curved beam constants

g=, _=, 3'_, n=, and 0N are defined by

O_n

00

l fro,
_=% ! (O_')2R dO

ten do

l fRoo

3',_=-_2J ° O,/'O,_R dO

l3 fRO,

,_ = a--54Jo (OJ')2R dO

On=_ foR°°®n2R dO (2.171)

Values of a_ for circular curved beams are pre-

sented in figure 2.144. A double subscript is used,

the first subscript indicating the mode number

and the second is an edge fixity identifier having

the following key:

1. clamped-clamped
2. free-free

3. clamped-free

Thus, for example, a2a is identified with the

second mode of a clamped-free circular beam.
The clamped-SD and free-SD modes are included

J

7
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Q

160

14.C

6.0

__a12

4-.0 _ ,_, _23

_ a13

2.0-- _

a2 2

_e21

o
0 _/2 _ 1.5_ 2_

FIGURE 2.144.-- Eigenfunction constants for curved

circular beams. (After refs. 2.127 and 2.202)
t

within the antisymmetric clamped-clamped and

free-free modes, respectively. The values of am

for SD-SD supports are 7r, 2r, 3v, . . . . The

values of an in figure 2.144 approach those of

table 2.21 for straight beams as the included

angle 00 approaches zero. The constants _n, l'n, vn,
and 8n for the curved beam functions are avail-

able for free-free, clamped-free, and clamped-

clamped beams in figures 2.145, 2.146, and

2.147, respectively. Upon substituting the ap-

propriate constants from these figures and table
2.21 into the terms of the characteristic de-

terminant (2.169), the frequency parameters

_=_2R2p(1--v2)/E may then be evaluated di-

rectly as the three roots of the determinant. The

expanded determinant is, of course, a cubic char-

acteristic equation in _2 which takes the form of

equation (2.35). Usually, one of the three roots

of the cubic equation (the root associated with

a transverse bending mode) is much smaller than
the other two. In such cases some of the ap-

proximate frequency formulas such as equations

(2.50) and (2.51) can be employed.
The modal density (number of natural fre-

quencies per unit frequency interval) for shallow

shells having arbitrary edge conditions is dis-

cussed by Bolotin in references 2.149 and 2.195.

In reference 2.213 the frequencies of completely

clamped shallow shells made of aluminum and

having dimensions 1= 11-5/8 in., ROo = 9-5/8 in.,

and h =0.032 in. were calculated using the Ritz

method and straight beam functions. These

results are exhibited in table 2.52 for two types

of analysis. The first used the Donnell-Mushtari

shell equations with only a single product of

beam functions and neglected tangential inertia;

the second used the Sanders equations with three

beam function products and included tangential

inertia. For shells having this extent of shallow-

ness the two approaches give only slightly differ-

ing results. A similar comparison is made in

table 2.53 for a set of shallow shells having square

pl_nforms (from ref. 2.214). Experiments were
also conducted on these shells and the results are

shown in tables 2.54 and 2.55. Difficulty was

encountered in obtaining rigid clamping in the

test set-ups, which caused a significant decrease

in the frequencies from the theoretical values for

clamped shells, particularly for the lowest modes.
For R=96 in. and re=n=1 in table 2.54 the

clamping was very ineffective in restraining the
tangential displacements at the boundary and

the measured frequency (150 cps) is essentially the

TABLE 2.52.--Frequencies of Completely Clamped

Aluminum Shell Panels (1=11-5/8 in., ROo=

9-5/8 in., h=0.032 in.); m= l

Number of
circum-

ferential

half-waves,
n

Frequencies, cps, for--

R = 96.0 in. R = 48.0 in.

Donnell- S_nders
Mushtari

314.4 314.0

334.1 333.15

479.2 477.7

722.5 720.5

1045

Donnell- Sanders
Mushtari

602.7 601.9

531.0 529.8

595.05 593.5

784.7 782.8

1078

1

L

t-
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TABLE 2.53.--Comparison of Calculated and

Measured Frequencies (1 = 11-5/8 in.,

R0o=9:5/8 in., h=0.032 in.), cps

R_

in. m

1 1

1 2

1 3

1 4

1 5

96

2 1

3 1

4 1

5 1

1 1

1 2

1 3

1 4

1 5

_8

2 1

3 1

4 1

5 1

Theory

Shear

diaphragm Clamped
supports

146.7 314.4

163.2 334.1

322.8 479.2

554.8 722.5

853.9 1045

274.3 356.6

373.1 446.4

501.6 593.0

680.1 769.2

277.5 602.7

183.2 531.0

323.4 595.05

551.9 784.7

848.7 1078

505.1 635.9

622.1 699.9

729.7 808.2

872.3 971.4

Experiment

150

250

440

725

345

540

8OO

350

270

445

760

560

770

935

same as the theoretical resdlt for shear diaphragm

supports all around. The method of clamping

consisted of a simple lap attachment at the

boundaries using closely spaced bolts (1/8 in. in

diameter and spaced 1-1/16 in. on centers in

ref. 2.213; 3/16 in. in diameter and spaced 1-1/2
in. on centers in ref. 2.214).

Theoretical results obtained in a similar manner

for shells having l=11.0 in., R00=9.0 in., and

h=0.028 in. were compared in reference 2.198

with experimental results presented in reference
2.215. Graphs of these results have been exhibited

earlier as figures 2.142. In these figures the effects

of adding an additional clamping strip over the

tops of the lap attachments is shown by squares

having additional flags. Sewall (ref. 2.198) also

gave the following formula for the frequencies o f

completely clamped shallow cylindrical shells

(using the Donnell-Mushtari theory and neglect-

ing tangential inertia) when only a single term
in the products of beam functions is used:

_2 = p_2R2(1 _ _,2)/E

h2R 2 29,_ff_
-- _ (Nm4-[-2 _-o/-}-N_4 )

+{ \NJ \NnROo]

\NJ \Nmll J

1-v NmN_r N / 2 v2f(m2\+ ROo l

Nn_R20o2] J

2[IVmin_ 2 I

- { (NInNy) 4

/

1--vArmNn N 4 N 4-

where

(2.172)

Nm = era�l, N_ = e_/Reo, fim = a,_N,_(a,_Nml- 2)

fi_=a_N_(a_N_ROo-2), and am, _m, _

are the eigenfunction constants for clamped-

clamped beams as defined by equations (2.93)
and (2.94) and are listed in table 2.23.

Webster (ref. 2.199) obtained theoretical

results for completely clamped shallow shells by

using Fltigge's shell equations and a variational

approach. The procedure consisted of applying

Hamilton's principle subject to the constraints

supplied by the geometric boundary conditions,

which are enforced by means of Lagrange multi-

pliers in the variational problem. The displace-

ment functions are taken in the form of poly-
nomials; i.e.,

M--1 N--1

m=O n=O

M--1 N--1

M--1 N--1

m=0 n=0

where A,,n, Bran, and C_ are undetermined
coefficients. The order of the resultant character-

7
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in.

0. 020

0.032

O. 040

THIN CIRCULAR CYLINDRICAL SHELLS

TABLE 2.54.--Frequencies of Completely Clamped Square Aluminum Shell

Panels (1 = ROo = 17.0 in.); m = 1

Number of
circumferential

half-waves,
n

Frequencies, cps, for--

R = 96.0 in. R = 48.0 in.

Donnell-
Mushtari

299.5

245.9

225.55

232.3

267.1

326.9

407.7

301.0

253.6

251.6

292.6

373.4

486.7

627.4

Sanders

299.0

245.2

225.0

231.8

266.5

326.2

407.0

300.5

252.9

250.9

291.8

372.4

485.6

626.3

301.9

259.8

272.6

337.8

448.5

596.1

775.5

Donnell-
Mu_htari

597.3

484.1

423.7

393.7

392.9

421.1

476.9

598.1

488.0

438.1

432.0

471.6

554.3

674.4

598.8

491.65

451.0

464.5

534.0

653.6

815.2

302.4

260.5

273.4

338.8

449.7

597.4

776.9

Sanders

596.3

482.55

422.6

393.0

393.0

420.45

476.2

597.0

486.6

437.O

431.05

470.6

553.3

673.2

597.75

490.25

449.8

463.4

532.85

652.3

813.8

171

T

istic determinant to be evaluated by this pro-

cedure is 3MN plus the number of boundary

constraint equations. In figures 2.148 through

2.152 the parameter p_2(1--_,_)12R28o2/Eh 2 for

fundamental frequencies obtained by the above

procedure is plotted against the geometric

parameter eol/h for five aspect ratios ROo/l.

Terms of degree up to xSO8 and xTe _ were taken to

ensure convergence. Data resulting from Sewall's

equation (2.172) are also depicted on these graphs.

The notation (re,n) used in figures 2.148 through

2.152 indicates that the normal displacement w,

in the modes corresponding to these frequencies,

has m and n half-waves in the x and e directions,

respectively.

When Sewall's formula (2.172) is converted to

the frequency parameter p_(1--v2)12R2Oo_/Eh2

used in figures 2.148 through 2.152, it is found

to be independent of e0 for a given Reo/1 and

%

n_
%

2

i04
------ SEWALLS EQUATION

POWER SERIES /./

52 SOLUTION

103 _ ----_ J \(I,I)

500 2 5 I0 2 5 I0a

eoZ/h

//\

y (i,2) ,_

2 5 IOg

FIOVRn 2.148.--Fundamental frequency parameter for

completely clamped shallow shells; ROo/l = 0.25. (After

ref. 2.199)
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O. 020

0. 032

0. 040

TABLE 2.55.--Comparison of Calculated and Measured Frequencies

(l=17.0 in., R0o=17.0 in.), cps; m= l

R =96.0 in. R =48.0 in.

h,
in. n Theory Theory

SD

1 167.3

2 74.6

3 74.4

4 114.7

5 173.3

6 246.2

7 332.5

1

2

3

4

5

6

7

168.1

85.3

111.5

181.9

276.9

393.7

532.0

168.9

94.2

137.1

226.9

346.0

492.1

665.0

Clamped

299.5

245.9

225.55

232.3

267.1

326.9

407.7

301 .O

253.6

251.6

292.6

373.4

486.7

627.4

302.4

260.5

273.4

338.8

449.7

597.4

776.9

Experiment

240

85

129

190

345

117

125

229

295

123

197

278

388

727

SD Clamped

332.7 597.3

137.4 484.1

94.1 423.7

119.55 393.7

174.7 392.9

246.6 421.1

332.6 476.9

333.1 598.1

143.5 488.0

125.4 438.1

184.9 432.0

277.6 471.6

393.9 554.3

532.0 674.4

333.5 598.8

148.9 491.65

148.6 451.0

229.2 464.5

346.5 534.0

492.2 653.6

664.9 815.2

Experiment

310

86

148

241

387

439

102

144

270

294

613

169

180

289

398

735
\

104

Oo=O.Irod. /

//1"

/
'(I,I)

FIGURE 2.149.--Fundamental frequency parameter for

completely clamped shallow shells; ROo/l = 0.5. (After

ref. 2.199)

2

i04

52
103

2
/

102:-------,--'--"'_
I 2 5 I0 5

eol/h

/l (i,4)

I02 2 500

FIGURE 2.150.--Fundamental frequency parameter for

completely clamped shallow shells; ROo/l= 1.0. (After
ref. 2.199)

!,%.



THIN CIRCULAR CYLINDRICAL SHELLS
173

?
%

I

%
Q.

500O

200
2

00_-/h

102 200

FIGURE 2.151.--Fundamental frequency parameter for

completely clamped shallow shells; ROo/l=2.0. (After

ref. 2.199)

%

I

5O00

4

3

2

1.5

103

8

600 5 6 8

II I I I s"
------ SEWALLS EQUATION ./_
-- POWER SERIES

SOLUTION 6'o: O. I tad. /_

//(_1,3)

(I ,Z) / I_"

Y
/

I0 15 20 :30 40 60 80 tO0

eJ/h

FIGURE 2.152.--Fundamental frequency parameter for

completely clamped shallow shells; ROo/l=4.0. (After

ref. 2.199)

Col�h, but the solution using the power series

given by gquations (2.173) is not. The results

shown in the figures 2.148 through 2.152 are for

00=0.1 rad (5.73°), but as pointed out in refer-

ence 2.199 they may be used for shallow shells,

in general, with little error. At 00=1.0 rad.

(57.3 °) the results would be approximately 2 to

3 percent less than those for 00= 0.1 rad.

Figures 2.148 through 2.152 also show that

Sewall's equation gives accurate results for small
values of Ool/h but becomes inaccurate as eol/h

increases because the beam functions do not rep-

resent the true displacements very accurately in

this range (ref. 2.199). In particular, the repre-

sentation of the v displacement is poor for modes

having more than one half-wave in the 0 direc-

tion. For thick panels having large curvatures,

these errors have a small effect upon the frequen-

cies because the stretching strain energy is small

compared to the bending strain energy. For

thinner, less shallow panels the stretching energy

becomes more significant.

If one considers the nodal patterns of a clamped

square plate (cf., ref. 2.157), it is found that some
of them have node lines which are not at all

parallel to the sides of the plate (see ref. 2.157).

These modes are identified as (m,n) +_(n,m) modes

because they may be approximated by combina-

tions of two assumed modes (re,n) and (n,m),

which do have nodal lines parallel to the edges.

The patterns of these modes are sensitive to

asymmetry which is introduced by making the
aspect ratio slightly different from unity. A

similar effect occurs in shallow shells when asym-

metry is introduced by virtue of having curva-

ture in only one direction. Figure 2.153 (from

ref. 2.199) shows the transformation of the nodal

patterns of the (3,1)+ (1,3) modes of a square

flat plate to (1,3) and (3,1) modes by the intro-

duction of curvature in one direction. For eol/h = 8

the rise of the square curved panel is approxi-

mately equal to the thickness. It is seen that

curvatures of this order change the nodal pat-

terns considerably.

Rectangular curved panels, like flat plates, will

have two modes with equal frequencies. How-

ever, for this to occur the two modes must have

different symmetries with respect to the x and

0 axes, or both. If the two modes have the same

type of symmetry (or antisymmetry) then two

modes having nearly the same frequency can

occur. The nodal patterns of these two modes can

be quite complex (cf., ref. 2.157). In figures 2.148

eo_/h =0 Oo_/h = 5 9o_/h : tO

MODE --x

_ /_PPROXIMATELY

.z = 1443.5 _2 =1451.0 _a =1464.5

MODE -- x

8l_z =1457.1 _-2 =1473.2 _2= 1531.7

_ = _x_( I-V )A' Rz 8o2/ E h 2

FIGURE 2.153.--Effect of curvature upon the nodal pat-

terns of clamped square curved panels; ROo/h=lO0.

(After ref. 2.199)

|
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through 2.152 the mode changes do all occur with

changes of symmetry, giving actual crossings of
frequency Curves.

Lisowski (refs. 2.216 and 2.217) computed the

first eight frequencies of a completely clamped

shallow shell of celluloid having dimensions in

centimeters as shown in figure 2.154. A flexibility

matrix expressed in terms of the eight interior

points shown in figure 2.154 was obtained by

experimental measurement with point loads. Fre-

quencies were then calculated by treating the

problem as one having eight transverse degrees

of freedom associated with the eight mesh points.

Frequencies in cycles per second and correspond-

ing mode shapes are shown in figure 2.155.

The Rayleigh method using the Love-Timo-

shenko shell equations neglecting tangential

inertia and a simple mode shape of the form

w=x2O2(x--l)2(O--Oo) _ (2.174)

was used by Palmer (ref. 2.211) for the com-
pletely clamped shallow shell. Results for alumi-

num plates are shown in figure 2.156, where f is
the cyclic frequency.

In reference 2.221 the finite element technique

b/////,/

204+ cps 249

c d

/ / s

261 518

e f

/ - / z / z /

257 315

g h

///.dT/

/7/Y//
204 292

FIGURE 2.155--Frequencies (cps) and mode shapes of a
completely clamped shallow shell. (After refs. 2.216
and 2.217)

0.15

31.8

FIGURE 2.154.--Dimensions (in centimeters) of a com-
pletely clamped shallow shell of celluloid used for the
results of figure 2.155. (After refs. 2.216 and 2.217)

IO

-_- 8
v

?
o
× 6

_o
cr 4

/
w ._---

h/R8o=O.025

h/RSo=O.020

f

h/Reo=O.O05

/...,--

Jr /

CJ -

/
/

o 0.05 O.lO o.15 0.20

Oo(RADIANS)

FIGURE 2.156.--Frequencies of a completely clamped
aluminum shallow shell (f in cps). (After ref. 2.211)

is used to calculate the natural frequencies of an

arch dam of particular dimensions. The structure

can also be regarded as a clamped-free-clamped-
free circular cylindrical shell.

Experimental results for curved cylindrical

panels were presented in reference 2.213. The
panels were made of 0.032 in. thick 2024-T3

I

w--
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FREOUENCY, CpS

FIGURE 2•157.--Experimentally determined frequencies

for panels having riveted edges. (After ref. 2.213)

aluminum alloy• The planform dimensions were

b = 11 in. and 1= 13 in. (see fig. 2.141)• The panels

were riveted to rigid supporting frames having

unsupported internal dimensions of 9-5_ in. by

11-5_ in. Results are shown in figures 2.157 for

R = 48 in., 96 in., and _ where it is demonstrated
that there is little difference in the natural fre-

quencies between flat and curved panels when

the node lines are parallel to the longitudinal (x)
direction.

2.8.5 Added Concentrated Mass

Chen (refs. 2.201 and 2.225) analyzed the

problem of a circular cylindrical shell panel having
a concentrated mass M attached'at its center

(x = l/2, 0 = 00/2 in terms of figure 2.141)• All four

edges of the panel were supported by shear dia-

phragms. The Donnell-Mushtari shell equations

were used. The procedure consisted of using an
infinite set of solution functions in the form of

equations (2.164) and (2.165) which satisfy the

boundary conditions exactly, expanding the con-
centrated inertia load in terms of the same

functions, and substituting into the equations of

motion. This procedure yields a characteristic
determinant of infinite order which can be solved

to any desired degree of accuracy by successive

truncation. Detailed numerical results showing

the rate of convergence of this method are seen

in table 2.56 for the fundamental frequencies of

panels having 00=7r/6, _=0.3, and a ratio of

concentrated mass to shell mass (M/phIROo) of

1/4. Similar results for higher frequencies of a

particular panel having Oo=_r/6, l/ROo= 1, and

R/h= 100 are given in table 2.57. Figure 2.158

TABLE 2.56.--Convergence of the Fundamental

Frequency Parameter _ol_¢/p(1 - _2)/Tr_E (Breath-

ing Mode) of a Cylindrical Panel Carrying a
Concentrated Mass

Number of
terms in

series

1

2

3

4

5

6

7

8

9

10

11

12

Upper limit on--

m

col'V'p (1 -- _'_) / _r_E

n

1

3 .05888

1 .05767

3 .05710

5 .05682

5 .05665

1 .05644

3 .05624

5 .05616

7 .05608

7 .05600

7 .05600

l/ROo= 1 1/ROo =2
R/h=100 R/h=lO00

0.06101 0.04473

.02252

.02245

.02181

.O2137

.02137

3

.09

.08

.07

.06

.05

.04

.05

.02

,01

0
0

I I

--CYLINDRICAL PANEL

---- FLAT PLATE

/_/ROo:2 0

- .. _ ,-'- 1.5_-R/h: I00

F-Z/ROo:I.O ") _----------_ //-I.0 J

_4 \'_ I t/ROo:2.0"I J
N...",L-'C"4,x'_" l. / -1.5 },. R/h = 100"
•/"7..._..'--.!2"---../ /,LoJ ,

rZ/ROo=2.0"1_ _
15" R/h-lO00"

::. ........
.25 .50 .75 1.00

M/ph_R0o

FIGURE 2•158•--Variation of the fundamental frequency

parameters with mass ratio for cylindrical panels

having a concentrated mass. (After ref. 2.201)

shows the variation of _ol'V/p(1 - _,2)/_r_E with the

mass ratio for the fundamental frequency. The

results shown in the figure are obtained by using

I
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TABLE 2.57.--Higher Frequency Parameters wlV_p(1 -- v2)/_r2E for a
C rlindrical Panel Carrying a Concentrated Mass

Number Number of axial and longitudinal half waves-m,n
Mode

of terms

1,1 1,3 3,1 3,3 1,5 3,5

o

o

0.0610

.0589

.0577

.0571

.0568

.0567

0.8396

.8405

.8411

.8414

.8416

.8418

1.4145

1.4170

1.4174

1.4176

1.4177

1.4178

0.1467

.1408

.1386

.1376

.1370

1.8715

1.8715

1.8715

1.8715

1.8715

3.1648

3.1654

3.1656

3.1656

3.1656

0.2067

.2051

.2044

.2040

2.8976

2.8976

2.8976

2.8976

1.8718

1.8718

1.8718

1.8718

0.2973

.2945

.2932

2.5118

2.5118

2.5118

4.2436

4.2436

4.2436

0.4211

.4171

3.0165

3.0165

5.1011

o5.1011

0. 557_

3.450fi

5.8321

six term series of approximations for u, v, and w.

Results are given for aspect ratios l/RSo = 1.0, 1.5,

and 2.0 and for thickness ratios R/h = 100 and

1000. All results are for 00=_r/6 and _=0.3.
For panels having the lower thickness ratio

(R/h = 100), the fundamental (lowest) frequency

occurs in the m=n=l mode. For R/h=lO00,

however, it occurs in the m= 1, n=3 mode. For
purposes of comparison to show the effects of

shallow shell curvature, figure 2.158 also gives

the results for the case of a rectangular plate

having the same dimensions and edge supports.

2.8.6 Other Boundary Shapes

Wieckowski (ref. 2.226) presented a procedure
for the solution of the free vibration of a shell

having circular cylindrical curvature bounded by

the edges x = 0, l and two helices. The edge x = 0

is clamped and all other edges are free, which is
intended to simulate _ stream turbine blade. The

Donnell-Mushtari shell equations are used and
are transformed into skew coordinates which are

compatible with the edges of the shell. The pro-
cedure outlined is tedious and leads to an infinite

sequence of ordinary differential equations having

constant coefficients. No numerical results are

given.
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Chapter 3

Complicating Effects in Circular Cylindrical Shells

In the previous chapter the equations of motion

for circular cylindrical shells were restricted to

their most simple forms as derived in chapter 1.
This permitted the study of the effects of dif-

ferent types of edge constraints, added mass,
cutouts, and varying geometric and material

parameters upon natural frequencies and mode

shapes. In this chapter the complicating effects

of anisotropy, initial stress, variable thickness,

large deflections, shear deformation and rotary

inertia, nonhomogeneity, and surrounding media
will each be considered. Each effect causes com-

plications of one or more of the following types
in the differential equations of motion:

(1) Adding simple terms, thereby somewhat

changing the forms of analytical solutions and

increasing their complexity.
(2) Changing constant coefficier_ts to vari-

able coefficients, thereby reducing the p ossibility

of solution in terms of simple functions.

(3) Adding nonlinear terms which completely
change the character of the solutions.

(4) Increasing the order of the equations.

In some instances the boundary conditions are

also changed. In each instance the type of shell

considered in chapter 2 is a special case of the

more generalized analysis which includes a given
complicating effect.

A separate section in this chapter will be de-

voted to each of the complicating effects listed

above. From a logical standpoint it is possible to
organize each section in the same manner as

chapter 2. That is, for example, the section tides

for sections 2.1, 2.2, . . . , 2.8 could also be used

for subsections 3.1.1, 3.1.2 .... ,3.1.8 of section

3.1 dealing with the effects of anisotropy, and

similarly for each other section of this chapter.

However, of course, the added complexities have

185

greatly reduced the number of solved problems,
and for many of the subsection titles there are no

results in the literature to report. Nevertheless,
the organization described above will be followed

in each section of this chapter insofar as it is

appropriate.

The coordinate notation of chapter 2 as shown

in figure 2.1 will apply throughout this chapter.

3.1 ANISOTROPY

For a general elastic solid (neglecting couple

stresses) there are 21 independent elastic con-
stants relating stresses and strains. In the case

of a thin plate or shell, only the stresses _,, a_,

and r,_ (in the notation of chapter 1) and their

corresponding strains are involved, and the num-

ber of independent elastic constants is thereby

reduced to six (cf., the appendix of ref. 3.1).

However, particularly because of the complex-

ity arising from having six independent con-
stants, no numerical results have been found in

the literature for the vibrations of circular cylin-

drical shells having general anisotropy. Rather,
all results given are for the special case of orthot-

ropy. Equations of motion for a number of theo-

ries in the case of general anisotropy will be given
in section 3.1.1.

For an orthotropic shell the stress-strain equa-
tions (1.70) are

1

e_ = _-_(_,-- _)

1

e_ = -_((_0-- _0_.)

Ta_

a,_ G

(3.1)

which, when inverted, become

v
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(3 2)

as =__ (E_e_ + v_E,e,)

However, the five elastic constants E,, E_, v,, v_,
and G are not all independent; symmetry con-

siderations require that

v.E_ = v_E, (3.3)

thereby reducing the number of independent
elastic constants to four.

Equations (3.2) and (3.3) are written in terms

of the principal coordinates of the middle surface

of the shell, but they need not be. Indeed, it

would be physically realistic to have a circular

cylindrical shell wherein the axes of orthotropy
are not coincident with the x and 0 directions.

Such a situation could arise, for example, in the

case of a filament-wound shell. Nevertheless, no

results have been found in the literature except

when the two sets of axes are coincident (in ref.

3.2 the procedure for transforming the shell equa-
tions from rotated coordinate axes to the shell

coordinates is discussed, but no problems are

solved).
One of the most important uses of orthotropic

circular cylindrical shell equations is in the

representation of a shell which is stiffened

by longitudinal beam-like elements (stringers)

and/or circumferential rings. An example of this

type of construction is shown in figure 3.1 (from

ref, 3.3). This representation can be accurately

made for the purpose of determining free vibra-

tion frequencies and mode shapes (but not stress

resultants) if the stiffening elements are relatively

closely spaced. When the distance of separation

is too large, or if the wave length of the vibration
is too short relative to the stiffener spacing, then

the structure must be represented as a combina-
tion of shell elements and stiffener elements each

having its own equations of motion and coupled

to each other by equations of continuity. For the

sake of consistency with the rest of this mono-

graph, such structures will not be considered.

However, when the rings and/or stringers can be

"smeared out" along the shell to yield a single

equivalent orthotropic shell (by methods that

will be discussed in the next section), the problem

will be included here. In order to establish the

validity of the equivalent orthotropic analysis a

few comparisons will be included, where available,
which include both the orthotropic analysis and

the more accurate, complex structural analysis.

These comparisons will help in establishing the

limits of applicability of the equivalent ortho-

tropic shell representation.
No results are available for orthotropic shells

of infinite length. It would be interesting to
determine the differences arising from various

shell theories in the manner of section 2.2 in cases

of severe orthotropy (e.g., E_>>E0) for the analyti-

cally simple case of plane strain. Similarly, no
results exist for elastic edge supports, added mass,
noncircular boundaries and cutouts, and very

little for open shells (except the special case where
all four sides are supported by shear diaphragms,

which is included among the vibration modes of a

closed shell supported by shear diaphragms).

3.1.1 Equations of Motion

Substituting equations (3.2) into the general-

ized force resultant integrals of the shell theories

of, for example, Love-Timoshenko, Reissner,

Naghdi, Berry, Mushtari, and Donnell as given

by equations (1.72) through (1.74) (neglecting

z/R, and z/Re with respect to unity) yields

N, = C llea + C 12e$)
!

N _ = C i2Ea -_ C22E/]? (3.4)

!

M, = D ilK. + D I_K_I
!

M_ = D I2K a +D_2K_ (3.5)
|

M,_=Ma,=D66r )

where C11, C12, C22, and C66 are the extensional

stiffness constants defined by

E.h , C22 E_h ICii i-- v,v_ l--v.v_

v,Eoh v_E,h ] (3.6)
Ci2 l-v.vo l-v.v_

C66 = Gh

and Dll, Dm D22, and D66 are the flexural stiffness

constants defined by

y

¢m_

L
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E,,h 3 E,,h 3

Dll = 12(1-- v,v_)' • D22 = 12(1-- v,v_)

D12 = v"E_h3 = v_E"ha
12(1-- v,v_) 12(1-- v,v_)

Gh _
D66 -

12

(3.7)

Substituting the generalized stress-strain equa-
tions (3.4) and (3.5) into the equations of motion

from chapter 1 and using the proper generalized

strain-displacement equations ultimately gives
equations of motion in terms of displacements

which are in the form of equation (2.3). For the

Donnell-Mushtari theory these equations are for

circular cylindrical shells:

02u G(1-v,,_) 02u _=E0+G(1-_=v0) 02v

Os_-_ E= 002 -_ E_ Os O0

v=Eo Ow pR2(1-v_vo) 02u
-Jr E= Os E= Ot2 (3.8a)

v_E0+G(1--v_ve) 02u G(1-v,va) 02v Eo 02v
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+__.EoOWoo-oR2(1-v=V°)E: Ot202v(3.8b)

v._Eo Ou+Eo Ov . Eo , r o4w
. _o-t-_ _°--J,_l_77:_g= = Los

+2v=Eo+2G(_-v:_o) 04w, kEo 04w 1
E: Os2003 _ _-; j

pR2(1- v=_o) 02w

= E= =_- (3.8c)

A-A . .---,,+ /
,_1:_,_;_...... _, _-_e-: ./S/////// )a

_7,:':::i'1 !_:__;:7 -_ / ,

R

FIGURE 3.1.--Typical stiffened circular cylindrical

shell. (After ref. 3.3)

where s=x/R and k=h2/12R 2 as used in chap-

ter 2 and a and f7 in the stiffness constants given

by equations (3.6) and (3.7) are replaced by x
and O, consistent with circular cylindrical shell

coordinates. It is clear that the isotropic form of

equations (3.8) is obtained simply by substitut-

ing E for E= and Eo, _ for v= and vo, and E/2(1 +_)

for G, which then agrees with equation (2.7).

Nelson, Zapotowski, and Bernstein (ref. 3.4)

used the Love-Timoshenko strain-displacement

equations to arrive at a set of equations of motion
which can be written as

02U C66 02u C12+'C22 02_) C12 Ow phR 2 02u

_--_--f-_lll _ + _ 0S 00 } el1 0s C,1 0t 2

(3.9a)

C_2+C22 02u C6_--kD_ 02v Co 4- o,_2 02v

C __ Os -_ -_ C n -_s_-t Cn 00--i

C22 Ow D220_w D12+D_6 O_w

Cll 00 Cll 003 Cll 0s 002

phR 2 02v

- Cll 0t 2 (3.9b)

C22 Ov D12+D66 O_v C22

CI_ O0 C_I O0_ Cn Os 2 O0 _--C-_llw

C12 c3U D22 0_V
A

C_I Os

Dt_ Otw D22 Otw 2D12+D_, OaW

+c1--7o_ _ C,l 0_ + C,l o_2003

phR 2 02w

- Cll Ot2 (3.9c)

where, as before, the subscripts 1 and 2 corre-

spond to the X and 0 directions, respectively.
Using equations (3.6) and (3.7) it is seen that the

above equations are of the same form as equa-
tions (3.8) except for the addition of terms hav-
ing D_/s in the numerators. The added terms are

modifying terms of the same form as found in

isotropic shell equations. Indeed, if in equation
(3.9c) the numerator 2D12--k D_6 in one term were

replaced by 2(DI2+2D6_), then the Reissner-

Naghdi-Berry equations (2.9c) would follow for

the isotropie case. Equations (3.9) are also of a

more general form than equations (3.8) because

they permit separate stretching and bending
thicknesses h, and h_ in the equations (3.6) and

(3.7) which then do not, in general, cancel out in

terms of the type D22/Cn. In the case of stiffened

shell simulation this distinction is necessary.

For general anisotropy, equations (3.4) and
(3.5) are generalized to

r-

+
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N_ = Cne_ q-Cl:eq-C l:Y_o ]

No=C12e_+C22eo+C2¢y.o i (3.10)
N_o = C16e:_C26eo+C6_'_o )

M_ = DnK:k D12Ko-t- DI: I

Mo = D12K:_-D22_o-_-D2:_ (3.11)

M=o = D16K=+ D26Ko+ D6:)

where the Ci5 and Do" are generalized extensional

and flexural stiffness coefficients arising from the
three-dimensional form of Hooke's law and the

,force and moment resultant integrals taken over

the thickness of the shell, and where it is now
assumed that the coordinate axes used to define

the elastic constants are parallel to the x and 0
shell coordin_,t_ s.

DiGiovanni and Dugundji (ref. 3.2) performed

a notable service by deriving the general aniso-

tropic forms of equations of motion according to

a number of shell theories. These, as for isotropic

shells (see sec. 2.1.1), can be written in terms of a

Donnell-Mushtari matrix operator [£D-M] and a

modifying operator [£MOD] aS given by eqs. (2.3)

and (2.5), where the anisotropic form of [£D-M] is

ail a12 ala]

[a3D--M]=la21, a22 a2a/ (3.12)
Laal an2 aaaJ

where

Cll 02 2C16 02 C66 O_ phR _ 02
an C2_0-s2+ -U_220s-_-÷ C22002 C22 Ot2

C66 0 2 C26 0e 02 phR 2 02
q22-p 75_ + 2---22 os C22 0s _v -F_002 C22 Ot2

[-Dll 04

aaa=l+£[_
L 22 084

+_[D12+2D66'\ 04 . 04-] , phR 2 02

C16 02 . [C12+C_& 02 +C26 02
a'2=a21-C22-_s:t-k ' _ )0--_0 _ 002

C12 O C26 O

ala = an1= C22 as _--0_22oo

C26 O O

a28 = an2 = C2--'2 0"-_'_-0-0 (3.13)

and the modifying operators are written as

-bll b12 bla 1
[_MOD] = b21 b22 b2a (3.14)

Lbal ba2 baaj

The coefficients b_. for use in equation (3.14) are

given below (ref. 3.2).

Love-Timoshenko:

511 = b12 = bla = 521 = bal = 0

D_ 02 3D26 O 2 O 2

b22=2_+ 5_ o_o_ 002

b D_6 04 4D26 0_

b2a= D16 Oa (DI_+2D_ Oa
D22 as _ "\ _ ]_:-00

D2_ Oa Oa

-3b--_ L 002 oo_

ba2_ _2D16 0 a (D12-_-aD66_ 0 a

9°.2 as a \ _ /_s=-O0

D26 O a 0 a

--4-_2_ as 002 oo a (3.15a)

Goldenveizer-Novozhilov:

bii--b12--bia--b21=bal--O

b22=4DD____6_02 4D26 02 0_22_+ _ os_+_

D16 04 4D26 0_
b_=4b-;;==Qa} + _ _soo_

DI_ Oa (D12-l-4D66_ Oa
b.=b_2= -_b-g=_o83 \ _ /_-oo

D2_ Oa Oa

--4-D--_22Os 002 O0_

Fli_gge-Byrne-Lur' ye
(also Herrmann and Armendkas):

D66 0 2
bll

D22 _02_ _

D_6 0 2 2D26 0 2

b22=37D--_=__+ _ as oo

D16 0 _ 4D26 04
b. =%-;;==Q_+ _ _soo,

D2_ 02 02

+2D--_22 as O0 _-2_-_+i

(3.15b)

T
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D1602 _%b12= b21 - D22 Os2

Dl103 Dis 03 D6s 03 I ]b13 D22 Os3 D22 Os2-_ _ D22 08 002 _

D2s 03 D2s 0 h_______[

bs

b23=b32=--2 Dis 03

m

D2_ Os3

(DI2+3D6s_ 03 2D2s 03
--\ D22 ]_-- _08002

531

Dll 03

D22 083

D2s 0

+ oo

Dis 03 Dss 03

D22 082 _" D22 08 002

(see comment below) (3.15c)

Sanders:

1 D6s 02
bll =- -- --

4 D22 002

9 Ds6 02 D2s . 02
bz2

4922 --082"31-3L)-_-_222-'1-_

b Dis 04 4D2s 04
08003

3 Dss 02 1 D2s 02
b12= b21=

4 D22 0s 00 2 D22 002

1Dis 03 Dss 03 1D26 03

b13=b31=2 D22 Os2 0-0-4 D22 08 0-_ _ 2 D22 003

3 Dis 03 (D12+306s_ 03
b23=b32= --_ D2---2_s3-- \ 922 ]_s2-O0

7 D26 03 03

• --2 D22 08002 003 (3.15d)

Note in equations (3.15c) that b13#b31 as taken

from reference 3.2. Inasmuch as the Fliigge-

Byrne-Lur'ye theory has a symmetric set of equa-
tions of motion for isotropic materials, it is

recommended that the reader verify the b13

and bal coefficients of equations (3.15d) before
attempting to use them.

Methods of representing stiffened shells by
orthotropic analyses will now be briefly con-

sidered. In order to do this the stretching and

bending stiffnesses of the stiffening elements

must be properly treated. Consider first the iso-

tropic shell which is reinforced by longitudinal

t
bw

1

FIGURE 3.2.--Shell with integral stiffener.

stiffeners which are integral with the skin as
shown in figure 3.2. The stiffener has thickness

h_ and depth b_ and the repeating section is of

length b_ as shown. The following formulas were

given in reference 3.2 for the calculation of equiva-

lent orthotropic stretching constants (assuming
no stress lag):

Cn= _(1-k kl)[ 1A- (1-- _2)kflc2 ]
l-,, k 1-_--klk2 J

C vEh_[ l+kl \
12 =-- 1-A,1+ 1 3

(3.16)
C Eh_ / 1 +kl \

Eh. (1-kkx_

where kl = h_b_/b_h_, k2 = (1--hw/b_)/(1 +h_/h_),

and v and E are the elastic properties of the skin
and stiffener, which are assumed to be of the

same material. The bending constants are

DlI=. /)8 l1 +4k1[bw_2(1--v2)
(1 +kl)2( \hJ " "

"[-6_ I(_)(1- p2-Jl-kl) (3.17)

+4k12+k113(1 _ v2) +2] }

D12 = yD.

D22 = D,

1 ] ,1 -h'_ 1 (l+b-_/h,)3 I
I

v-
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D Gh, _ C
6o= +

bJh_\ 3 ]
(3.17)

where C is the torsional rigidity of the web, f_ is a

constant depending upon bw and hw which varies

from 0.333 to 0.141 and D8 is the bending stiffness

of the unstiffened skin; i.e., D8 =Eh_3/12(1-1)2).

For the case of circumferential stiffeners, where

figure 3.2 still represents a typical repeating sec-

tion, Cll, C22, Dll, D22 are calculated by the

formulas given above for C22, Cll, D_2, Dn,

respectively, and the remaining constants are
calculated as above.

In reference 3.5 the orthotropic stiffness con-

stants for the skin-stiffener repeating section

(shown in figure 3.2) were given as

Cl1= Eh, (l+kl)
1 --1 )2

b_, 2 bw h,_

1+--

/,
W

/
\1 h, kll

Eh, 1 _ -
c"=2(-i-+1)) -k

(3.18)

D11=D,[ 1+3(1-- v2)kl

+o 1_
44(1-1)_) k I(-_) 2]

D12 = 1)D,

(3.19)

D_ I
D22 = I

11 i
D66=Ds(1-- bw/h_\ 3 -]1

2 1))[l+3_t-_)kwJJ

(3.19)

where kw is a torsional constant which takes on

values 0, 0.14, 0.23, 0.33 as bw/hw is 0, 1, 2, _.

It appears that the sets of equations (3.16) and

(3.17) differ considerably from equations (3.18)

and (3.19).

Nelson, Zapatowski, and Bernstein (ref. 3.4)
gave the following formulas for the calculation of

the equivalent orthotropic stiffness constants for

a shell stiffened by stringers having the same

modulus of elasticity as the shell, and rings which
have a modulus which may be different:

ELS

Cll =-L--_Ro[AL + As_/ (1 -- 1)2)]

C12 = 1)Cll (3.20a)
1

C_2 =_,_[EeA _ + ELsAso/ (1 - 1)2)]

C66 = (1-1))Cll/2

ELS

D_ =_RO[IL,+ Is,(1-- 1)2)]

D12 = 1)Dll (3.20b)

D 1
22 =-_R [EFIFe+ELslss/(1 -- v2)]

D66 = 2(1 -- 1)) Dll

where

A s, = hLRo

A so = hLR_

I Fo = I F+ A _(yF+ h--ro) 2

IL_= IL+ AL(YL+h--r_) 2

Iss=L_h3/12+_L_h(ro-h/2) 2 (3.21)

Is_ =LRoh_/12 +LReh(r_ - h/2) 2

A F(YFW h) +j3LR_h2 /2

ro = A_+I3LR_h

AL(YL+h) +L_ah_/2
r x =

AL+L_h
_f_.
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and AF and AL are the cross-sectional areas of

rings (frames) and stringers (longerons), respec-
tively; IF and [L are the area moments of inertia

of frames and longerons about their own cen-

troidal axes; ILx and Is, are the area moments of

inertia of the longerons and skins, respectively,

about the centroidal axis of the skin-longeron
cross section; IFS and Iss are the area moments

of inertia of the frames and skins, respectively,
about the centroidal axis of the skin-frame cross

section; h = skin (shell) thickness; yF and YL are
the distances from the centroidal axes of frames

and longerons to the underside of the skin; EF
and ELS are the moduli of elasticity of the frames

and longerons (and skins), respectively; LR, and

LRe are the lengths of repeating section in the

axial and circumferential directions, respectively;
L_, is the effective length of repeating section in

the axial direction (taken as 0.75LR, in ref. 3.4);

f_= 0 if the skin is attached to the longerons but
not to the frames, and/3= 1 if it is attached to
both.

Mikulas and McElman (ref. 3.3) wrote the

potential energy for a shell stiffened by ribs and

stringers as shown in figure 3.1. A minimum of

the total potential was found by allowing the
variations of the three displacements _u, _v, and

_w to be arbitrary, which yielded the following

equations of motion:

EsAs(1-v2)-]O2u (1--v) 0_u (1+v)02v
2Zj + 2 2 oo

Ow _E_A,(1--v _) 03w
+V O-s Eh dR Os _ -0 (3.22a)

t

[. , ErA_(1--,2)-lO2v . (l--v) 02v (1+v) 02u1. E_a "J_ _ 2 -_s2_ 2 Os O0

ErAr(l__u2)]O w _E_Ar(1--v2) O3W=o+ 1-4 _a J_ EhaR O03

(3.225)

Eh [ Ou Ov t \ _,E,A, 03u
(1---;_l,v_+_ +w+kv w) dR 0s"

.q E,(I_+_,2A,) 04w E_A_ E,.(I,.+Y.r2A,.) 04w
dR 2 _s 4 + --_--w-¢ aR 2 00-_

+ERA, Ov _E_Ar 03v 22_E_A_ 02w
a O0 aR O0s aR O02

1 [G_J_ G_J_\ 04w MR202w (3.22c)

where E and v are the modulus of elasticity and

Poisson's ratio, respectively, for the shell; E,, A,,

I,, _,, and G,J, are the modulus of elasticity,
cross-sectional area, moment of inertia about the

centroid, distance to the centroid from the shell

middle surface, and torsional stiffness, respec-

tively, of a stringer; Er, A_, I_, _, and G_Jr are

corresponding constants for a ring; R, d, a, and h

are dimensions shown in figure 3.1; tc=h2/12R 2,
as before; and M is the average smeared-out mass

per unit area of the stiffened cylinder. It is easy

to see that equations (3.22) are the Donnell-

Mushtari equations of motion neglecting tan-
gential inertia with added terms to account for

the stringers and rings. In this case the varia-

tional procedure smears the stringer and ring

stiffnesses into the shell orthotropy in contrast

with structural representation methods depend-
ing upon physical behavior of the stiffened shell.

3.1.2 Shear Diaphragm End Conditions

The closed circular cylindrical shell of ortho-

tropic material having axes of orthotropy coinci-
dent with the shell coordinates has the same

relatively simple, exact, closed form solution for

the displacements as in section 2.3 for isotropic
shells. That is, taking

u=A cos _,s cos nO cos wt)
!

v =B sin _,s sin nO cos cot _ (3.23)
!

w = C sin Xs cos nO cos wt J

where _ = mTrR/l, satisfies the boundary condition

equations (2.33) exactly as before, and substitut-

ing equations (3.23) into the equations of motion
(e.g., eqs. (3.8)) yields a third order characteristic

equation for the frequencies as in the case of

isotropic shells. A small amount of added com-

plexity then occurs in the coefficients of the

characteristic equation for the orthotropic case.

However, probably• the greatest added complica-

tion to the problem is that instead of having one

independent ratio of elastic constants (say, v) to
vary as a parameter, there are three in the ortho-

tropic case (say, EJEo, u_, G/Eo).

Das (ref. 3.6) used the Donnell-Mushtari

theory neglecting tangential inertia and the exact

solution functions given in equations (3.23).
Correcting a misprint in reference 3.6, one arrives

at the following frequency formula:

J

r
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1000, n=0, Eo/E==24.2, _0=0.270, G/E==0.527.
(After ref. 3.2)

FIGURE 3.5.--Variation of frequency parameter with
mR/l for an orthotropic shell; SD-SD supports; R/h =
1000, n=0, E=/Eo = 5.35, v==0.273, G/Eo= 0.405.
(After ref. 3.2)
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FIGURE 3.9.--Variation of lowest frequency parameter

with mR/l for an orthotropic shell; SD-SD supports;

R/h=lO00, n>_l, E=/Ee=5.35, r0=0.273, G/Eo=

0.405. (After ref. 3.2)

|

l

n=25

n=20

0.2
n=15

0.1

O.05

(

0.002

O.0OI

0.0005

0.0002

0.0001

0.01 0.02 0.05 0.1 0.2 0.5

mR/.l = k/Tr

I 2 5 I0

FIGURE 3.8.--Variation of lowest frequency parameter

with mR/l for an orthotropic shell; SD-SD supports;

R/h = 1000, n >_ 1, Eo/E= = 24.2, _0= 0.273, G/E= =0.405.

(After ref. 3.2)

I

0.5 1
0.2

0.1

0 05

0.02

O.OI

0.005

0.002 EO 24.2 ux =0.270

0.001 f = I000 I

G_.= 0.527 h

0.0005

°'°°°2F , , I I , i
0"00%.0,0.02o.06o.,0'.2o!_, _ _ ,o

mR/d. = khr

FIGURE 3.10.--Variation of lowest frequency parameter

with mR/l for an orthotropic shell; SD-SD supports,

R/h=lO00, n>__l, E=/Eo=24.2, _==0.270, G/Eo=

0.527. (After ref. 3.2) r"



194 VIBRATION OF SHELLS

w2R2p(1 - v=v0)

E=

1 F 4CllC2_-C122-1
K°K'+kx ] (3.24)

where the coefficients K0 and K, are given by

4 2(Cx2+2C66)X2 2, C22 4
Ko= X 4" _ n -¢-_-_nn

K1 = X4-k CnC22-C122-2CI2C66k2n 2 (3.25)
CNC66

C22 4

DiGiovanni and Dugundji (ref. 3.2) used the

Goldenveizer-Novozhilov theory with exact mode

shapes in the form of equations (3.23) to analyze

a set of orthotropie shells having R/h = 1000 and

various ratios of orthotropic elastic constants.

Numerical results for n=0 are shown in figures

3.3 through 3.6, and for n>_l in figures 3.7

through 3.10. In figures 3.3 through 3.6 all three

frequency parameters arising from the solution

of the characteristic equation in co_ are shown.

The torsional mode for an orthotropie circular

cylindrical shell uncouples from the other two

axisymmetric modes as in the isotropie ease.

Torsional frequency is only slightly affected by

the stiffness ratio Eo/E=, while the axial frequency

depends mainly upon the _tiffness in the axial

direction. The torsional frequency parameter is

simply

G 1
_R_c/p(I--_,=_,o)/E_=X_-_(i H-_ _) (3.26)

while the torsional frequency of a thin-w_lled

circular bar according to St. Venant torsion

theory is

_RV'p(1 -- v=_,e)/E= = X_/_ (3.27)

The other two frequencies shown in figures 3.3

through 3.6 have as asymptotes the frequency of

axial vibrations of a bar,

,,RV'p(1- = (3.2s)

the frequency of radial vibrations of a ring in

plane strain for long axial wave lengths (small X)

_R'V/p(1 - v=z,o)/E_ = Y/-_o/E= (3.29)

and a ring in plane stress for short axial wave

lengths (large X)

Ee
o_R_/p(1--_,=_,o)/E==,_/- 1--_,=vo) (3.30)

_E, (

The quantity poR/C shown in figures 3.3 through

3.6 is an internal pressure parameter which will
be discussed in section 3.4.4.

In figures 3.7 through 3.10 the lowest of the

three frequencies is shown for each value of n.

For n= 1 (beam bending mode) and long axial

wave lengths the frequency parameters are

asymptotic to those of beams according to the

Euler-Bernoulli theory; i.e.,

wR'X'/p(1--_'=_'o)/E==X2_(1--_,=_o) (3.31)

This asymptotic behavior is shown in figure 3.11

for cases when EJEo>I and Eo/E=>I. These

figures show that for long axial wave lengths the

circumferential stiffening has negligible effect on

5
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FIGURE 3.11.--Frequency parameters for the beam-type
modes (n = 1) of orthotropic shells. (After ref. 3.2)
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the beam-type frequencies; however, for short

axial wave lengths circumferential stiffening pro-

duces a major effect, whereas axial stiffening has

only a slight effect.

For n_>2 the asymptotic values of the three

frequencies for long axial wave lengths are those
of the inextensienal mode of a ring,

_RV/p(1 - v_vo)/E_

l/h\ [lEo 1 _n2(n2--1)2 (3.32)

the axial shear mode,

coRSe/p(1 - v_vo)/E_ = nVG/E_ (3.33)

and the extensional mode of a ring,

=_(1--v_vo)(n2+l) (3.34)

Figures 3.7 through 3.10 show that the stiffness

ratio E_/Eo has little effect on the lowest fre-

quency, which is for a predominantly radial

mode, for long and intermediate wave lengths

for E_ > Eo. However, for Eo > E_ the frequency

shows a marked increase with increasing Ee/E_

(circumferential stiffening). As for the isotropic

case, in all orthotropic cases for n>_2, the value

of n for which the fundamental (minimum) fre-

quency occurs increases with increasing X.
Calculations were also made in reference 3.2

for circular cylindrical shells having integral

stiffeners of the type shown in figure 3.2. The

equivalent "smeared out" orthotropic stretching

and bending constants were calculated accord-

ing to equations (3.16) and (3.17). In one case

integral ring stiffeners were used; in the second

case the stiffeners were longitudinal stringers.

For both cases R/h was taken at 1000, and the

repeating section dimensions are determined by

the ratios b_/h_ = 4, h_/b, = 0.10, and hw/h, = 0.40

(B = 0.280). It is important to note that in these

two cases of integrally stiffened shells the ratios

of stretching stiffnesses to each other are, in gen-

erM, different than the ratios of the bending stiff-

nesses, unlike the unstiffened orthotropic shells

described in figures 3.3 through 3.11. The two

cases were chosen, however, so that the ratios of

bending stiffness D11/D22 and D22//Dll were both

24.2 as for two of the unstiffened orthotropic

shells. Axisymmetric (n=0) frequency param-

eters for the ring-stiffened and stringer-stiffened

shells are shown in figures 3.12 and 3.13, respec-

tively. Frequency parameters for the n > 1 modes

are depicted in figures 3.14 and 3.15. In these

figures p* is an average mass density constant

taking into account both the shell and the
stiffeners.

From figures 3.7 and 3.14 it is evident, when

comparing the two types of circumferential stiff-

ening, that the frequency of the predominantly

radial frequency is approximately the same as

that of the uniform thickness orthotropie cylin-

der when mR/l < 0.5 and n_> 2. For greater values
of mR�l, the frequency of the stiffened cylinder

decreases below that of the uniform cylinder for

all values of n_> 2. However, this decrease dimin-

ishes with increasing n, so that for very large n,

the frequencies for both these cylinders (uniform

and stiffened) again become approximately the

same. This is because for large values of n and

mR/l the influence of bending is predominant.

Looking at the eases of axial stiffening (cf., figs.
3.10 and 3.15), one observes that for n>__4 fre-

quencies for both types of cylindrical shells are

nearly the same for long axial wave lengths; for
intermediate axial wave lengths the differences

in the frequencies between the two types be-

come appreciable; while for short axial wave

lengths the differences again become small. For

n=2 and 3, the frequency of the shell having

stringers is less than that of the corresponding

uniform shell for all but large X.

An interesting study of the effects of changing

C22/C1_ and C66/Cn ratios upon the frequencies

of uniform orthotropic shells was made by Dong

(ref. 3.7) using the Donnell-Mushtari theory and

the exact displacement functions of equations

(3.23). Numerical results are seen in figures 3.16

and 3.17 for shells having R--40 in., h=0.4 in.,

and Cl_/h=O.1X106 psi. In figure 3.16 C,_/h
and C66/h are taken to be 33.0X106 psi. and

14.5×106 psi., respectively. A family of fre-

quency envelopes is shown for various C_2/Clt

ratios, plotted over a range of l/R. In figure 3.17

Cn/h is 33.0 X 106 psi. and C_2/h is 330 X 106 psi.

It is apparent in this latter figure that as I/R is

increased the curves approach each other, indi-

cating small dependence of w upon the shear

modulus for large 1/R. This is because the vi- ;2"
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C66/C22=0.440. (After ref. 3.7)

t

bration modes are predominantly radial for large

l/R. For small values of l/R and large C66, how-

ever, the lowest frequency can correspond to a

mode which is predominantly circumferential.

This is shown by the dotted line in figure 3.17
for C6_/Cll = 100. For this mode, n = 1.

Hoppmann (refs. 3.8 and 3.9) proposed deter-

mining the stretching and bending stiffness co-

efficients C_i and D_j of integrally stiffened shells

from static deflection tests on flat plates, and

then solving the cylindrical shell free vibration

problem using these coefficients as input data.

He used Love's strain-displacement equations

and the exact solution equations (3.23) to arrive

at a characteristic equation

=0 (3.35)
_11--,_ X12 X13

M2 k22 -A k23

X13 X23 X33--'

I0.0 20.0 500

FIOURE 3.17.--Frequency envelopes for an orthotropic
shell; SD-SD supports, R/h=lO0, C22/C_1=10,
C_2/C12 =3300. (After ref. 3.7)

where

Xll = n2C66-_ X2Cll

X22 = n2C22"Jf- kn2D22 + X2C66 "JI- 416X2C66

X33 = C22-_ ]cX 4D11-_']cn 4D22-_ 2kX 2n2 D12

+4kn2k_D_6

M2 = - XnC12- _nC66

Xz3= XC12

X23= -- nC 2=- lcn3D22 - knk 2D12

--4kn),2D6_

(3.36)

A cursory comparison with equations (2.5), (2.7),

and (2.9a) show that equations (3.36) do not

agree with the Love-Timoshenko equations in

the isotropic case, nor with any of the other shell

theories included within equations (2.9). Re-

sults were obtained for aluminum shells having

an internal diameter of 3.85 in. and a length of

T

_r
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15.53 in. The shell thickness was 0.065 in. and

the stiffeners had a width of 0.125 in., a depth of

0.210 in., and spacing of 0.75 in. (see figure 3.18).

The elastic constants as determined by static
tests were

c11/h_ = 1.4 X 10-6 /
l

c12/h8 = --0.21 X 10-6|

c22/h8 = 0.83 X 10-6 }/ (3.37a)

c66/ha=2.11XlO -G J

d11/hb 3= 306 X 10 -6 ]

[d12/hb 3= -- 8.3 X 10-6

d2_/hb 3= 13 X 10-6 (3.37b)

d66/hb 3= 370 × 10-6

in units of inches and pounds, where h_ and hb

are the stretching and bending thicknesses, re-

spectively, where in this case the elastic con-
stants arise from the stress-strain relations for

stretching

_x s _ el lO'xs-]- Cl20"Os

!

and bending

e_b= dil_b-t-d12_o_ l

co, = dl,a_b+d_2_ro_ (3.38b)
[

ezob = d66rxob )

Theoretical frequencies from equation (3.35) and

experimentally measured frequencies are given

in table 3.1 for shells having circumferential

stiffeners and in table 3.2 for shells having

longitudinal stiffeners.
In table 3.1 theoretical results taken from ref-

erence 3.4 are also given for Hoppmann's ring-

stiffened shells. These values were obtained using

the Love-Timoshenko equations of motion given

in equations (3.9) and the method of calculating

equivalent orthotropic constants given in equa-

tions (3.20) and (3.21). Hu and Wah (refs. 3.10

and 3.11) also gave theoretical results for this

problem as shown in table 3.1. They treated the

shell segments and rings as discrete elements by
means of stiffness matrices. Two factors contrib-

uted to error in the latter calculation: (1) Neglect

of ring eccentricity and (2) the use of a slightly

greater length of shell (15.0 in., rather than

FIGURE 3.18.--Test models of stiffened shells.
(After ref. 3.8)

15.53 in.). Finally, results are shown in table 3.1
taken from reference 3.12 wherein stiffeners were

smeared out by means of an "effective width"

and the Arnold-Warburton strain-displacement

equations were used.

Sewall and Naumann (ref. 3.13) accomplished

the smearing out of rings and stringers into the

shell by means of a Ritz procedure using beam

functions which included the strain energies of

the rings and stringers and assumed vibration

modes (eqs. (3.23) in the case of SD-SD sup-

ports) and used their method to compare results

|
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TABLE 3.1.--Lowest Frequencies (cps) for a Ring-Stiffened

Shell Supported by Shear Diaphragms

Reference

3.8 (exper.)

3.8 (theor.)

3.4

3.10

3.12

3.8 (exper.)

3.8 (theor.)
3.4

3.10

3.12

3.8 (exper.)

3.8 (theor.)
3.4

3.10

3.12

3.8 (exper.)
3.8 (theor.)

3.4

3.10

3.12

1530

1530

1529

1413

1660

4080

4230

4171

3537

4500

8100

7994

6700

13,050

12,928

10,730

Meaningless value given

2040

2100
2112

2447

2270

4090

4320

4234

3731

4590

8100

8000

6772

13,100

12,930

10,783

m

320O

3330
3266

4031

3500

4520

4500
4472

4261

4850

7520

8190

8055

6957

8520

13,140

19,946

10,892

444O

4860

4608

5668

496O

5OOO

5040
4933

5094

5360

7800

8280

8179

7296

8680

11,400

13,230

12,990

11,079

in reference 3.4.

62OO

6480

5932

7188

6420

5700

5760

5576

6090

6070

7920

8395
7787

8950

(a)

11,357

199
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for Hoppmann's ring-stiffened shell. The com-

parison is shown in figure 3.19. Donnell-type

strain-displacement relationships were used for

the shell.

In table 3.2 numerical results are also_yailable

from references 3.14 and 3.15 for Hopp_ann's

stringer-stiffened shell. Adelman, Catherines, and

Walton (ref. 3.14) used a finite element approach

to compare with HoFFmann's exact solution and

to obtain better accuracy for comparison with

their method they programmed the accurate solu-

tion of Hoppmann's exact characteristic equation

(Hoppmann's theoretical results given in tables

3.1 and 3.2 carry no more than three significant

figures and may have been calculated by slide

rule). The agreement between the exact and

finite element solutions is clearly outstanding,

FIGURE 3.19.--Frequencies of a cylindrical shell having

19 integral stiffening rings and shear diaphragm

supports. (After ref. 3.13)
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TABLE 3.2.--Lowest Frequencies (cps) for a Stringer-Stiffened

Shell Supported by Shear Diaphragms

m

n Reference

1 2 3 4 5

3.8 (exper.)

3.8 (theor.)

3.14 (exact)

3.14 (fin.el.)

3.15

3.8 (exper.)

3.8 (theor.)

3.14 (exact)

3.14 (fin.el.)

3.15

3.8 (exper.)

3.8 (theor.)

3.14 (exact)

3.14 (fin.el.)

3.15

3.8 (exper.)

3.8 (theor.)

3.14 (exact)

3.14 (fin.el.)

3.15

700

750

739

739

836

1270

1150

1184

1184

1276

2200

2100

2167

2167

2255

3460

3340

3468

3468

3552

2300

2229

2229

2698

1830

1700

1719

1719

1750

2600

2350

2414

2414

2358

408O

3510

3650

3650

3580

4200

4234

4234

6267

2640

2870

2840

2840

3059

3360

2970

3002

3002

2762

4120

3900

4040

4040

3699

6100

6299

6300

5490

4360

4318

4319

5178

4100

3960

3966

3967

3636

5130

4620

4706

4707

4002

7900

8206

8210

6100

5900

5962

5968

520O

5100

5234

5240

5016

6100

5600

5669

5675

4577

T

especially for the lower values of m. Only 10
elements in the axial direction were needed for

this accuracy. Numerical results for other cir-

cumferential wave numbers n were also given in

reference 3.14 for the stringer-stiffened shell and
these are displayed in table 3.3 for the exact

solution. In table 3.3 all three frequencies result-
ing from solution of the cubic characteristic

equation are tabulated. Note that, unlike for

isotropic shells, the frequencies for n = 0 and n = 1

do not increase monotonically with the value
of m. A plot of the minimum _ versus n taken

from these data is shown in figure 3.20. Figure
3.21 shows the three frequencies arising for n = 2
and 1 <m<5.

The results of Penzes (ref. 3.15) shown in table

3.2 were obtained by using Hoppmann's elastic

constants, the Donnell-Mushtari shell theory

with Yu's simplifying assumption (see sec. 2.3.5),

FIGURE 3.20.--Minimum circular frequencies for a

stringer-stiffened shell supported by shear diaphragms.

(After ref. 3.14)

B THEORETICAL VALUES
o EXPERIMENT (ref.3.8)

-- PAIRED CURVE

i
2 4 6 8

NUMBER OF CIRCUMFERENTIAL WAVES,n

.L
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TABLE 3.3.--Frequency Sets (cps) for a Stringer-Stiffened Shell

Supported by Shear Diaphragms

m

1.457X104

7. 135 X 108

1.425 X 104

1. 666 X 103

1.331 X104

2.114X104

7.390×10 _

2.354X104

3.320X104

1.184X108

3.477 X104

4.653X104

2.167X108

4.624X104

6.033X104

3.468X103

5.777X 104

7.437X104

5.064X108

6.933X104

8.854X104

6.951X10 a

8.089X104

1.028_X105

9.129X103

9.246X 104

1.171X105

1.160X104

1.040X105

1.314X105

1.436 X 104

1.156X105

1.458X105

1.307X104

1.592X 104

9.010f 103

4.863X103

1.634X104

2.363 X 104

2.229 X 103

2.462 X 104

3.561X104

1.719X103

3.508X104

4.862X 104

2.414 XIO 3

4.625X104

6.213X105

3.650X103

5.766X104

7.593X104

5.227X10 _

6.917X104

8.990X104

t

7.108X 103

7.914X 104

1.040X105

9.284 X 103

9.229X104

1.182X105

1.175X104

1.039X105

1.324X105

1.451X104

1.154X105

1.467X 105

1.404X104

2.227X104

1.352X104

7.920X103

2.824 X 104

1.894 X 104

4.234 X 103

2.617 X 104

3.933 X 104

2.840X10 a

3.576X104

5.178X 104

3.002 X 103

4.647 × 104

6.487X 104

4.040 X 103

5.765X104

7.833X104

5.549X103

6.905X104

9.203X104

7.401X10 s

8.054X104

1.059X105

9.563X103

9.208X104

1.199X105

1.202X104

1.036X105

1.340X105

1.478X104

1.152X105

1.481X105

1.422 XlO 4

2.946X104

1.802X 104

1.025 X 10 4

3.410 X 104

2.169X104

6.299X103

4.401X104

2.816 X 104

4.318X 103

3.690X 104

5.575X104

3.966X103

4.703X104

6.833X104

4.706X108

5.787X104

8.140X104

6.079X 10 _

6.906X 104

9.479X 104

7.867X 10 a

8.043 X 104

1.084 X 105

9.995X103

9.190X104

1.222X105

1.243X104

1.034 X 105

1.361X 105

1.518X104

1.150XlO 5

1.500XlO 5

1. 440 X 10 _

3. 673 X 10 _

2. 252 X 10 _

1.183X10 _

4.052X 10 _

2.502X 10 _

8.206X10 _

4.933X10 _

3.064X104

5. 962 X 10 _

6. 032 X 104

3. 853 X 10 _

5.234X10 _

4.800X104

7.236X 104

5.669 X 10 _

5.839 X 104

8.502X 104

6. 858 X 10 _

6. 929 X 104

9. 806 X 104

8. 543 X 10 "_

8. 047 X 104

1.114X10 _

1.061X104

9.182 X 104

1.249X10 _

1.301X 104

1.033X10 _

1.386 XIO E

1.573X104

1. 148 X 10 _

1. 524 X lO _

201
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and exact solution functions in the form of '°1'

equations (3.23).
Using the exact solution functions given by

equations (3.23) and substituting into the equa-
tions (3.22) of motion, Mikulas and McElman

(ref. 3.3) derived the following frequency formula
I0 K

to take into account the "smeared out" ortho-

tropy of stiffening rings and stringers:

_2Ml 4
-- =m4(1+62)2
_r4D

E,Ir-] 12/4(1--v _)

J+ .R2

[! +SAs+_A.+S/_A_s] (3.39) ,o'

where

A, = 1+ 2X2(_8/R) (_2_ v)

+ x,(_,/R) 2(I+ _2)2

A. = 1 + 2n2(_./R)(1 -- v_ 2)

+n4(_./R) 2(1+ _2) 2

A._ = n2X2[_(1 -- .2) +2(1 +.)] (2_/R) 2

+n411_v2+2_2(l+v)](_/R)2 (3.40)

+2n2(1 -- v2) (_/R)

+2n2(1 - v2) (_/R)

+2n4(1 + v) 2(_/R) (_/R) + 1 - v2
t

A = (1 + 6_)2+2_2(1 + _) (/_-t-S)

+(1 -- v2) [,_ + _4/_ +2_2/_S(1 +v)]

where X= m_rR/1, as before,

E,A, _ E_A,I

S=--' R=_-h_al

• Ehd
(3.41)

nl

= mTr----R

and other notation is as used previously in equa-

tions (3.22).
Frequencies determined in reference 3.3 for two

stringer-stiffened shells are shown in figures 3.22

and 3.23. Dimensions of the stringers used in each

case are shown on the figures. The eccentricity of
the stiffeners causes considerable difference in the

rigidity of the cylinders; for both cases the lowest

frequency for external stiffening was 35 percent

greater than for internal stiffening. However, for
the second case the curves for external and

.---O--"---

-- FAIRED CURVE

I I I I I

I00 I 2 3 4 5

NUMBER OF MERIDIONAL WAVES,m

FIGURE 3.21.--Frequencies (rad/sec) 2 of a stringer-

stiffened shell supported by shear diaphragms.

(After ref. 3.14)
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FIGURE 3.22.--Frequencies of a stringer-stiffened shell

supported by shear diaphragms. (After ref. 3.3)
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internal stiffeners cross for m=2. It was also

found in reference 3.3 that a stringer-stiffened

shell having the same dimensions as in figure

3.22, except increased stringer depth (0.302 in.

becomes 0.500 in.), the lowest frequency for

external stiffening was 64 percent greater than

for internal stiffening.
In reference 3.13 the effect of additional cir-

cumferential stiffening due to the presence of

stringers is quantitatively compared with the

results of figure 3.22. This effect is significant for

both small and large n, but not in the vicinity of

the lowest frequency. The decrease in frequencies

due to t'he rotary inertia of a stiffener is also

evaluated. This effect is significant for large n.

In figure 3.24 (from refs. 3.3 and 3.16) fre-

quencies are given for a ring-stiffened shell. This

configuration was obtained by replacing the

stringers of figure 3.22 with rings having the same

cross section and spacing. Comparing figures 3.22

and 3.24 it is seen that the rings give considera-

bly larger values of fundamental frequency than

do the stringers; hence, they provide more effec-

tive stiffening. For this ring-stiffened shell the

lowest frequencies occur for internal stiffeners.

However, the effects of eccentricity are not as

important, giving a lowest frequency which is

only 6 percent higher for internal rings than for

t
160 PROPERTIES

d = 6.25 in

\ E =Es= 10.5XlOSpsi
\ Z =90 in

140 \\ zJ= 0.3 / EXTERNAL

120 INTERNAL
_ 100

EXTERNAL
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4o \\ /Y
0__]_"" 1.8"Fin_:_ n2,

t IR = 198 in.

I I I I I I

0 8 16 24 32 40 48

CIRCUMFERENTIAL WAVE NUMSER, n

FIGURE 3.23.--Frequencies of another stringer-stiffened

shell supported by shear diaphragms. (After ref. 3.3)
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FIGURE 3.24.--Frequencies of a ring-stiffened shell

supported by shear diaphragms. (After refs. 3.3 and

3.10)

external ones. For m = 2, however, external rings

give a higher frequency at the lower portions of

the curves than internal rings.

Hu and Wah (refs. 3.10 and 3.11) also obtained

results for the ring-stiffened shell of figure 3.24 in

the case where the rings are assumed symmetric

with respect to the shell thickness (i.e., no eccen-

tricity). Shell segments and rings were taken as

separate finite elements in their analysis. It is seen

in figure 3.24 that eccentricity is not important
for small values of n where membrane stresses

play a primary role, but it is important for large n
where bending strain energy predominates.

Hu, Gormley, and Lindholm (ref. 3.17) ex-
tended the discrete method of references 3.10 and

3.11 to include the effects of ring eccentricity.
Numerical results were obtained by this proce-

dure and compared with those of the "smeared

out" method of Mikulas and MeElman (ref. 3.3)

for the ring-stiffened shells shown in figure 3.25.

Each shell has 12 bays. It is interesting to note
the marked difference between the two methods

concerning the importance of ring eccentricity.
The method of reference 3.3 shows the effect of

I
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FIGURE 3.25.--Comparison of discrete and smeared-out

analyses for ring-stiffened SD-SD shells. (After ref.

3.17)

t

eccentricity to be very important, whereas the
method of reference 3.17 shows little effect at

all. The experimental results tend to support the

latter analysis. Furthermore, for circumferential

wave numbers n>__6 the latter analysis, unlike

the,former, shows a flattening of the frequency
curve.

Figure 3.26 shows some interesting relation-

ships between the frequencies of the ring-stiffened

shell of figure 3.25 and certain reference frequen-

cies such as those of the unstiffened shell (no

ring), those of the short cylindrical shell segment

between two adjacent rings (assuming SD-SD

supports, and those of the free ring separated

from its two adjacent shell elements. The fre-

quencies of the three types of stiffened shells

(internal, external, and symmetric) obtained

from the discrete analysis of reference 3.17 are

too close to be shown distinctly on the scale of

figure 3.26; therefore, only the frequency curve

for the symmetric case is shown. The frequency

curve for the stiffened shell is divided into three

regions according to abscissa values of the inter-

section points of: (1) the two frequency curves

for the unstiffened shell and for the free ring, and

(2) the two frequency curves for the free ring

and for the uncoupled short cylindrical shell seg-

ment. These three regions, shown in figure 3.26,
are characterized as

Region I: The rings contribute more inertia

effect than stiffness effect, so that the frequency
of the stiffened shell is lower than that of the

unstiffened one.

Region II: The rings contribute the dominant

stiffness, so that the frequency is higher than that

of the unstiffened shell, but lower than the ring

frequency.

Region III: The ring motion becomes so small

compared to the shell panel motion between rings

that the frequency asymptotically approaches

40,CW:)O n2 r_\cOx_.:_J"

_0,000 EGIO J REGION - _'_._'_/_i'_

ooo

_'/_///_.---IN TE R NAL "8(2)O
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6000 / r_'-_.._ FREQUENCY

-'-"- EXTERNAL ......
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F - / i ,,_//

6oo /
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400 //
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/
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/
I I I I I I I
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FIGURE 3.26.--Comparison of ring-stiffened SD-SD

shell frequencies (eps) with other reference frequencies.

(Mter ref. 3.17)
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that of the clamped-clamped shell segment (the

curve shown in figure 3.26 is for a SD-SD shell

segment).

In the last region it is clear that equivalent ortho-

tropic analyses are not applicable. It should be

emphasized that the frequencies for m= 1 are
plotted in figure 3.26, and this is not the lowest

frequency mode for all n. Reference 3.17 shows

that in region III the lowest frequencies will

occur for m equal to the number of bays between

rings, in this case 12.

Similar parametric studies are shown in figures

3.27 and 3.28 wherein the number of stiffening

rings is varied for the same length of shell and

the depth of the ring stiffeners is varied. Chang-
ing the number of rings has a significant effect

only in region III. Decreasing the ring depth low-

ers the minimum frequency only slightly and
increases the value of n at which the minimum

occurs (the shell of fig. 3.28 has 12 bays).

Schnell and Heinrichsbauer (refs. 3.18 and
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FIGURE 3.27.--Influence of number of rings upon the
frequencies of a ring-stiffened SD-SD shell. (After ref.
3.17)
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FIGURE 3.28.--Influence of ring depth upon the freq-
uencies of a ring-stiffened SD-SD shell. (After ref.
3.17)
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l

o.,X
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FIGURE 3.29.--Details of stringer cross sections.
(After ref. 3.19)

3.19) analyzed the effects of internal stiffening by

means of stringers having a "hat shape" as shown

in figure 3.29(a). Two theoretical approaches

were followed. One smeared the stringers out into

orthotropic elastic constants of an equivalent cir-

cular cylindrical shell; the other represented the

stringers and shell segments as separate, discrete

elements. In figure 3.30 frequencies are given for

the shell having four equally spaced stringers.

The dashed curves are for the calculations using

r-

T:
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FIGURE 3.30.--Frequencies of a stringer-stiffened SD-SD

shell having four single internal stringers. (After ref.

3.19)

FIGURE 3.31•--Mode shape where stringers only twist

(stringers "at rest"). (After ref. 3.19)

FIGURE 3.32.--Frequencies of a stringer-stiffened SD-SD

shell having eight single internal stringers. (After ref.

3.19)

smeared out orthotropy, while the data points

are for the discrete analysis. For n = 2, 4, 6, . . . ,

two different types of modes are possible• For one

type, the stringers lie on symmetry axes of the

mode, and the stringers undergo normal displace-

ment; in the second type of mode the stringers

lie on axes of antisymmetry and they only twist

(see figure 3.31) and are "at rest" with respect to

displacement. Similar results are presented for

eight equally spaced stringers in figure 3.32. Fig-

ures 3.33 and 3.34 show frequencies when doubled

stringers are used (see figure 3.29(b)). The simple
sine function assumed in the e direction for an

exact solution of the "smeared out" equivalent

orthotropic shell problem only approximates the

true behavior of the shell as can be seen in figure

3.35. Here the mode shapes for the shell having

four single stringers are given from discrete ele-

ment and experimental studies for m= 2, n=4
and re=l, n=lO, where n now identifies the

number of circumferential approximate half-sine
waves•

d
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FIGURE 3.33.--Frequencies of a stringer-stiffened SD-SD

shell having four double internal stringers. (After ref.

3.19)
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t
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FIGURE 3.34.--Frequencies of a stringer-stiffened SD-SD

shell having eight double internal stringers. (After ref.

3.19)
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FIGURE 3.35.--Theoretical (discrete element) and experimental mode shapes in the circumferential direction for an

SD-SD shell having four equally spaced stringers. (After ref. 3.19)

Another comparison with the results shown in

figures 3.30 and 3.32 was made by Egle and

Sewall (ref. 3.20) using a "smeared out" ortho-

tropic approach wherein more than a single trig-

onometric term is used to represent the circumfer-

ential variation in the mode shapes. The problem

is then eventually solved by the Ritz method.

Results using twenty terms are shown in figures

3.36 and 3.37; twenty terms were necessary to

obtain good numerical convergence. Typical

mode shapes encountered for w are shown in

figures 3.38 and 3.39. Comparisons with figure
3.32 were also made in reference 3.13 for a

smeared-out, Ritz type of analysis using a single
trigonometric term to represent the circumfer-

ential variation. The results were very close to

the smeared-out results shown in figure 3.32.
Another set of stiffened shell problems which T/
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FIGURE 3.38.--Theoretical circumferential variation in
mode shapes for a stringer-stiffened SD-SD shell ;]our
stringers (After ref. 3.20)

have received repeated treatment in the litera-

ture was originally proposed by Galletly (ref.
3.21). In this case external ring stiffeners were

added to a steel shell having R=4.082 in. and

h=0.047 in. The ring spacing was 1.236 in. and

each shell had 15 bays. The rings were rectan-

gular in cross section and had dimensions (in

terms of fig. 3.2) of width, h_= 0.086 in.; depth,
bw=0.1145 in., 0.2290 in., and 0.3435 in. His

approach was based upon energy using assumed
displacement functions which allowed an addi-

tional term to account for inter-ring warping.

Comparisons were subsequently made by Geers

(ref. 3.12) using a continuum approach and by

Wah and Hu (refs. 3.10 and 3.11) using a dis-

crete element approach. Results obtained from
these various methods are summarized in table

3.4. The frequencies from references 3.10 and

3.11 are considerably less than those of the three

other methods, undoubtedly, because of neglect

of eccentricity of the externally mounted rings.

The effect of inter-ring displacements deviating

|

#
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TABLE 3.4.--Comparison of Frequencies (cps) for Three Ring-Stiffened

Shells Supported by Shear Diaphragms

Ring !

depth, n
b_.

0. 1145 in.

0. 2290 in.

0. 3435 in.

Reference

Galletly (ref. 3.21)

Inter-ring
warping included

2 708

3 570

4 903

5 1430

2 704

3 .............

4 .............
5 .............

2 756

3 1367

4 2595

5 3770

Inter-ring

warping neglected

713

582

948

1514

709

1008

1879

3030

774

1512

2870

4070

Geers

(ref. 3.12)

719

597

932

1457

730

994

1774

2780

806

1495

2652

4102

Wah and Hu

(refs. 3.10
and 3.11)

687

505

727

1124

675

735

1271

2020

697

1060

1937

3060

209
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FIGURE 3.39.--Theoretical circumferential variation in

mode shapes for a stringer-stiffened SD-SD shell;

eight stringers. (After ref. 3.20)

from the overall sine curve with increasing values

of n is clearly seen in figure 3.40 for the ease of

the deepest ring (b_=0.3435 in.).
A number of other authors have contributed

to the literature of vibrations of orthotropic cir-

cular cylindrical shells supported at both ends

by shear diaphragms, particularly in the ease of

representing stiffened shells by "smeared out" or-

thotropy. In references 3.22 and 3.23 methods

based upon using the total energy of the stiffened

shell are presented, but no numerical results are

given. Other relevant works include references

3.24 through 3.40.

3.1.3 Other Simple End Conditions

Relatively few results are available for the
135 problems of free vibration of orthotropie

closed circular cylindrical shells having one of

the possible sets of simple boundary conditions

other than shear diaphragm supports at both

ends. The exact procedure outlined in section

2.4 for solving such problems for isotropic shells

is also straightforwardly applicable to the ortho-

tropic case when the axes of material orthotropy

are parallel to the shell axes. However, it was

seen in section 2.4 that the exact procedure is

quite complicated even for isotropic shells, re-
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(After refs. 3.11 and 3.10)

quiring the solution of an eighth order deter-
minant to determine the forms of the solution

functions for u, v, w to satisfy the boundary con-

ditions, and the solution of a subsequent sixth

orddr characteristic determinant arising from the

equations of motion to determine the eigenfre-

quencies. The added algebraic complexity arising

in the orthotropic case apparently has deterred

anyone from extending the exact solution proce-

dure with this added generality.

The Raleigh-Ritz method is particularly well-
suited to yield approximate solutions for the

problem of the orthotropic shell having arbi-

trary edge conditions in the same manner as for

the isotropic shell. That is, solutions are taken

in the form of equations (2.66) involving beam

functions in the axial direction. Gontkevich (ref.

3.41) showed that this procedure leads to a cubic

characteristic equation in the form of equation

(2.67) where the coefficients are given by equa-

tions (3.42), and where k=M/12R 2 as before,

values of 6m, 7m and u,, = amR/1 are given by table

2.22 for the various types of beam functions and,

in this case, the orthotropic frequency parameter

_8 replacing _ in equation (2.67) is given by

_t, = _oR_c/p(1 - u=uo)/Eo (3.43)

The stiffness constants Cxl, . . . , C66; DII,

• • • , D66 are defined in equations (3.6) and

(3.7) as before. For the clamped-clamped and

clamped-SD shells equations (3.42) can be simpli-
fied because _m=--_'m. For SD-SD shells the

equations are exact and further simplified

('Ym= -_'_ = 1). The cubic characteristic equation
can be approximated still further by one of the

simplifying techniques suggested in section 2.3.5.
Sewall and Naumann (ref. 3.13) used a

smeared-out orthotropic representation (see sec.

3.1.2) for aluminum shells having external and
internal longitudinal stiffeners as shown in

figure 3.41. The smearing out procedure gave

D_2/D = 1.197, where D is the bending stiffness of

the unstiffened shell, and vu=D12/DII =0.346 for

the equivalent orthotropic constants of the
stiffened shell. The overall shell dimensions were

R=9.55 in. and l=25-1/8 in. Experimental

results were also obtained. Cyclic frequencies for

clamped-clamped boundaries are presented in

figure 3.42. The frequency differences between

externally and internally stiffened clamped-

clamped shells are quite large, particularly in the

vicinities of lowest frequencies for a given number

of axial half-waves m. The minimum frequency

for the externally stiffened clamped-clamped
shell was 39 percent greater than that of the

internally-stiffened one.

Analytical and experimental results for a

clamped-clamped shell stiffened by a large num-

INTERNALLY STIFFENED UNSTIFFENED EXTERNALLY STIFFENED

0.025in ' 0.100"

0.025in I _ /

_.// _ O.lO0 in \ I , 00_in' _ 0 Z;O0 in

_¢.._\ \ I ,' /---_ / '
0.3COin "_ / \ 955in 955in 9.55in -/

\

FIGURE 3.41.--Structural details of stringer-stiffened
shells. (After ref. 3.13)
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FIGURE 3.42.--Frequencies of stringer-stiffened,

clamped-clamped shells. (After ref. 3.13)

ber (eleven) of integral rings are seen in figure

3.43 (from ref. 3.13). The experimental data

shown in figure 3.43 are from reference 3.38. The

difference between theoretical and experimental

data becomes large for large n.

Sewall, Clary, and Leadbetter (ref. 3.35) used

the smeared-out approach of reference 3.4 (see

eqs. (3.19)) to analyze clamped-clamped shells
having ring stiffeners in the form of I-beams as

depicted in figure 3.44(a). The shell had dimen-

sions / =29.42 in., h=0.049 in., and R = 14.35 in.

The I-beam stiffener spacing is shown in figure
3.44(b). Shell and ring materials were both steel.

The rings were spotwelded to the shell along their
inside flanges. Figure 3.45 shows the mode shapes

(in the axial direction) and the associated fre-

quencies for m=l and n=3, 4, 5 for clamped-

clamped ends. Both analytical and experimental
results are given. The effect of discrete ring
stiffeners is considerable in this case.

Resnick and Dugundji (ref. 3.5) analyzed the

free vibrations of clamped-clamped, stiffened
shells by smearing out the stiffeners according to

equations (3.18) and (3.19). The strain energy of

the equivalent orthotropic shell was formulated

|
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FIGURE 3.43.--Cyclic frequencies for ring-stiffened
clamped-clamped shells. (After ref. 3.13)

i

using the Sanders shell theory, and beam func-

tions were used for the displacements. Integral

ring and stringer stiffeners of the type shown in

the repeating section of figure 3.2 were used.

Using the Sanders shell theory (see chapter 1),

the generalized stress-strain equations (3.4) and

(3.5) must be replaced by

N= = C lIe_ _-C12eo-_- H I1K='_- H12Ke TM

No=CI2ex"FC22ee-F H12K::-I-H22Ko (3.44)

N=o = C 66e=e -F H 66r=e

M= = DllK:c-'F D12Ko-I-H11e::"I-H12eo I

Mo=DI2K=+D22Ko+H12e,+H_2eo_ (3.45)
/

M=o = De_r +H66e=o I )

where the coordinates x and O for circular cylin-

drical shells have been used and where Hal, H12,

H22, Hee are additional coupling coefficients

(a)
///-_SHELL

_-I-BEAM RING

_4,89+4190 + 4,87+_.5_ _ STIFFENER

29,42

( b ) ' 0 I 81 _ _ _

/
0 406 SHELL

0IC_49 I . .'..._._\\\'R _I_.\\\\\\\\\\_ 3 _._., _ ,'x\\_,_\\\\\\\\\'_t

t !"'_ ...... i ....' _'_" _'///" lPPf.% ...... < , .//// y.///.

;,r.,x,-- 0.064 Q880 in.

t

FIGURE 3.44.--Structural details of ring-stiffened cylin-

drical shells. (After ref. 3.35) (a) Cross-sectional

details of I-beam ring stiffeners. (b) Arrangement of

rings.

which for the cross section shown in figure 3.2
can be taken as

HI_ Eh (h,_ ,w ,, +_
2 kb,) %/'_ (3.46)

H12 = H2_ = H66 = 0

in the case of longitudinal stiffeners, for example.
Numerical results were obtained for aluminum

shells having dimensions and material properties

as given in table 3.5. The resulting smeared out

ratios of equivalent orthotropic stiffness coeffi-
cients are also listed in table 3.6. Theoretical and

l

T
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FIGURE 3.45.--Comparison of measured and calculated

longitudinal mode shapes for a ring-stiffened, clamped-

clamped shell. (After ref. 3.35)

experimental frequencies for clamped-clamped

ends are shown in figures 3.46 and 3.47 corre-

sponding to axial and circumferential external

stiffening, respectively. In these figures results

for shells supported at both ends by shear dia-

phragms are also presented. The difficulty of

obtaining adequate clamping in the experimental

models is seen in these figures.
It was found in reference 3.5 that the addition

of axial stiffeners had only a small effect on the

TABLE 3.5.--Dimensions and Material Properties

of Integrally Stiffened Shells

Type of stiffening

Dimension

Axial Circumferential

R

l

h,

b,

h_/b,

bw/h,

E

p

Stretching

stiffness

Bending

stiffness

2.91 in.

12.22

0. 0075

0.120

0.23

5.33

9.9 X 106 psi

0.254

X 10 -8 lb.secVin.'

0.3

C22 = 101,200 lb/in.

D_2 = 0.496 lb.in.

2.92 in.

12.05

0. 0080

0.120

0.10

3.63

9.9 X 106 psi

0.254

X 10 -3 lb'secVin. 4

0.3

Cll = 94,400 lb/in.

DH =0.514 lb.in.

TABLE 3.6.--Calculated Ratios of Stiffness Coe._cients for Integrally Stiffened Shells

• Ratio

of
stiffness

coefficients

C22/Cll

CWC.

Cs6/gn

D2_/Du

D,2/DIt

D66/D,,

H22/RCn

H,2/RCu

H66/RCu

Type of eccentricity

External

Axial Circum.
stiffeners stiffeners

0.578 1.24

.174 .30

.202 .35

.0O775 23.9

•00178 .27

.0198 .48

.00423 .00193

0 0

0 0

None

Axial Circum.
stiffeners stiffeners

0.578 1.24

.174 .30

.202 .35

.01374 19.1

• 00316 .27

.035 .48

0 0

0 0

0 0

Internal

Axial Circum.
stiffeners stiffeners

0.578 1.24

.174 .30

.202 .35

.00775 23.9

.00178 .27

.0198 .48

-.00423 --.00191

0 0

0 0

1
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FIGURE 3.48.--Eccentricity effects upon the frequencies

of a clamped-clamped, axially stiffened shell. (After
ref. 3.5)
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frequency distribution for the shell. That is, for

m= 1 the minimum frequencies are about the

same and occur at the same value of n, while for

larger n the axially stiffened shell has somewhat

lower frequencies than for the isotropie case. This
occurs because the vibration modes for large n

involve D2_, which is about the same in both

cases, but the stiffened shell has about twice as
much effective mass. For m = 3, the axially stiff-

ened shell has somewhat higher frequencies than

the unstiffened one because of the importance

of Dll.
The addition of circumferential stiffeners in-

creased most frequencies of the shell. For all m

the minimum frequencies were significantly

higher and sharper and occurred at lower values
of n. For m=l and higher values of n, the

increase in frequency is even greater. However,

for small n the circumferentially stiffened cylin-

der has somewhat lower frequencies than the

unstiffened shell. This is due to the important

role of stretching stiffness Cll which is the same

in this case for both shells. Thus, the circumfer-
ential stiffeners were of much smaller size than

the axial ones, but had a much greater effect in

raising the frequencies.

The effects of stiffener eccentricity for the

clamped-clamped shells of reference 3.5 are de-

scribed by figures 3.48 and 3.49 . All results

shown are theoretical. The external axial stiffeners

generally cause higher frequencies than internal
axial stiffeners. This effect is more pronounced

for higher values of m. Conversely, external cir-

cumferential stiffeners generally yield lower fre-

quencies than internal ones. Again, the effect is

more pronounced for higher n. For very low

values of n, external stiffeners may cause slightly

higher frequencies for a small region of n.

Theoretical results for Hoppmann's longitu-

dinally stiffened shell were also computed by

Penzes (ref. 3.15) for clamped-clamped and

clamped-SD boundary conditions (see earlier dis-

cussion of analytical method and test model in

sec. 3.1.2). Numerical data are compared with
the SD-SD case in table 3.7.

In reference 3.42 the free vibrations of ortho-

tropic shells of semi-infinite length and having

a free end are examined. The application of

transfer matrices to orthotropic shell vibration

problem is discussed.

Theoretical and experimental frequencies for

clamped-free, stringer-stiffened shells are shown

in figure 3.50 (from ref. 3.13) (see fig. 3.41 and
earlier discussion in this section for additional

details).

In reference 3.5 frequencies for axially and cir-

eumferentially stiffened shells were also found

for the cases of clamped-free and SD-free bound-

|

m

TABLE 3.7.--Frequencies (cps) of Longitudinally Stiffened Shells

Having Various Edge Conditions

Edge
conditions

Clamped-clamped

Clamped-SD

SD-SD

Clamped-clamped

Clamped-SD

SD-SD

Clamped-clamped

Clamped-SD

SD-SD

Clamped-clamped

Clamped-SD

SD-SD

1579

1149

836

1422

1328

1276

2284

2265

2255

3560

3555

3552

4233

3412

2698

2298

1997

1750

2509

2422

2358

3623

3598

3580

n

9171

7557

6267

4019

3514

3059

3135

2932

2762

3821

3754

3699

6552

5838

5178

4264

3934

3636

4251

4117

4002

5891

5439

5016

4984

477C

4577
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aries (see discussion of clamped-clamped case

earlier in this section). Frequency distributions
are depicted in figures 3.51 and 3.52. The effects

of eccentricity for clamped-free ends are shown
in figures 3.53 and 3.54. To observe the effects of

stiffening in comparison with the unstiffened

shell, the reader is referred to figure 2.82.

Theoretical and experimental frequencies for

the shell of reference 3.35 (see earlier discussion
in this section) having free-free ends are shown

in figure 3.55. The discrepancy between theory
and experiment clearly increases as n increases.

The results of two analyses are shown, one in-

cluding all stiffnesses, and the other neglecting

C1_, DI_, and Dee. Results for two other types of

end conditions are shown in figure 3.56: (1)

clamped-free and (2) shear diaphragm-sliding.

Theoretical and experimental frequencies for
free-free, stringer-stiffened shells are shown in

figure 3.57 (from ref. 3.13) (see fig. 3.41 and
earlier discussion in this section for additional
details).
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3.1.4 Open Circulor Cylindricol Shells

No specific numerical results exist for open

circular cylindrical shells of orthotropic mate-
rial. However, a significant amount of useful in-

formation can be gleaned from sections 3.1.2 and

3.1.3 for those cases where the two lateral edges

are supported by shear diaphragms, because the

displacements and force and moment resultants
which exist at "node lines" (w=O) are precisely

those required for shear diaphragm boundary
conditions. Thus, as discussed previously for the

isotropie case (see sec. 2.8.1) considerable infor-
mation can be inferred for open orthotropic shells

supported on all four edges by shear diaphragms
from the results given in section 3.1.2. Similarly,

for open orthotropic shells having their lateral

edges supported by shear diaphragms and arbi-
trary edge conditions along the curved edges,
useful results can be obtained from section 3.1.3

(similarly discussed for isotropic shells in sec.

2.8.2).

3.2 VARIABLE THICKNESS

Variable thickness in circular cylindrical shells

often takes the form of a step discontinuity in

thickness at some point along the length. The

analysis of such shells requires piecing together

of shell segments by means of continuity equa-
tions across the common boundary. These shells

are considered to be structures and will not be

treated here.

Few references exist which deal with the vi-

brations of circular cylindrical shells having con-

tinuously variable wall thickness. This lack of

treatment is no doubt the result of two types of
difficulties:

(1) Mathematical difficulties associated with

the solution of systems of eighth order partial

differential equations, and

(2) The difficulties inherent in manufacturing
shells of variable thickness.

The latter of these two difficulties is obvious and

needs no further discussion. The first difficulty

has its source in the force and moment resultant

equations. Returning to chapter 1 and scanning

equations (1.75), for example, it is seen that the

force and moment resultant integrals contain

the shell thickness in the limits of integration.

This fact in itself poses no difficulty, and equa-

tions (1.76) are still applicable with the shell

thickness now being regarded as a variable,

h=h(x,e), instead of a constant. The difficulty

arises when equations (1.76) are substituted into

the equations of motion (e.g., eqs. (1.112) and

(1.115)). The process of eliminating Qa and Q_

(Q= and Q0 in the case of the cylindrical shell)

by substituting equations (1.115a) and (1.115b)

into equations (1.112) yields equations of motion

wherein terms containing the thickness must be

differentiated one or two times with respect to

the shell coordinates, and the thickness must be

treated as a variable. The resulting set of differ-

ential equations is essentially untractable, and

recourse must be made to the approximate ana-

lytical methods not requiring exact solutions of

the differential equations (e.g., Ritz, Galerkin,

Kantorovich, collocation, subdomain, finite dif-

ferences, numerical integration, finite elements,

ref. 3.43). Even with these approximate methods,

the resulting numerical calculations are often

considerably more complicated for a variable

thickness shell than for one having constant
thickness.

Gontkevich (ref. 3.41) purports to have a pro-

cedure for the solution of problems where the

thickness varies in the axial direction according to

h = h0# (3.47)

where h0 and i are constants. According to refer-

ence 3.41, the equations of motion for the axi-

k_



COMPLICATING EFFECTS IN CIRCULAR CYLINDRICAL SHELLS 219

symmetric problem are solvable in terms of

Bessel functions of nonintegral order for some

values of i. A method is then proposed for the

solution of problems for arbitrary numbers n of

circumferential waves where the mode shapes

are either the eigenfunctions of the axisymmetric

problem or beam functions. A characteristic de-

terminant is then obtained containing terms

which are complicated integrals having the prod-

ucts of x i and the beam (or axisymmetric Bessel)

functions as integrands. The same procedure is

also proposed in reference 3.41 for shallow shells.

Oniashvili (ref. 3.44) made extensive calcula-

tions for shallow shells using the Galerkin method

and the products of beam functions. The proce-

dure was demonstrated on a shell panel supported

by shear diaphragms on all edges and hav-

ing a thickness variation in the circumferential

direction determined by

h = ho(1 W2k0/0o) (3.48)

where 0 is measured from the symmetry axis, 0o

is the total circumferential angle included be-

tween the edges of the shell (R_o is the arc length

between edges), ho is the thickness at the sym-

metry axis, and k is a constant determining the

degree of thickness variubility. Numerical results

we:'e obtained for corn r ete shells having k=0.5,

l=98.3 in., h0=0.394 in., E= 2.84,X106 lb/in _,

pg = 0.0867 Ib/ft a, _ = 0.12, and various radii (R)

and width/rise (b/c in fig. 2.141) ratios given in

table 3.8. For comparison, frequencies are also
given in table 3.8 for the constant thickness shell

(k = 0). Table 3.8 clearly shows that for relatively
deep shells (small b/c) the effect of variable thick-

ness is negligible; however, for very shallow shells

(large b/c), the added stiffness near the lateral

TABLE 3.8.--Frequencies (eps) for Shallow Cir-
cular Cylindrical Shells of Variable Thickness

Having Shear Diaphragm Supports on A U Edges

R, Shallowness
in. ratio,

b/c

12.5 4

2O 8
40 16
80 32

160 64
320 128

Variable

thickness,
k =0.5

6.36

3.98

2.00

1.03

.6

• 421

Constant

thickness,
k=O

6.36

3.9

1.94

.98

.49

.241

boundaries due to increasing thickness more than

offsets the added mass and the frequency is

significantly increased.

Vibrations 6f circular cylindrical shells of vari-

able thickness were also discussed by Federhofer

(ref. 3.45).

3.3 LARGE (NONLINEAR) DISPLACEMENTS

In the case of plates transverse deflections
which are on the order of the shell thickness or

greater cause additional stiffening of the plate

and result in equations of motion which are non-

linear. Because of the nonlinearity, approximate
solution techniques such as the Galerkin method

must be employed to obtain numerical results.

However, in spite of slight disagreements among

various writers concerning which l.on]i.,ear terms

are essential in the theory, as well as the approxi-

mate character of solutions, it is universally

agreed among writers (see ref. 3.1) that large

displacements cause positive stiffening of the

plate and a resulting increase in natural frequen-

cies (i.e., "hard spring" behavior), regardless of

the shape of plate or the boundary conditions.

Such is not the case, however, for circular

cylindrical shells. Widespread disagreement exists
as to whetl_er the shell behaves as a hard spring

or a soft spring, and whether the type of behavior

depends upon the boundary conditions and/or
the shell being open or closed.

The first investigation of nonlinear vibrations

of cylindrical shells was reported by Reissner
(ref. 3.46) in 1955. The shallow shell (Donnell-

Mushtari) theory served as a basis for the work

and mode shapes having sinusoidal variation in
the axial and circumferential directions were

taken, although the time response was not as-
sumed to be sinusoidal. This led to results which

indicated that the nonlinearity could be either

of the hardening or softening type, depending

upon the number of circumferential waves. Chu

(ref. 3.47) subsequently made a similar analy-

sis which gave results indicating that the

nonlinearity was of the hardening type.

Evenson (ref. 3.48) attempted to obtain exper-
imental verification for closed shells of the theo-

retical conclusions obtained previously. Instead,

he found that (1) the nonlinearity was always

of the softening type and (2) the nonlinearity
effects were small. From this he concluded that
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the assumed modes used in the previous theo-

retical analyses gave rise to circumferential dis-

placements v which were not single-valued and

continuous, and that this caused serious error

in the analyses. Nowinski (refs. 3.49 and 3.50)

generalized the solution function to permit satis-
faction of the continuity condition, but this

resulted in different boundary conditions satisfied

at the ends of the shell (v = 0 rather than w = 0).

This led to hard spring behavior. Cummings (ref.

3.51) also obtained frequency which increases

with amplitude.

,, Subsequently, Olson (ref. 3.52) observed soft-

ening nonlinearity in a series of experiments.

Then, in a later work, Evensen and Fulton (ref.

3.53) found the nonlinearity to be either harden-

ing or softening, depending upon the ratio of the
number of axL,1 waves to the number of circum-

ferential waves, although the shear diaphragm

boundary conditions were not exactly satisfied

at the shell ends in their analysis. In reference
3.53 some results were also obtained where for

large deflections the shell behaves as a soft spring,

but as the amplitude is increased further, the

nonlinearity becomes hard. This phenomenon

was also seen in a recent paper by Leissa and

Kadi (ref. 3.54). iV[ayers and Wrenn (refs. 3.55

and 3.56) used the more complicated shell theory
of Sanders to arrive at the conclusion that free

vibration is nonperiodic and of the hardening

type.
This confusing state of affairs will be elaborated

upon in the following subsections.

3.3.1 Nonlinear Equations of Motion

The detailed derivations of nonlinear equations

of motion will not be given here. Only the impor-

tant differences with linear theory and the final

forms of the equations of motion will be summar-

ized. For additional information it is suggested

that the reader consult references 3.44, 3.46, 3.47,

3.49, 3.50, 3.55, and 3.56. A comprehensive trea-

tise on nonlinear shell theory also exists in the

monograph by Mushtari and Galimov (ref. 3.57).

The middle surface strains of linear shell theory

given earlier by equations (1.41) are specialized
to the case of circular cylindrical curvature and

generalized to include the nonlinear stretching

terms arising from relatively large slopes, giving

Ou 1/0w\2

Ov w 1/0w\2|

I (3.49)
Ou Ov Ow Ow l

ry l
where, for convenience, the shallow shell notation

is used; i.e., O/Oy = (1/R)O/O0. Adding the bend-

ing strains to equations (3.49) according to the

Donnell-Mushtari theory, inverting the isotropic

stress-strain equations, and integrating over the

thickness gives the following expressions for the

force resultants (cf., ref. 3.47):

[rou l/Ow\ 21

r ov w 1low\ 2]

j} (3.50a)

N =cIrl ov w 1lOw\ 2]J
r ou 1/Ow\ q

Gh/OU Ov Owaw\ (3.500)
/O2w O2w\

M, = -D[-zT-k _7,2/ (3.50d)
\ Ox Oy /

/02w O_w_

where C = Eh/(1 -- v2) and D = Eh3/12(1 -- z,2), as
before.

Using the Donnell-Mushtari equations of

motion of section 1.6 along with equations (3.50)

gives (neglecting tangential inertia)

O_w /02w 02q_ O_.w02q_

z)v'w+"hV oy,
02w 0_ 1 02___

--20x Oy Ox Oy R _x 2] (3.51)

where _ is an Airy stress function defined by

N_ 02_ N_ 02_]

(3.52)
N_ 02_ /
-i -=

k.

k_

L
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Another equation is obtained from the equation
of compatibility of strains for the middle surface.

From equations (3.49) it is seen to be

02_x 02_y 026xy ( O2W _ 2

_y_ _ Ox 2 Ox Oy-kOx Oy/

02w 02w 1 02w

Ox_ Oy7_ R ox 2 (3.53)

Using equations (3.52) and the stress-strain equa-

tions for an isotropic material, equation (3.53)
becomes

[/02w\2 02w O2w 102w -]

V'_=E -- _-_ [ (3.54)

Thus, the governing nonlinear equations for a

circular cylindrical shell according to the Donnell-

Mushtari (or shallow shell) theory are given by
equations (3.51) and (3.54). In the case where

R = _o the equations properly reduce to the cor-

responding ones for a flat plate. In the case of an

orthotropic shell having axes of orthotropy coin-

cident with the shell coordinates (a_x, _y),
the equations are generalized to (cf., refs. 3.49

and 3.50)

D 04w 04w
11_x4"_'2(vyDn-{-D68) Ox-2 0y2

04w 02w h_O2w 02g_

02w 02_ 02w 02_ 1 02_,\
-t 2

Oy 20X 2 OX Oy Ox Oy R -_x2] (3.55a)
!

04_.[Ex ,_ \ 04_ E, 04_

['/ 02w\2 02wO2w 102w -]

The nonlinear, middle surface strain-displace-

ment relationships of the Sanders theory were
found to be (see refs. 3.56 and 3.58) :

Ou 1/Ow\ 2

0V W 1/0W\ 2 VOW (3.56)Roy
Ou Ov Ow Ow v Ow

ezy
-- --Oy-bOx-[ Ox Oy R Ox

In reference 3.56 equations (3.56), along with the
other corresponding equations of the Sanders

theory (see chapter 1) are used to derive a set of

nonlinear equations of motion in terms of the dis-

placements u, v, and w. The resulting equations

are quite lengthy and will not be repeated here;
they are displayed as equations (21), (22), and
(23) in reference 3.56.

The nonlinear form of the Morley equations of
motion for circular cylindrical shells are exhibited
in reference 3.51.

3.3.2 Infinitely Long Shells

Evensen (ref. 3.59) showed that in the case of

plane strain for an infinitely long circular cylin-

drical shell, the equations of motion reduce to

ON_ = 0 (3.57a)
Oy

DO4W hO_W N_ N 02w
o-fi R  0-7=0 (3.57b)

The radial displacement was assumed to take the
form

ny
w(y,t) = A,(t) cos -_+ Ao(t) (3.58)

Equation (3.57a) and the continuity condition

v (y q- 27rR, t) = v (y,t) (3.59)

were exactly satisfied, and equation (3.57b)

was approximately satisfied by the Galerkin
procedure.

If the amplitude Ao(t) of the axisymmetric

mode is taken to be zero, the resulting modal
equation is

a2a,,
-_r2 +a,, T 3a,3=O (3.60)

where a_ is the nondimensional amplitude, AJh,

and r is nondimensional time, _.t, with

Eh2n 4
_2 = (3.61)

12(1 -- _,2)pR4

Equation (3.60) exhibits a hard spring behavior
and results from considerable stretching of the

middle surface of the shell. Its solution is, of

course, expressible exactly in terms of elliptic
integrals, but an approximate solution can be
written as

an(r) =a cos _*r (3.62)

l

Y
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where

o_.2 =-- = 1+ a2 (3.63)
COn2

The nonlinearity is independent of the circum-
ferential wave number n as well as the thickness

ratio, h/R. It was pointed out in reference 3.59

that the corresponding modal equations of

references 3.47 and 3.49 yield

d2a_ 3
+a_+-_(1--_2)a_3=0 (3.64)

instead of equation (3.60). Clearly while equa-

tion (3.64) also characterizes a hard spring, it is

much less strongly nonlinear than equation

(3.60).
For the case of inextensional vibrations (no

stretching of the middle surface of the shell),

Ao(t) is related to A,(t) by

n2A,_(t)
Ao(t) = 4R (3.65)

yielding the modal equation

d2a_ 1 [- d2a_ [ da_\ 2-]

--}--_ea,[a,-_T2-4-_ ) ]-}-a,=O (3.66)

where

= (3.67)

Taking an approximate solution to equation

(3.66) in the form of equation (3.62) yields

(_)2 = 1, 1-{- (ea2/4)

d2

= 1 -- ¢_-4-0(e 2) (3.68)

For small n and small h/R, terms of order e2

and greater in equation (3.68) can be neglected,

and a soft spring response is indicated. When the

length of the shell is taken to approach infinity,

the analysis of reference 3.60 yields an equation

identical to equation (3.66) except that the

coefficient 1/2 in the second term is replaced

by 3/8.

Finally, consider the case when An(t) and

Ao(t) in equation (3.58) are permitted to be

independent modes. This yields the two coupled

modal equations

da !d:r [ a_2\ (3.69)

where Ao/h=n(h/R)r, and e, an, and r as de-

fined previously. An approximate solution to

equations (3.69) as found in reference 3.59 is

a_(r) = a cos _*r /
(3.70)

!r(r) = _0-4-_2 cos 260"r
where

_o = -32/8

_2 = -- a2/8[ 1 -- ¢0"2/3] / (3.71)

and

1--_'2--_d2[1--_'2]-1=0 (3.72)
4[ 3 J

Expanding equation (3.72) gives

_2 d2

-- = 1 -- e_ A-0(_ 2) (3.73)
tnn2

which is the same as equation (3.68) for terms

up to order e.
The conclusions reached in reference 3.59 for

the infinitely long shell as a result of the fore-

going analysis are

(1) The shell vibrates in such a manner that

the midsurface remains practically inextensible.

(2) The frequency-amplitude relation is of the

softening type and depends upon e = (n2h/R) 2.

(3) A radial contraction involving double-

frequency (cos 2w'r) motions is indicated and

has been observed experimentally by Olson (ref.

3.52).

(4) Vibration modes that do not permit an

axisymmetric radial contraction, in addition to

the primary vibration shape, appear to place an
unrealistic constraint on the shell.

Dowell and Ventres (ref. 3.61) used the Don-

nell-type shell equations (3.51) and (3.53) and a

radial displacement function of the form

w(x,y,t) = A,_,(t) sin --7-mTrxcos -_nY

mTrx sin ?+B,..(t) sin -7-

m_x

-t- A,.o(t) sin -- (3.74)
l

J
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A corresponding _ was obtained by integrating

the compatibility equation (3.54). The equation
of motion was approximated by the Galerkin

procedure, yielding three complicated, coupled,

nonlinear equations involving the amplitudes
Amn, Bm_, and A_0 and their time derivatives.

These equations were investigated in the limit

as l/R----_ _ and found to yield a nonlinearity of

the hardening type (at least for m even).

3.3.3 Large Deflections of Closed Shells Having
"Shear Diaphragm" End Conditions

The term "shear diaphragm" is used with quo-

tation marks because in the numerous analyses

which are described below most of them attempt

to satisfy shear diaphragm boundary conditions

(eqs. (2.33)), but end up only by approximating
them.

Evensen and Fulton (ref. 3.53 and 3.60) used

the Donnell theory (eqs. (3.51) and (3.54)) and

the following two-mode approximation for the
radial displacement:

n 2

+__.R[Am, 2(t)__Bm, 2(t) ] . mTrxsin2 T (3.75)

where the bracketed term involving Am_ 2 and

B_J is added to satisfy the continuity condition

on v. Substituting equation (3.75) into the com-

patibility equation (3.54) and integrating gives
the stress function _ as follows:

_(x,y,t) = al(Amn cos/3y+Bm,_ sin _y) sin ax

-; a2( A,_,_2 -- Bm,_2) cos 2f_y
--a3A,,nB_,_ sin 2f_y

+a4(A_,_2+B,,n2)(A,,,_ cos t_Y

+B_n sin/_y) sin 3ax (3.76)

where a = mlr/1, _3= n/R and

a2Eh
al =

R(_2+_2) 2

a2Eh
62--

32B 2

a2Eh
68=

16f_2

aS_2REh[ 1 1 ]a4= 4 k (9a2_-_2) _ (a_+_)2

Although equation (3.75) exactly satisfies the

shear diaphragm boundary condition w = 0 at the

ends x = 0 and x = l, it will be found upon integra-

tion of the strain-displacement equations (3.49)

that v will not be zeroat the ends. Similarly, using

equations (3.50) it is found that N_ and M_ are

not identically zero at the ends. For these quan-

tities the coefficients of the linear terms in An and

B_ do vanish at x = 0, l, but the terms involving

A,_ 2, AnBn, and Bn 2 do not vanish there. Thus,

the shear diaphragm boundary conditions are

only approximated. However, the continuity

condition (3.59) is exactly satisfied.

Finally, the equation of motion (3.51) is satis-

fied approximately by the Galerkin procedure,
giving rise to the two following coupled, non-

linear, nondimensionalized equations:

d2_ , _ 3 [" d2_ /d_\ 2 d2_

-t-e 2 _'_(_2+_,2)2=0 (3.77a)

d2_, _ ,. , 3 [ d2_, [d_\ 2 d2_

d_o 2 2 2

-_-_2 _-s(fs2.__-c2)2=O (3.77b)

where _ =A,,_/h, _, =B,,_/h, r = _,,_t, _,,n is the

linear free vibration frequency, e = (n2h/R) 2 as
before, and _, and _ are defined by

}411 1 e ](_2-]-1)2 16 12(1---_ 2)

_' = [ _4 e(_2__l) 2_ (3.78a)1 :7) j

= [ _4 e(_2+1)2 1 (3.78b)

where _ is the aspect ratio of the particular mode,

given by _=m_'R/nl. It is interesting to note

that the nonlinearity of the problem depends

upon the parameter e; that is, as e approaches
zero, the problem becomes linear.

Consider first the solution of equations (3.77)
for the case when only a single mode is retained
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in the solution function (equation (3.75)); i.e.,

A,,,_0, Bin,=0. The method of averaging was
used in references 3.53 and 3.60 to obtain the

following approximate solution:

_c(r) =fi_ cos _0*r/ (3.79)

_,(r) =0 J

with the frequency-amplitude relationship given

by

3 - 5

_0 2 1--4e_A_+8 e_ ___4() --
. w*9-_- _ 1 -t-3e_i 2 (3.80)

Numerical results for five values of e ranging

from 0 to 1.0 are shown in figure 3.58. The solid

and dashed lines were calculated for values of _,

and _ corresponding to aspect ratios of _=1/2

and 2, respectively. Poisson's ratio was taken as
v =0.3.

Both sets of curves in figure 3.58 demonstrate

that the strength of the nonlinearity is highly

dependent upon _= (n2h/R)E The nonlinearity is
small for vibrations involving very thin cylinders

and/or small values of n, and conversely.
The character of the nonlinearity (i.e., whether

it is hardening or softening) depends strongly
t

_-" 4

£5

d 3

upon the aspect ratio _. This result is apparent

from equations (3.77), which show that e is a

multiplying factor in every nonlinear term. The

effect is illustrated in figure 3.59, which shows

frequency-amplitude response curves computed

from equation (3.80) for values of _ ranging from
0.1 to 4.0. The solid lines are the results of

Evensen and Fulton (refs. 3.53 and 3.60) and
are calculated for E= 1.0 and _ =0.3. For com-

parison purposes, Chu's results (ref. 3.47) (dis-

cussed later in this section) are shown as dashed

curves in figure 3.59. The results of references

3.53 and 3.60 are of the softening type for _< 1

and of the hardening type for larger values of _,

whereas Chu's results are all of the hardening

type.
Another fundamental difference between the

results of Evensen and Fulton and those of Chu

arc that the latter's results possess a symmetric

dependence on the aspect ratio parameter _; i.e.,
Chu's curves for _= 1/2, 1/4, 1/8, . . . coincide

with those for _=2, 4, 8,... , respectively.

Such a symmetric dependence on _ seems to
conflict with the basic geometric nonsymmetry

of the shell; i.e., the shell has curvature in the

circumferential direction, but not in the axial

2.0

1.6 i=0.5.._i..0.10 1///
//0.25_(0.5-"'-0.251.2E

.o, bo, / _ o.s \_ ,,//
// -- EVENSEN 8_FULTON

I ' / _ 0.4 _ ---- CHU
/#,/ 0 -v.I I I I I I I

x,d/._/ll/ ....,.o,.. _ _°r _=,-'/ ,J/," ,'/
x-,.0it,,' / -" " ,_- / '._/,//
'\ "; "/ l- _ /Z_ =_k,,,.\ II ,".-'

,-,, _, \\\11/-" -. ==-2 / \i,/_ _=-io_

N';" - °'L jG_ 
VV_ I I 1 I I I

.6 .8 1.0 1.2 1.4 1.6 0 0,8 1.2 1.6

NONLINEAR FREQUENCY

LINEAR FREQUENCY NONLINEAR FREQUENCY
LINEAR FREQUENCY

FIGURE 3.58.--Frequency ratio versus amplitude for

large deflections of a cylindrical shell; _=0.3. (After

refs. 3.53 and 3.60)

FIGURE 3.59.--Frequency ratios for large deflections of

a cylindrical shell; _=0.3. (After refs. 3.53 and 3.60)
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direction. The results of Evensen and Fulton do

not display this form of symmetric dependence.
Another effect which is apparent from the

curves of figures 3.58 and 3.59 for some values of

and _ is that although the initial response may

be of the softening type, as the amplitude con-
tinues to increase the /i _ term in the numer-

ator of equation (3.80) eventually dominates,

resulting in hardening nonlinearity.

Results were also presented in references 3.53

and 3.60 for solutions using both the Am, and

Bin, terms in equation (3.75). These are shown in

figure 3.60 for a forced motion where the applied

normal'loading q(x,y,t) is chosen so that only one

mode is directly excited (driven); i.e.,

n_ry . mTrx
q(x,y,t) = Qm, cos _ sm T cos _t (3.81)

The solid lines in figure 3.60 are the forced re-
sponse curves of the driven mode and the com-

panion mode for e=0.01, _=0.1, and _=0.3.
The free vibration curves are shown dashed and

exhibit the same initial soft spring response seen

previously with a single mode. The corresponding

curves for a single mode analysis are depicted in

40

55

50

,m 25

w"
_ zo
I--

I0

2O
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I--

d 5

I

I I

O.BO

t
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SIN _ rnTrxSIN --£--

/_ DRIVEN MODE

cos SIN

0.90 1.00 1.10

NONLINEAR FREQUENCY

LINEAR FREQUENCY

FIGURE 3.60.--Forced vibration frequency ratios for large

deflections of a cylindrical shell; two mode analysis,

=0.1, _ =0.01, p =0.3. (After refs. 3.53 and 3.60)
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-- 8

d 6

KX N

DRIVEN MODE

x\xx, cosny SINm_.

L

RCED VIBRATION

,e. _ I I | I I

0.88 0.92 0.96 1.00 1.04 1,08

NONLINEAR FREQUENCY

LINEAR FREQUENCY

FIGURE 3.61.--Forced vibration frequency ratios for large

deflections of a cylindrical shell; single mode analysis,

=0.1, _ =0.01, _ =0.3. (After refs. 3.53 and 3.60)

figure 3.61. For further discussion of the forced

response curves, see references 3.53 and 3.60.

Experimental results for the nonlinear vibra-

tions of cylindrical shells is scarce. Kana, Lind-

holm, and Abramson (ref. 3.62) obtained results

for circular cylindrical shells which showed a very

slight nonlinearity of the softening type. Quanti-

tative results obtained by Olson (ref. 3.52) are

shown by the circles and dashed lines in figure
3.62. The solid line shown is the free vibration

curve calculated from equation (3.80) with the

values of e, % _ that correspond to Olson's

experiment (copper shell, h=0.0044 in., R = 8.00

in., and 1=15-3/8 in., yielding e=3.025X10 -3,

_=0.1635, u=0.365). The experimental and
theoretical results are nondimensionalized with

respect to the experimental and theoretical

linear frequencies, respectively. Again, the

results show nonlinearity which, at least initially

for moderate amplitudes, is of the softening
type.

Mayers and Wrenn (refs. 3.55 and 3.56) used

the Donnell equations and the single mode
(A_,_0, B_,=0) special case of the deflection

function given in equation (3.75) to duplicate the

1
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FIGURE 3.62.--Comparison of theoretical and experi-

mental nonlinear responses for a cylindrical shell;

e=3.025X10 -s, _=0.1635, p=0.365. (After refs. 3.53

and 3.60)

results of Evensen and Fulton (refs. 3.53 and

3.60) which were presented previously in figures

3.58 and 3.59. They found this motion to be

periodic in time. A two-mode solution was also
taken in the form

mvx' ny n21h \

Wh_----Al(t) cos T cos _--{-_-t_)A 12(t)

2m_rx t
_-A3(t) cos-- (3.82)

l

where x' is measured from the longitudinal sym-

metry plane of the shell; i.e.; x'=x--l/2. Using

this solution function the resulting motion was

found to be nonperiodic in time, as shown in

figure 3.63. In figure 3.63 the dashed curve repre-

sents the periodic solution obtained from the

single mode solution. The deflection function for
this mode in terms of the shifted coordinate x' is

given by

m_-x' ny n 2 h

n2(R ) 2m_x'+-_ Ai(t) cos 7 (3.83)

The solid line is the nonperiodic response arising

from the two mode function used in equation
(3.82). The interrupted line is the nonperiodic

response arising from a two mode function of the
form

w m_x p ny
_= Al(t) cos _ cos R

[ ]  m.x'-- A3(t)+_ Aid(t) cos--7

2m_x' n2 / h \

-A,(t) cos---i---+-_t-_)Al_(t) (3.84)

Another analysis was conducted in references

3.55 and 3.56 using the Sanders shell theory
in order to accommodate small numbers of

circumferential waves n. In this case the three

components of displacement were taken as

+3.0 _ f_-.. /I\ o
I \ -)T- t-_)-. /i \\\ /ii J

+_.oF \ A,,o,=:,.o.A,<o>=o.so&l=o// _",_ kl
I \ <,A.,:o ..Oli ",'k. '71

h 15 _

_j.ol _ _ ---, r, _
-2.0

EQUATION(3.82)

, EQUATION(5,84)

FIGURE 3.63.--Comparison of periodic and nonperiodic radial displacements as functions of

time. (After refs. 3.55 and 3.56)

l
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w -- h, m_rx' ny

; =_i _) cos-i- cos_
I

u _ ,._ . mTrx t ny i

_ =_._) sin----V-cos_ i
A "" " 2mlrx' 2ny |

+ 5_t)sm --7- cos -R--
2mlrx' I

TAT(t) sin ---_/
V r

A "'" m_rx . ny |

2..... m_'x . 2ny |

_i1_) cos _ sm _ /

+A13(t) sin _1

(3.85)

The results of this analysis yielded nonlinearity

of the hardening type as depicted in figures 3.64

and 3.65 for n = 2 and the aspect ratio

2m_R
--= 1.0 and 0.50

In

respectively.

Cummings (ref. 3.51) developed the nonlinear

form of the Morley equations and applied the

Gaterkin procedure using a radial displacement
function

_X ny
w(x,y,t) = A (t) sin T cos -_ (3.86)

to arrive at a nonlinear equation of the hard

spring type (Duffing's equation):

L2or
_ I (h/R)

_ ,,o• 5

g ' oo

| _ - ,_
l,OOI---- I'VIO00 I_

0 S.O 16.0 SMALLER

Ai

t

FIGURE 3.64.--Frequency ratios according to the Sanders theory; n =2, 2m_rR/ln = 1.O. (After

refs. 3.55 and 3.56)
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FIGURE 3.65.--Frequency ratios according to the Sanders theory; n = 2, 2m_'R/ln = 0.50. (After

refs. 3.55 and 3.56)



228 VIBRATION OF SHELLS

d2A

dt--T+klA + k2A 3= 0 (3.87)
ously as equations (3.55) with the displacement
function

i.e., where kl and k2 are positive constants.

Chu (ref. 3.47) used the Donnell theory and

equation (3.86) to arrive at an equation of the

same form as equation (3.87) differing only by a
factor of two in k2. Numerical results found in

reference 3.47 for a shell having R/h= 100 and

=0.318 are exhibited in figures 3.66 and 3.67 for

n=8 and 10 (circumferential wave numbers),

respectively. In these figures the nonlinear/linear

frequency ratio is plotted versus the amplitude

ratio Am,x/h for a series of aspect ratios, _R/ln.

Results are also shown for the fiat plate. Accord-

ing to this analysis, the nonlinearity is of the

hardening type, as for fiat plates, although the

nonlinearity is not as strong.

As described in section 3.3.3, in reference 3.61

a set of three coupled equations of much greater

complexity than equation (3.87) were derived

from the Donnell theory using a three mode
representation for w.

Nowinski (refs. 3.49 and 3.50) used the ortho-

tropic form of the Donnell equations given previ-

m_-x ny n _
w(x,y,t) =A(t) sin T sin-_+_-RA_(t) (3.88)

and the Galerkin procedure to obtain numerical

results for shells having material types as shown

in table 3.9 (correcting a misprint in ref. 3.49).

Duffing's equation (3.87) was also obtained from

this analysis. Frequency ratios versus amplitude

ratios are shown in figure 3.68 for shells hav-

ing the types of materials listed in table 3.9,

R/h = 100, and various values of n and X= mTrR/l.

TABLE 3.9.--Properties of Orthotropic and

Isotropic Shells

Material

type

9rtho-

tropic I

0rtho-

tropic II

[sotropie

E_

1 × 105

1 X l0 s

1 X l0 s

E_ G

0.5×106 0.1XI05

• 05 X 105 .05 × 105

1 X 105 .384 × 105

1}x _y

0.05 0.02t

.20 .01

.30 .30

I

01;
tLta 3
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c:Id
tLJ ,

_Iz
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FIGURE 3.66.--Comparison of nonlinear response of a

circular cylindrical shell with a fiat plate; n = 8. (After

ref. 3.47)
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FIGURE 3.68.--Frequency ratio versus amplitude ratio

for SD ,,cylindrical shells; R/h = 100, k =mTrR/l. (After

ref. 3.49)

Large amplitude vibrations of closed circular

cylindrical shells ostensibly having shear dia-
phragm end conditions are also discussed in

references 3.46 and 3.63 through 3.65.

3.3.4 Other End Conditions

Sun and Lu (ref. 3.65) is the only reference in

the literature purporting to deal with closed

circular cylindrical shells having end conditions

other than shear diaphragms. Reference 3.65
briefly considers (as a special case of a conical

shell) the instance when the constraint u =0 is

added to the SD end conditions giving

u=v=w=M.=O "

at both ends. Shallow shell theory was employed,

and Hamilton's principle was applied to obtain

the nonlinear equations of motion. The only

result obtained in reference 3.65 which has any

relevance at all to this monograph is the post-

buckling amplitude frequency relationship of the
hardening nonlinearity type derived for the case

of thermal loading.

3.3.5 Large Deflections of Open

Cylindrical Shells

The only results available in the literature for

the nonlinear motions of cylindrically curved

shell panels are for the case when the edges are all

nominally supported by shear diaphragms (i.e.,

the SD boundary conditions are exactly satisfied

if the nonlinear terms in the functions for v, Nx,

and Mx are neglected in the statement of the
boundary conditions).
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The earliest results were obtained by Reissner

(ref. 3.46) using the shallow shell theory (i.e.,

eqs. (3.51) and (3.54)). Solution functions of the
form

_rx ny !
w(x,y,t) = A(t) sin _- cos -_

(3.89)

_rx ny I_(x,y,t) =B(t) sin -l- cos

were assumed, and a variational procedure was

followed to arrive at the following equation of
motion:

2(16n_)[ 2 16n2]x,,*_/d2A [-o0o2A -_-o:o,n A2+_(-_E )dr---T- _ A 3 =0

(3.9o)

A perturbation technique was used to solve equa-

tion (3.90), yielding the following relationship for

where _0o is the frequency according to linear
bending theory; i.e.,

/ n\ /lr\_l 2 Eh (_r/l) 4

(3.91)

and ¢oo, is the frequency according to linear
membrane theory; i.e.,

Eh (Tr/l) 4

Phw_ 2= R--7 [(n/R) 2+ (Tr/l) _] (3.92)

A perturbation technique was followed to arrive

at the relationship between nonlinear frequency
and amplitude A=_ as follows:

_y= 1+ 1 _o_/ __o,,2'_/16n_'_/h'_2/Am_\2
oo] 6 -g-Zo (,--_-)

(3.93)

From equation (3.93) it is seen that the non-

linearity increases or decreases the frequency

depending upon whether _0_/¢0 is less than or

greater than 1/V_, or 0.45. Also, the nonlinear

correction effect is strongly dependent upon the
value of the circumferential wave number n.

Looking at the amplitude A(t) in equation
(3.89), it was shown in reference 3.46 to take

the form (retaining only first order correction

terms)

|

L
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A(t) = A0{cos " 16n2[ h\[Ao\[¢oo,,2\[1L- )L
1 1 ]}--_ cos ¢ot--_ cos 2_0t (3.94)

which takes the shape shown in figure 3.69, along

with its components. This graph shows that the

shell does not spend equal time intervals de-

flected outwards and deflected inwards. Rather,

more than half of the cycle is spent during the

inward deflection. Also, the inward deflection is

larger than the outward deflection, the ratio of

amplitudes being given by

Ai .... d 1 " 32n_[ h'_[Ao\[_oo,J\=
Equation (3.90) was also Obtained by Cum-

mings (ref. 3.51) using the shallow shell equa-

tions and the Galerkin procedure. Integrating it

gives

d_b\ 2 _[ /2 3 1 \]

where _b(t)=(16n2/_-2R)A(t) and e=w0,,V¢00 _.

Equation (3.96) yields phase-plane diagrams as

depicted in figure 3.70.

In reference 3.51 another approach was also

taken wherein only the displacement function

for w as given in the first of equations (3.89) is

assumed, and the compatibility equation (3.54)

is integrated to yield

f(t)

I I cosoJt- I
2 3 _ c(_ 2wt

J" \\ I l/ "_...1
T _\ -tr .11 2= _t

I oo, //
\\ l l

Aolt)

FZGURE 3.69.--Amplitude and its component parts as

functions of time during nonlinear vibration. (After
ref. 3.46)

d_
dt

_< 8/9

dt
E > 819

FIGURE 3.70.--Phase plane trajectories for nonlinear

vibrations of a cylindrical shell according to Reissner's

equation. (After ref. 3.51)

= EhA (t){ 1 (lry[ (_'y

+ (h)] -_'sln _'x.T ny, A(t)r(n,_ _ cos --21rx

_(.Ry,n,,
ApplYing the Galerkin procedure then gives the

equation of motion

d2_b _ 7

-{-9(4)'6t-'(1+5t')'(1--5t')_b3]} =0 (3.98)

where _b and _ are as defined in the preceding

paragraph, and 5t=nl/_rR is an "aspect ratio"

for the panel. Depending upon 6t, equation (3.98)

can yield either hard spring or soft spring non-

linear response. The corresponding phase plane

trajectories are displayed in figure 3.71. Figure

3.71 shows that the oscillations for a very long

panel become less stable as the length of the

panel increases. Comparisons of the assumptions

made in the derivations of equations (3.90) and

(3.98), the Galerkin and perturbation methods

I
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FIGURE 3.71.--Phase plane trajectories according to

Cumming's equation. (After ref. 3.51)
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FIGURE 3.72.--Frequency ratio versus amplitude ratio;

l/ROo=l, R/h=lO00, 00=22.9 °, _=0.3. (After ref.

3.54)

for their solution, and the stability of the solu-

tions are investigated further in reference 3.66.
Leissa and Kadi (ref. 3.54) obtained an equa-

tion similar to equation (3.98) for shallow shells

having arbitrary, constant radii of curvature

(see chapter 10 for further discussion) and

obtained the amplitude-frequency curve shown

in figure 3.72 for a cylindrical panel having

1/ROo = 1 (square planform, with 0o as depicted in

figure 2.141), R/h = 1000, 00 = 0.4 radians (22.9°),

= 0.3, and m = n = 1. The shell behaves initially

as a soft spring but, as the amplitude is increased,

a region of hard spring behavior is eventually
reached.

The nonlinear vibrations of circular cylindri-

cal shell panels are also discussed to a limited

extent in references 3.67 through 3.70.

3.4 INITIAL STRESS

The voluminous results of chapter 2, as well as

the preceding sections of this chapter, dealt with

circular cylindrical shells under the assumption

that the only stresses present in the shells are

those arising from the vibratory motions them-

selves. In many (if not most) practical applica-

tions, shells are subjected to static loadings

causing internal stress fields• The presence of such
stresses affects the vibrational characteristics of

the shells significantly.
There is, of course, no limit to the number of

possible types of initial stress fields which may be

encountered in practice. However, some of the

most important ones are those in which the

stresses are uniform (not varying with the spatial

coordinates, x and 0). These loadings can occur,

for example, for shells acting as axial or torsional

load transmitting structures, for pressurized

(internal or external) cylinders, or for shells

spinning about their longitudinal axes. For this

reason, as well as because of the relative mathe-

matical simplicity, 'uniform initial stresses (or

prestresses) have received much attention in the

published literature.

Incorporating initial stress effects requires a

generalization of the equations of motion. These

changes will be discussed in section 3.4.1. Sub-

sequent sections give extensive numerical results

for various types of loadings, particularly those

yielding uniform prestresses. It will be seen that,

as usual, because of the relative mathematical

l
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simplicity, the vast majority of references deal

with shells having their boundaries supported by

shear diaphragms. Straightforward methods for

handling other edge conditions (including an

exact procedure) are available but, as will be

subsequently indicated, have been sparingly ap-

plied because of the great deal of effort required.

In the cases involving pressurization, except

where otherwise indicated, it is assumed that the

pressure is "constant directional"; i.e., the direc-

tion of the pressure does not change as the shell

deforms during vibration, but remains in its

initial direction.

3.4.1 Equations for Circular Cylindrical Shells

Consider a circular cylindrical shell acted upon

by a static initial stress or prestress field a_, _0_,

and ax0_ which is in equilibrium. The initial
stresses within the shell result from the solution

of a static problem having prescribed loading

and/or end conditions. In general the initial stress

field is not uniform; i.e., axi =aj(x,0), etc. During
vibration the internal stresses in the shell consist

of the initial stresses and the additional vibratory

stresses a_, _0, and a_0. The bending stresses in the

initial loading state are usually neglected, and

the displacements due to the membrane stresses

are also usually neglected. These assumptions

result in uncoupling of thd initial and vibratory

stresses; that is, there is no interaction between

the prestress displacements and the vibratory
stresses. Because the initial stress state is in

equilibrium, the potential energy of the system

in this state is taken as the reference level. Thus,

the'internal strain energy of the shell can be

written as (cf., eq. (1.84))

u =l /v((_xe_ _oeo-{-(T_o_/_o ) dV
I"

+ / (a;e_ _+a 10e0_-a_0_7_0) dV (3.99)
Jy

The vibratory stresses a_, a0, axe are related to the

vibratory strains by Hooke's law as indicated by

equations (1.70). Next the strain-displacement
relationships of a given shell theory (see sec. 1.4)

must be substituted into equation (3.99). How-

ever, because the initial stresses may be large it

is necessary to use the second-order, nonlinear

strain-displacement equations (cf., section 3.3)

in the second integral of equation (3.99) while

using only the linear relationships in the first

integral. This maintains the proper homogeneity

in the orders of magnitude of the terms in

the integrands. Because the initial stresses are

assumed to be membrane in nature (uniform

through the thickness), it is sufficient to retain

only the linear terms in the equations relating

curvature changes to displacements. Applying

Hamilton's principle (cf., eq. (2.13)) and taking

the necessary variations with respect to the dis-

placement components u, v, and w then straight-

forwardly leads to the desired equations of

motion, which is the linear form of equation (2.3).
However, in this case the matrix differential

operator is generalized from equation (2.5) to the
form

1
[.C]= [2,D--M]Wk[2MOD]+-_[2_i] (3.100)

C'

where [_D--M] and [_MOD] are the Donnell-Mush-

tari and modifying operators (depending upon

the shell theory), respectively, as used previously

in equation (2.5), k=h2/12R 2, C=Eh/(1--v2),

and [2i] is a matrix operator containing the addi-
tional terms which account for the initial stresses.

The [2_D-M] operator for isotropic and anisotropic

materials is given by equations (2.7) and (3.12),

respectively. Corresponding [_MOD] operators ap-

pear as equations (2.9) and (3.14), respectively.

Any of these operators can be used directly in

equation (3.100).

The operators [_] arising from the nonlinear

forms of the Donnell-Mushtari, Sanders (ref.

3.71), Herrmann and Armen£kas (ref. 3.72), and

Washizu (ref. 3.73) were shown by Sampath (ref.
3.74) to be as follows for the case where No _ and

N,o i are not functions of 0 (No=go'h, etc.) :

r-.
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DonneU-Mushtari:

[_] =

-0 0

0 0

0 0

0

0

_ O/ _O\ 02_s_ N= ;)--N"o0----2

O .O i 02

(3.101a)

Sanders:

[:ed =

-o_(U,'o_ N,' o' O(N='o) No' o'oo_4 _)+ _ 002 -_o\q- _ 4 osoo

O[_(N ,.k_No,) O ] O[_(N ,q_No,) O ]_No,

i a 2 _ a ON=g
0 No_O + N,o_q as

Herrmann-Armendkas and Washizu:

0

0 0

O .O _O2

0 .a

(3.101b)

A 0

[_i]= 0 A--Ng

•O . O ONxo _

o ]O O ON=g

2No'_o+ 2YgL+--g /

-- (A--Noi) J

(3.101e)

where

a/ _o\ .02 . 02 O .ao oo ooj
t

and where s = x/R, as before. The [£MOD] operator for the Herrmann-Armen_kas theory is the same

as that of the Fltigge theory. The [-CMOD]operator for the Washizu theory is the same as for the Golden-

veizer-Novozhilov theory (ref. 3.74).

The initial stress matrix operator for the Fli_gge theory in the case of uniform N= i, Ng, and N:0 _

is (ref. 3.75)

[_el]=

• 02 02 a2
No_--+ N=i--+ 2N=o _-

aO2 as 2 as O0

0

0
_No C-.--

Os

0
0 -Ng--

as

3 2 O 2 O 2

No _-:- + N= _- + 2N=o _-
002 ' as 2 as a0

_O 2 _a
No _-0+ N:o Os

O ia
N °ioo + 2N:° -_s

02 a2 a_
-- Nol-- _ N _:_= _ 2N:o s:----z-..

002 Os: os o_

(3.102)

\. ,

0
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The symmetry of the operator in equation (3.102)

as well as the repetition of terms along the prin-
cipal diagonal is striking in comparison with

those given in equations (3.101).

In the case of uniform initial stresses the single

nonvanishing term of the Donnell-Mushtari

operator (eq. (3.10In)) simplifies to

/ .02 . 02 .02\

-_N='_s2+2N=o*O-_+No'_) (3.103)

which is the same as the terms on the diagonal of

the Fliigge operator (eq. (3.102)).

, The initial stress operator for use with equation

(2.9a) in equation (3.100) according to the

Timoshenko theory (ref. 3.76) is

[_C_]=

• 02 _NoiO0 --Ndo-_O

02
0 i__ 0

N= Os 2

02

0 0 -NJ_s 2

-No'(1+02_
_ \ O02/

(3.104)

for the case of uniform Nj and No t.

Voss (ref. 3.77) derived a form of the equa-

tions of motion according ,to the Goldenveizer-

Novozhilov theory. In this case, for uniform N_ _

and No t and for N_0 _= 0 the initial stress operator
becomes

m

__ , 0__22 __No, 0No Os O0

02
'-- 0

N_ Os2

0 02

No'o--_ --YJ-_s _

02

No 002

(3.105)

0

p

0

=

0

It is disturbing to note that this operator is

unsymmetric, even though the modifying opera-

tor (2.9b) is symmetric. However, the Washizu

equations (3.101c), which also use the [_MOD] of

the Goldenveizer-Novozhilov theory, are sym-

metric. As further examples of the great variety

of shell theories employed in the literature, Fung,

Sechler, and Kaplan (refs. 3.78 and 3.79) used a

set of equations of motion consisting of the [£MOD]

operator of Timoshenko theory, eq. (2.9a), and

the same [_,] operator used by Voss, eq. (3.105).

Mugnier and Schroeter (ref. 3.80) followed a

derivation similar to that of the Fliigge theory,

but arrived at a set of equations of motion for

which both the [2MOD] and [21] operators are

different from any of those given previously in

section 2.1.1 or in this section, respectively.

Reissner (ref. 3.81) derived the equations of
motion for initially stressed (uniform N_ _ and

N0' only) circular cylindrical shells for the mem-

brane theory. These are obtained by taking k = 0

in equation (3.100) (including where it appears in
[2_D--M] and using for [_i]:

i0 0 )10 0 (3.106)
[_'] = 02 .,2

3.4.2 Uniform Axial Prestress

A closed circular cylindrical shell having a uni-

form axial initial stress field is obtained by simply
loading the ends of the shell with a uniform axial

stress resultant as shown in figure 3.73. The

i
Nx = CONSTANT

FIGURE3.73.--Circular cylindrical shell subjected
to uniform axial prestress.

1

.
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resulting internal stress field is then simply given

by N, _= constant, No _= N,0 _= 0, where N, _ is

positive in tension as indicated in the figure.
Consider first a shell supported at both ends

by shear diaphragms. The boundary conditions
for the vibratory force and moment resultants and

displacement components are given by equations

(2.33). As in the case of an unloaded shell, dis-

placement functions taken in the form of equa-

tions (2.20) satisfy the boundary conditions

exactly, provided )_is taken as _ = m_rR/1. For the
Donnell-Mushtari theory the operator [_MOD] is

null. Substituting the operators from equations

(2.7) and (3.101a) and the displacement equations

(2.20) into equation (3.100) yields a set of equa-

tions for the eigenfrequencies cowhich is the same

as equation (2.21) except that the element in the
third row and third column is now changed to

_2

1+k(_*-_n 2) %Y,_-_ -_2 (3.107)

where _2 = w2R_p( 1 _ _2)/E. Further, let the tan-

gential inertia be neglected, an assumption which
is often justifiable, especially when the Donnell-

Mushtari theory is used (see sec. 2.3.4). Then _2

disappears from the coefficient matrix of equation

(2.21), except for the term given by equation

(3.107), and an explicit equation for the frequency

parameters can be written as ,

i_2 Ko+k AKo
_Z-Nx-_= -_ (3.108)

where K0, AK0, and /_1 are given in equation

(2.36), table 2.1, and equation (2.43), respec-

tively. The significance of equation (3.108) is

that, if tangential inertia is neglected, the numeri-
cal results for the frequency parameters of circular

cylindrical shells supported by shear diaphragms

obtained using the Donnell-Mushtari theory are

directly applicable to the case where uniform

axial prestress is present; one simply replaces _22

by e2-Yx'_,2/C (C =Eh/(1 - _2), h =m_rR/l).
The above statement is even capable of fur-

ther generalization. Consider, for example, the
case when the shell is orthotropic. Then the

Donnell-Mushtari equations of motion are given

by equations (3.8). Again, if tangential inertia

is neglected, then it is clear that numerical
results for orthotropic shells supported by shear

diaphragms can be used simply by replacing

co2R2p(1- _)/E_ by co_R2p(1- _)E_-N_9,2/C.

Clearly, if tangential inertia is neglected the

same useful simplification can be made for the

membrane theory in the case of initial axial

stress. From equation (3.106) it is seen that

equation (3.108) also applies to membrane theory

by taking k = 0.

It is interesting to note that the Fltigge equa-

tions permit a similar manipulation in the case

where the tangential inertia terms are retained.

Looking at the Fliigge initial stress operator given

by equation (3.102) it is seen that in the case
where No _= N_e i = 0 that identical terms N_iO2/Os 2

in each element of the principal diagonal are

all that remain. Thus, in formulating the char-
acteristie determinant for the case of the shell

supported by shear diaphragms by means of

equations (3.100), (2.7), (2.9d), and (2.20) it is
found that the same determinant arises except

that _2 is replaced by _2_ N_h_/C. This fortunate
circumstance was pointed out by Bozieh (ref.

3.82) and permits the direct utilization of the

extensive data presented earlier in those tables

and figures of section 2.3 which result from

the Fltigge theory. One simply replaces _22 by

_2-N_2/C wherever it appears.
Because of the identical mode shapes of free

vibration and classical, linear buckling for the

case of shear diaphragm end supports, it is easy
to show that the frequency co can be expressed as

=wo _ 1-_] (3.109)

where coo is frequency in the absence of initial

stress and (N_%, is the critical value of N/which

causes buckling. If one were to plot co/co0versus

N_/(N_%,, according to equation (3.109) it is
clear that the curve would be a parabola having

its vertex at N_/(N_%_ = -1 as shown in figure

3.74. A positive (tensile) N_ _stress resultant field

increases the natural frequency without limit,

whereas negative (compressive) values of Nx _de-

crease the frequency until, at co=0, buckling

ensues.

Nikulin (ref. 3.83) used the Donnell-Mushtari

equations including tangential inertia and the
exact displacement functions (2.20) to obtain a

characteristic equation for the shell supported
7
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FIGURE 3.74.--Frequency ratio versus axial initial stress ratio; shear diaphragm end conditions.

by shear diaphragms at both ends. The charac-

teristic equation is

_26-- [ K2-]-_Nxl]_24

FK /3-_\ 2 2 X2 ,] 2

(3.110)

where K0, KI, and K2 are the Donnell-Mushtari

coefficients in the absence of initial stress, given

in equations (2.36). The solution of equation

(3.110) for its lowest root _2 was accomplished

in references 3.83 and 3.84 by the commonly
used device of neglecting the terms containing

_6 and _24 (see sec. 2.3.5) and by neglecting

k(_2-_-n2) 2 and _2Nxl/C with respect to unity to

give

(1 -- _) X4+k (X2-Fn2) 4-F_-Nj(X2-Fn2) 2

(3.111)

= o _ +f_i_-) (3.112)

where _o2 is the frequency parameter in the ab-

sence of initial stress and f_l is defined by

B1- (3.113)
k (_2-_-n2)2

14
(1 -- _2) X2

It is interesting to note that Nikulin in reference

3.84 arrived at equations (3.111) and (3.112) by

using an altogether different shell theory (see the

discussion in sec. 3.4.3).

Variation of the parameter/91 with R/h and

n is shown in figure 3.75 for l/R = 2 and _ = 0.3.

Numerical results showing the behavior of the

frequency (cps) with the initial stress and n were

also given in references 3.83 and 3.84 for shells

having R/h=500, h=O.1 cm., E=2X106 dyne/

cm 2, _ = 0.3, m = 1, and p - 8 X 10-6 dyne'sec_/cm 4

and are presented in figures 3.76 through 3.80

for l/R = 1/2, 1, 2, and 6.

40C

500
80C _ _'-

6OO

4OO

i\

I 2 5 4 5 s ' 7 s 9
rl .

FIGURE 3.75.--Variation of the parameter f_1 used in

equation (3.112) w_th R/h and n for 1/R=2. (After

refs. 3.83 and 3.84
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FIGURE 3.76.--Frequencies (eps) of axially prestressed

SD-SD shells for 1/R = 1/2; other dimensions in text.

(After refs. 3.83 and 3.84)
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FIGURE 3.77.--Frequencies (cps) of axially prestressed

SD-SD shells for l/R = 1 (tensile stress) ; other dimen-

sions in text. (After refs. 3.83 and 3.84)
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FIGURE 3.78.--Frequencies (cps) of axially prestressed

SD-SD shells for 1/R =1 (compressive stress); other

dimensions in text. (After refs. 3.83 and 3.84)
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FIGURE 3.79.--Frequencies (cps) of axially prestressed

SD-SD shells for l/R=2; other dimensions in text.

(After refs. 3.83 and 3.84)
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FIGURE 3.80.--Frequencies (cps) of axially prestressed
SD-SD shells for 1/R =6; other dimensions in text.
(After refs. 3.83 and 3.84)

Armen_kas (ref. 3.85) used the exact solution

(2.20) in the Herrmann-Armen_kas equations to

obtain numerical results for axially prestressed

SD-SD shells. These are shown in figure 3.81,

where the frequency parameter _h_v/2p(1--F_,)/E

is plotted versus the axial wave length parameter

mR/l for R/h= 1000, _ =0.3, and N=I/C=O.O01.
Results for no initial stress are also shown for

comparison. It was found that for modes having
n _ 1 the influence of axial'initial stress decreases

as R/h decreases. For example, in figure 3.82 it

is seen that the prestress effect is appreciable

for R/h=lO00, whereas for R/h=20 (and the

other parameters the same as for figure 3.82)

the frequency increase was less than 5 percent.
#

120

H0
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FIGURE3.81.--Comparison of frequencies with and with-
out axial prestress for an SD-SD shell; R/h=lO00,
v=0.3. (After ref. 3.85)

For beam-like vibrations (n=l), the effect of

axial prestress on the predominantly radial

modes having short axial wavelengths (large

mR�l) also decreases as R/h decreases; however,

for modes having long axial wavelengths, this

effect is not dependent upon h/R. In the case

IO0

= \

- _ , "_ _

00.01 0.02 0.04 0.07 0.1 0.2 0.4 0.7 I 2 4 7 I0

mR/_

FIGURE 3.82.--Relative effect of axial pre-
stress (N=_/C = 0.001) on the frequency
of an SD-SD shell; R/h = 1000, F = 0.3.
(After ref. 3.85)
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of thin shells (R/h= 1000) vibrating in modes

having short axial wave lengths, the relative

effect of initial stress on the frequency is not

dependent upon n inasmuch as in these modes

the effect of the axial wavelength on _ is of

greater significance than that of the circumfer-

ential wavelength. As seen in figure 3.82, in the

other frequency spectrum range, the relative

effect of axial prestress is negligible for axisym-

metric (n=O) modes, but can become large for

flexural modes. The value of mR�1 at which this
relative effect is a maximum increases as n

increases.

Experiinental results for a shell subjected to

compressive axial initial stress were obtained by

Herrmann and Shaw (ref. 3.86) for a stainless

steel SD-SD shell having R= 1.50 in, h=0.010

in, and l = 29 in. These are shown in figure 3.83

for a compressive axial force of 2000 lb. Analyti-

cal results calculated from equation (3.156) of

section 3.4,4 are also given. To show the change

in frequencies due to the initial stress, figure 3.84

is also given for the case of no initial stress.

Very little has been reported in the literature

for axially loaded shells having boundary con-

ditions other than shear diaphragms, although

the same exact, straightforward procedure could

be followed as for unloaded shells (see sec. 2.4).

Ivanyuta and Finkelshteyn (ref; 3.87) used
the Donnell-Mushtari shell equations and the

Bubnov-Galerkin approximate procedure with

beam functions (cf., sees. 2.4 and 2.4.1) to arrive

at the following general formula for the fre-

quency parameters £=_RV'p(1-_)/E of axi-

symmetric modes:

14 1213 N# l_

a = k_+ (1 -- _)/_5+_-h(1-- _) _ (3.114)

where ll, . . . , 15are the integrals of beam func-

tions as defined by equations (2.71) and

fix "X "
16= Jo m m az (3.115)

(see the discussion in sec. 2.4). Equation (3.114)

permits the evaluation of frequencies for shells
having arbitrary edge conditions and axial initial
stress.

Nikulin (ref. 3:84) obtained results for a cir-

cular cylindrical shell clamped at both ends and

subjected to an initial axial load. The shell di-

o

n=7 o

2OO0

n= 6 o

_500

f(CpS)

n=5 o

1000

500

ETICAL

EXPERIMENTAL o o o oR/h=150

0 0.[ 0.2 0,3 0.4 0.5

mR/_

FIGURE 3.83.--Theoretical and experimental frequencies

for an SD-SD shell (dimensions given in text) sub-

jected to a compressive initial axial force. (After ref.

3.86)
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FIGURE 3.84.--Frequencies for the shell of figure 3.83

without initial stress. (After ref. 3.86)
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mensions used were h=0.5 mm., /=238 mm.,

R= 118 mm. and the material properties were

given by

E = 2 X 106 dyne/cm 2, _ = 0.3

p = 8 × 10-6 dyne.sec2/em 4

Theoretical and experimental results for fre-

quencies (cps) versus axial initial stress are com-

pared in figure 3.85 for various circumferential
wave numbers n. Similar results were obtained

for a shell having structural orthotropy (inte-

gral ring stiffeners) as shown in figure 3.86 for

H=2.5 mm. These results are given in figure
3.87.

Miserentino and Vosteen (ref. 3.88) presented

1600

1200

f

(cps) 800

-- n=13

.------- _ -------_---_ -'-'-"--'_

_._...._ r • 11 _

fl 8 7._
I

------ -'-C-

EXPERIMENTAL

RESULTS :

n=6 v
7 A
8
9 0

I0 •
II •
12 •

13 •

THEORETICAL

RESULTS :_

4OO

816 1632

o-_, dyne/cm 2

FIGURE3.85.--Theoretical and experimental frequencies
for an axially prestressed shell having clamped-clamped
boundaries; dimensions in text. (After ref. 3.84)

15 mm I'_ i'-*134,7 mm Pl2mm I_ 8mrn

1 II " '-m[

.... Ill

i. 9 STIFFENERS387 mm "l

FIGURE3•86.--Dimensions of shell having structural
orthotropy. (After ref. 3.84)

experimental results for a clamped-clamped shell•

Model 324 described by the physical properties

listed in table 3.12 (see section 3•4.4) was tested.

5200
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24O0

2000

f
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FIGURE3•87•--Theoretical and experimental frequencies
for the orthotropie shell of figure 3.86 subjected to axial
initial stress• (After ref. 3.84)
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FIGURE 3•88•--Experimentally determined frequency
parameters for an axially prestressed, clamped-clamped
shell• (After ref. 3.88)
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The frequency parameter _R2p/E is plotted

versus the axial tension parameter N_/Eh in

figure 3.88 for m = i and various values of n.

Free vibrations of axially prestressed circular

cylindrical shells are also discussed in references

3.89 through 3.93.

3.4.3 Uniform Circumferential Prestress

Uniform circumferential initial stresses can

arise from either of the following causes:

(1) Internal or external pressure

(2) Constant velocity rotation about the axis

of the cylindrical shell.

In the former case an internal pressure p0 causes

a stress resultant No_=poR, whereas an exter-

nal pressure p0 causes Ne _= -poR, where p0 is

a positive number. In the case of rotation it is as-

sumed that the spin frequency _ is small com-

pared with the vibration frequency, so that

Coriolis and gyroscopic effects can be ignored.

Then Noi=ph_o2R _. Both cases are only truly

valid for the infinite shell, for the effect of edge

conditions on a finite length shell would alter the

uniformity of the static initial stress field. How-
ever, for thin shells (large R/h) and certain

types of edge constraints, the nonuniformity in
membrane initial stress are localized to the vicin-

ity of the edges, and the gross vibrational charac-

teristics of the shell (particularly, frequency) are

not greatly affected and the results contained in

this section can be meaningfully applied.

The same logic which led to the simple formula

(3.108) in the preceding section dealing with axial

prestress can also be applied to circumferential

prestress. That is: (1) taking the case of the circu-

lar cylindrical shell supported at both ends by

shear diaphragms, (2) employing the Donnell-

Mushtari shell theory (see section 2.3.1 for infor-

mation concerning its range of applicability) ; and

(3) neglecting tangential inertia leads to the

simple formula

.n2 K0+k AK0 (3.116)
_22-N0'- C - R1

which is of the same form as equation (3.108).

The statements made in the preceding section

dealing with the usefulness of equation (3.108)

apply here to equation (3.116) as well. That is, a

great deal of the numerical results available in

chapter 2 and elsewhere can be used directly as

the right-hand side of equation (3.116). Further-

more, from equation (3.116) it is clear that the

effect of positive (tensile) circumferential initial

stress is to increase the frequency, that negative

(compressive) N0 i decreases the frequency and

can lead to zero frequency (buckling), and that

the effects of initial stress become more pro-

nounced with increasing circumferential wave
number n.

Another characteristic behavior for circum-

ferentially prestressed shells can be seen from

equation (3.116). As seen in chapter 2, unloaded

shells usually (depending upon h/R, l/R, etc.)

have fundamental (lowest) frequencies occurring

at values of n greater than unity (cf., figs. 2.19

through 2.22). Equation (3.116) shows that the
effect of tensile Ne _ is to decrease the value of n at

which the fundamental frequency of the loaded

shell occurs, whereas compressive No _ increases
the circumferential wave number of the funda-

mental frequency.

It would appear from equation (3.116) that

circumferential prestress has no effect upon the

axisymmetric (n = 0) modes. However, it must be

remembered that the Donnell-Mushtari theory is

generally not considered applicable for small

values of n (see sec. 2.3.1) even though acceptable

results for vibration frequencies of unloaded shells

having small l/R ratios are seemingly given.

Further, looking at the matrix operators for initial

stresses according to the other theories (eqs. 3.101
and 3.102) it is seen in each of them that there are

terms containing Ne _which are not multiplied by
a derivative with respect to 8. Thus, the effect of

N0 _does not vanish in the other theories for n = 0.

From equation (3.106) it is seen that for the
membrane theory equation (3.116) is replaced by

(n 2-1) K0
_2_No___=._= (3.117)

C K1

Section 3.4.2 shows that the Fltigge theory

including tangential inertia permits the direct

application of results for unloaded shells to prob-

lems of axially loaded, SD-SD shells. Because of

the appearance of off-diagonal terms involving

No t in equation (3.102) there is no equivalent

simple replacement for the case of circumferential
initial stress.

1
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Nikulin (ref. 3.84) analyzed SD-SD shells subjected to circumferential prestress. A shell theory

was used which resembles the Love-Timoshenko theory except that (1--_)02/Os 2+02/002 is replaced
by V 2 (i.e., u is neglected relative to unity in the first term) in the element of the second row and

second column of the modifying differential operator given by equation (2.9a). The initial stress
matrix operator [_] (see eq. (3.100)) corresponding to this theory was found in reference 3.84 to be
(for uniform initial stresses)

" 02 02 _2
Nxo i_ • _ • __ _ •

Os O0 (Nx" N°') Os O0 Nx°'_s2

02 02 02
No i- N_=--: + 2N_oi--

Os O0 Os _ Os O0

0
0 2N,o i---

Os

[_] =

Tangential inertia was retained. Using the exact

displacement functions (eq. (2.20) led to the

following formula for frequency parameters of
SD-SD shells:

n 2 _

(1 -- u2)h_+k(h2+n2)4+(--C-1)Ne'(h2+n2)2
_2_--

(h2+n2)2+n2+(3+2u)X2

(3.119)

Equation (3.119) is comparable to equation
(3.111) for axially loaded shells and can be
rewritten as

_2 :_ _02(1 +/32Noi__-) (3.120)
where

(n 2- 1) (_k2+n 2) 2

/32= h4+k(h2+n2)4 (3.121)

comparable to equation (3.113). Variation of the

parameter/32 with R/h and n is shown in figure

3.89 for 1/R = 2 and p = 0.3. Again, from equations

(3.119) and (3.120) it is clear that positive values

of No _ increase the free vibration frequencies,
whereas negative values decrease them. It is in-

teresting to note that in this case (including tan-

gential inertia) the theory used gives the result
that circumferential initial stress has no effect on

the vibration frequencies for n = 1 modes (in con-
trast to n = 0 modes when the Donnell-Mushtari

theory is used and tangential inertia is neglected,

as seen earlier in this section).

The frequency parameter can also be expressed
as

f$2=_o2[l +No_/(Noi)c_] (3.122)

2N_o, 0
Os

(3.118)

_N ,__No,(I_i O2__2N.o, 02
os \ ooz/ Os 00..

where (Nd)_, is the critical value of circumferen-

tial initial stress which causes buckling. In figure
3.90 a plot of the frequency ratio co/o_0 versus
No_/(Nel)o_ is given for various circumferential

wave numbers n. The particular shell upon which
figure 3.90 is based has the following dimensions

and physical properties: R/h=500, l/R=2,
h=0.1 em, E=2×106 dyne/em 2, u=0.3, and

p = 8 X 10-6 dyne.see2/cm 4. In this ease the critical

buckling load, as can be seen in the figure, occurs
for n = 9 and has the value

(No')_, = (1 _-_-_\l/ NR (3.123)

&

c_ooo

55,000

4_000_

_ooo

25,000

15,ooo

50oo

o

/

R/h=lO00/

3 4 5 6 7 8 9 I0
n

FIGURE 3.89.--Variation of the parameter _2 used in

equation (3.120) with R/h and n for l/R=2. (After
ref. 3.84)
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; %
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_j __/t __

0 I 2 3 4 5

FIGURE 3.90.--Frequency ratio versus circumferential

initial stress ratio for an SD-SD shell; dimensions in

text. (After ref. 3.84)

Bleich and Baron (ref. 3.94) used an energy

method to arrive at the following formula for fre-

quencies of circumferentially prestressed SD-SD
shells:

°_2 ---- w° L_- B (p--_2)N°i (3.124)

The parameter B is a function of l/R and n and
was tabulated in reference 3.94 over ranges of

these ratios. This table is repeated as table 3.10.

It is interesting to note that these results include

negative values of B in most cases for n = 1, indi-

t

TABLE 3.10.--Values of B for Equation (3.124)

for Circumferentially Prestressed SD-SD Shells

n

l

1 2 3 4

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.50

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0. 282

.111

--. 0427

--. 0457

-- .212

--. 240

--. 248

--. 245

--. 236

-- .211

--. 185

--. 140

--. 107

--. 0842

--. 0672

--. 0547

--. 0452

2. 604

2. 362

2. 222

2.152

2. 126

2.123

2.132

2.147

2.165

2. 200

2.231

2. 278

2.310

2. 330

2. 345

2. 356

2. 364

7.108

6. 956

6. 906

6. 903

6. 922

6. 947

6. 973

6. 997

7.019

7. 056

7:083

7.120

7.143

7.157

7.166

7.173

71178

13.86

13.81

13.82

13.85

13.89

13.92

13.95

13.97

13.99

14.02

14.04

14,07

14.08

14.0!

14. I{]

14.1C

14.1C

cating that positive N0 _cause decreases in the fre-

quencies in these cases, and vice versa.
Armen_kas (ref. 3.85) used the exact solution

(2.20) in the Herrmann-Armeni_kas equations to
obtain numerical results for SD-SD shells cir-

cumferentially prestressed due to pressure. Par-

ticular attention was .paid to comparing the

differences arising between considering the pres-
sure to be either constant directional or normal

to the surface (hydrostatic). The corresponding
initial stress terms and characteristic equations

are given in a more generalized form (including

axial prestress as well) in section 3.4.4. According

to this theory, circumferential initial stress does

not influence the axisymmetric (n =0) modes of

free vibration. Figure 3.91 depicts results for the

frequency parameter _h%/2p(1 +_)/E versus the

axial wavelength parameter mR/l for the beam-

like (n = 1) modes of shells having No_/C = 0.001,

R/h = 100, 200, and 1000 and _ = 0.3. Hydrostatic

and constant directional frequencies are also

14X IO -6 i

13X I0 -6

'2X '0-6 // N; f: : 2. O,

IOX 10 .6

8x I0 -6 HYDRO_TATI 'i_HYDROSTATIC I ,_._'

5x10-6 CONSTANT- /_- R/h=lO00

D I RECTION A L_X._/

4X IO-6 , _///_HYDROSTATIC

2XlO -_

0
0 O,OI 0.02 0.05 0.04 0.05

rnR/._

FIGURE 3.91.--Comparison of effects of hydrostatic, con-

stant directional and no circumferential prestress upon

the frequencies of the beam like (n= 1) modes of an

SD-SD shell. (After ref. 3.85)
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compared with the case of no initial stress.

According to this plot, internal pressure decreases

the frequency of this mode, whereas constant

directional internal pressure increases the fre-

quency; this effect becomes negligible for large
mR/l (mR/l>5). However, the effect becomes

very significant for small mR�l; the frequency
can be decreased to zero, indicating that the

shell reaches a condition of instability due to inter-

nal pressure. The critical pressure is ETr2Rh/l 2,
and is independent of the R/h ratio. The cor-

responding critical mR/l ratio for Ne+/C =0.001
is 0.0102. It must be remembered that this

phenomenon assumes the absence of axial initial
stress.

The effect of the circumferential prestress upon

the lobar-type flexural modes (n=2,3,4) can be

seen in figures 3.92, 3.93, and 3.94. It is clear that

internal pressure increases the frequency for these

modes, regardless of whether the pressure is con-
sidered to be hydrostatic or constant directional.

The effect is larger for large R/h and for small

mR/l. For example, it was found in reference

3.85 that the frequency of a steel shell having
R/h = 1000 and mR/l = 0.03 subjected to an inter-

nal hydrostatic pressure of 1 psi and vibrating in
a mode with n = 2 is approximately 420 times the

frequency of the unloaded shell! This finding

appears to be in contradiction with that of Fung,
Sechler, and Kaplan (ref. 3.78), who indicated

FIGURE 3.92.--Effect of circum-

ferential prestress upon the fie-

FIGURE 3.93.--Effect of cir-
cumferential prestress upon
the frequencies of the n >_2
modes of an SD-SD shell;
R/h =20. (After ref. 3.85)
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FIGURE 3.94.--Relative effect of internal hydrostatic

pressure (Ne_/C=O.O01) upon the frequencies of an

SD-SD shell. (After ref. 3.85)

that initial stresses have a significant effect on

the frequency only for n>3. This discrepancy

may be because in reference 3.78 results were

studied only for relatively large mR/l. From

figure 3.94, for example, for mR/l > 0.45 the effect

of circumferential prestress becomes negligible

for n<4 and R/h<lO00. Also from figure 3.94,

the effect of circumferential prestress upon the
frequency ¢iepends to a large extent upon n; this

effect is larger for modes having values of n close

to that for which an SD-SD shell of length 1/m
will buckle.

Armen£kas and Herrmann (ref. 3.95) analyzed

the infinitely long shell subjected to circumferen-

tial initial stress. Three types of pressures were

considered as being active during the vibratory

displacements of the shell wall:

(1) Constant directional

(2) Hydrostatic

(3) Centrally directed.

The first two types have been discussed above.

In the third case, during deformation the magni-

tude per unit original area remains constant and
the direction remains toward the center of the

shell. In all three cases the system of applied

loads is conservative. The equations of reference

3.72 are used with exact plane strain displace-

ment functions (2.24) to arrive at the following

characteristic equations for the cases of:

constant directional pressure

002 D 2
00'--p_[C(1+n _) +_-_(n -- 1) 2

+N#(1 +n") (2 __R) ]

N _ _h

+_-_2(n2--1)2( n2+1 _2-_)

+ CD n2(n=_l)== 0 (3.125)
p2h2R6 - .

hydrostatic pressure

004--p_R2 { C(1 +n_) +D(n2-1) 2

+ No'[ 2n2-T-2_(e--n2) ] }

CD 2 =
+p2_n (n -- 1) 2=0 (3.126)

centrally directed pressure

002

00,--p--_22[C(n2+l ) D2 - 1)3

- n_h\]
+Nfl(l+2n_+-_)J

+ p_h2R,[Y°---_l (C+No,)[n2(n2_2)

+ n'(1--n2)_ ] +Dn'(n'- l ) 2}

CD _ 2
p_n (n --1)3=0 (3.127)

where C = Eh/(1 -- v2) and D = Eh3/12 (1 - v_), as

before, and

l

"7'
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the upper sign in all these equations applying to

internal pressure, while the lower sign applies to

external pressure.

The lowest roots of equations (3.125), (3.126),

and (3.127) which correspond to the predomi-

nantly radial mode are (according to ref. 3.95)

constant directional pressure,

F NoiR2[

hydrostatic pressure,

= NeiR 2 h

centrally directed pressure,

oo2=K{ D(n2N°_R2_ _F 2 h +kn4]}1+ 1)2|n - 2
(3.131)

where

Dn 2(n 2-- 1) 2
g = (3.132)

phR4[1 +n 2+ (h_n4/12R_) ]

k = h2/12R 2, as usual, and where terms of order

of magnitude (Ne_/C) 2 and (h/R) 2 have been

neglected in comparison with unity.

In equations (3.129), (3.130), and (3.131) it

may be observed that the frequency of the radial

mode increases with initial internal pressure and

decreases with external pressure. The relative

effect becomes very large for very large values of

R/h, as illustrated in figure 3.95 for n=2. The

slopes of the curves change at the origin as the

pressure changes from external to internal; _00 is

the frequency in the absence of initial stress. In

figure 3.96 _ is plotted versus R/h for n = 2, 3 and

No_/C=O, 1/1200. The differences among the
types of pressure representations decreases as n

increases; for n = 6, it is negligible.

Two other interesting types of circumferential

initial stress were considered by Armeni_kas and
Herrmann in reference 3.95. This first case arises

when, for example, during fabrication a circular

cylinder is generated from a flat plate by means

of circumferential bending moments Me _ which

are residual after joining the lateral edges. The

frequency of the lowest (radial) mode of the
infinite shell is

2 Dn2(n2-1)2[ I+(M°_/CR)
= L _ ] (3.133)

Positive values of M 0_ (ones causing compressive

stresses on the inner boundary of the shell) are

seen to increase the frequency. However, the

effect is generally small because, for most mate-

rials the yield stress is reached before M 0_becomes

significam in equation (3.133).

The sec(md type of circumferential initial stress
alluded to above is when the internal and external

boundaries of the infinite shell are subjected to

oppositely directed uniform, circumferential, sur-

face shearing forces f_ and fex, respectively, as

FIGURE 3.95.--Effects of various
pressure representations upon
the frequency ratios of circum-
ferentially prestressed infinite
shells: n =2, p=0.3. (After ref.
3.95)
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NO/C= 1/1200 (EXCEPT AS NOTED)

0 0.0_ 0,02 0,03 0.04 0.05 0,06 0.07 0.08 0.09 OJ

B/R

FIGURE 3.96.--Effects of various pressure representations

upon the frequency ratios of circumferentially pre-

stressed infinite shells; n = 2, 3. (After ref. 3.95)

t

shown in figure 3.97, thereby generating a trans-

verse shearing force resultant Qe*. Neglecting

circumferential inertia, reference 3.95 shows that

the frequency becomes

2 D(n2--1)2[ (Q°') 2R2]

= L1 CDn2 j (3.134)

The effect of Q0_can be very large for large values

of R/h.

Experimental results for a shell subjected to

circumferential initial stress due to external pres-

sure were given in reference 3.86 for a stainless

steel shell having R = 1.50 in., h=0.010 in., and

l = 29 in. These are shown in figure 3.98 for an

external pressure of 3.5 psi. Analytical results

calculated from equation (3.156) of section 3.4.4

are also given. The change in frequencies due to

the initial stress can be seen by comparing figure

3.98 with figure 3.84.

Koval (ref. 3.96) obtained simple frequency

,ex=,,o

h

FIGURE 3.97.--Shell subjected to circumferential,

surface shearing forces. (After ref. 3.95)

n=7 o

2000

n=6 o
]500

f(cps)

I000 n=5 o __

n=4 o

5OO

o

o I i

_Z--------

o

o

THEORETICA ....

EXPERIMENIAL o o o

R/h =150

0.1 0.2 015 014

mR/,¢

0.5

FIGURE 3.98.--Theoretical and experimental frequencies

for an SD-SD shell (dimensions given in text) sub-

jected to an initial external pressure. (After ref. 3.86)

formulas for shells subjected to circumferential

initial stress and having various boundary condi-

tions. The Donnell-Mushtari shell equations,

neglecting tangential inertia, were used, as well

7 ¸
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as Yu's assumption, _2/n2<<1 (see sec. 2.3.5 for

further discussion). For shells supported at both
ends by shear diaphragms (SD-SD shells) the

resulting formula for the frequency parameter is

= kn 4_- (1 -- _2) (m_R/nl) 4+Ne_ C (3.135)_2

where m=1,2, . . . . Using the same assump-

tions reference 3.96 shows that equation (3.135)

can also be applied to clamped-clamped shells

provided that the eigenvalues of the clamped-

clamped beam are used; i.e., m=1.506, 2.500,

3.500, .... Similarly, the SD-free shell is

gbverned by the SD-free beam eigenvalues, giving

m = 1.250, 2.250, 3.250 .... for use in equation

(3.135). Reference 3.96 also shows that using the

Donnell-Mushtari theory and retaining tangential

inertia leads to the frequency formula

_2 knS_- (1-- _2) (mTrR/l) 4__ (No_n2)/C
- n2(n2+l)+[(3_v)/(l_v)]kn 6 (3.136)

where m is taken for SD-SD, clamped-clamped,
and SD-free shells as discussed above. It is inter-

esting to note in both equations (3.135) and

(3.136) that the effect of circumferential pre-

stress disappears for axisymmetric (n = 0) modes.
This is in contrast to the results of Nikulin
discussed earlier in this section.

An early (1890) analysis, of the circumferen-

tially stressed cylinder was made by Bryan (ref.

3.97) as a means of studying a rotating, vibrating

bell. Rayleigh's inextensional shell theory was

used. Circular cylindrical shells subjected to
circumferential initial stresses are also discussed

in references 3.98 through 3.101.

3.4.4 Combined Uniform Axial and

Circumferential Prestress

The type of initial stress field considered here
includes both axial and circumferential stresses.

Thus, sections 3.4.2 and 3.4.3 can be considered

as special cases of this section. One other impor-
tant special case occurs in this section, namely,

when No_=2Nj, and N_oi=O. This case occurs

when a completely enclosed cylindrical tank is

subj eeted to uniform internal or external pressure.

The axial prestress is caused by the pressure
acting upon the ends of the tank. In the case of a

tank having ends made of relatively thin, circular,

flat plates, the SD-SD boundary conditions are

reasonably approximated.
Sections 3.4.2 and 3.4.3 show that in the case

of the SD-SD shells, using the Donnell-Mushtari

theory neglecting tangential inertia gave rise to

simple formulas (3.108) and (3.116) which permit

the vibration frequencies obtained for unloaded

shells to be used directly to determine the fre-

quencies for shells having either axial or circum-

ferential uniform prestress. The extension to

combined axial and circumferential uniform pre-

stress is obvious, yielding

_2 n _ K0_k AK0

_2-N_'-c-N°_-C = K1 (3.137)

Thus, equation (3.137) can be used for any

combination of N_ _ and Ne _ along with the right-

hand sides of equation (3.137) determined for

unloaded shells. This equation was given by

Reissner (ref. 3.102) and by Vlasov (ref. 3.103).

As shown in section 3.4.3, in the case of cir-

cumferential initial stress the presence of the

off-diagonal terms in the Fliigge theory initial

stress operator (eq. (3.102)) prevents the simple

solution form of equation (3.137) for this theory.

However, Greenspon (refs. 3.24 and 3.25) and

Bozich (ref. 3.82) pointed out that in many

practical cases these terms are small in com-

parison with the terms arising from the other

two operators required in equation (3.100). In

such cases the off-diagonal initial stress opera-
tor terms can be neglected and, consequently,

retaining tangential inertia terms in the Fliigge
theory, one can utilize the numerous results

of section 2.3 simply by replacing _2 by _22-

Nx_h_/C-No_n2/C.

Reissner, along with his othernumerous signifi-

cant contributions in the field of shell vibrations,

studied the effects of initial stress according to

the membrane theory (ref. 3.102). The shear dia-

phragm (SD) boundary conditions were satisfied

at both ends by using the exact displacement

functions (2.20), with _=m_rR/l. The initial

stresses were those due to internal pressure; i.e.,

N_=poR/2, No_=poR. Substituting equations

(2.20) into the equations of motion determined

by equations (3.100) and (3.106) gives the char-

acteristic equation

_6_K2,_4_Kl,_2__Ko, = 0 (3.138)

t

k_
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where

K2' = _[4(X2-t-n_) +3

8poR[ 2 _2

Ki'=_[3(h'-t-n')_+llh'+3n 2

32poR ha
.__3______(n2_ 1 +_) (X2+ n2) ] (3.139)

1 [ poR/

Ko'='_-718X4+ 8_-_tn'-- I

-F-_)(h'+n') _"]

for _=1/,3. (When po=O, these coefficients are

the same as equations (2.36) with k=0 and

= 1/,3.) Extensive numerical results were given

in reference 3.102 for h =0, _r/10, _r/4, _r/2, 3_/,4,
7r, 31r/'2, 2_r; n= 1, 2 ..... 6; and 4poR/,3Eh=O,

1/,,400, 1/,200, 1/,100. These are listed in table

3.11. All three frequencies arising as roots of
equation (3.138) are given in this table. The

same behavior is also seen in figures 3.99, 3.100,

05

(11

I I I i.Ii0.1 0.3 0.5 0.7 0.9

FIGURE 3.100.--Frequency parameters for SD-SD shells
subjected to internal pressure po (i.e., Noi=2N=_);
membrane theory v= 1/3; n=4. (After ref. 3.102)

04

%
n=6

0.1

I

i •
m=.,=

FIGURE 3.99.--Frequency parameters for SD-SD shells

subjected to internal pressure po (i.e., Nei=2N=_);

membrane theory, v= 1/3; n=2. (After ref. 3.102)

FIGURE 3.101.--Frequency parameters for SD-SD shells
subjected to internal pressure p0 (i.e., Ne_=2N=i);
membrane theory i,--1/3; n=6. (After ref. 3.102)
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TABLE 3.11.--Frequency Parameters _R_v/ 2p(l + _) /E for SD-SD Shells Subjected to

an Internal Pressure po i.e., N_ i= No ; Membrane Theory; _=_

4poR
-_Z n

0

0

1 1.000

2.499

0

2 2.000

3.873

0

3 3.000

5.477

0

0

4 4.000

7.141

0

5 5.000

8.832

0

6 6.000

10.54

0

1 1.000

2.449

.07746

2 2.000

3.873

.1342

3 3.000
s

5.477
1

400 .1879

4 4.000

7.142

.2402

5 5.000

8.832

.2918

6 6.000

10.54

_/10

=mrR/l

0.1011

1.115

2.4783

.03505

2.042

3.902

.0168

3.023

5.501

.009729

4.015

7.161

.006366

5.011

8.848

.004632

6.009

10.55

.1013

1.115

2.478

.08533

2.042

3.902

.1355

3.023

5.501

.1884

4.015

7. 161

.2405

5.011

8.848

.2920

6.009

10.55

11-/4

0.5383

1.503

2.649

.1927

2.232

4.056

.09896

3.135

5.624

.05872

4.092

7.261

.03854

5.070

8.931

.02716

6.056

10.62

.4387

1.503

2.649

.2088

2.232

4.056

.1683

3.135

5.624

.1984

4.093

7.261

.2446

5.O7O

8.931

.2942

6.056

10.62

_/2

0.9771

2.109

3.386

.5593

2.709

4.606

.3315

3.477

6.056

.2109

4.348

7.611

.1436

5.271

9.223

.1032

6.221

10.87

.9781

2.110

3.386

.5668

2.709

4.607

.3611

3.477

6.056

.2871

4.348

7.611

.2847

5.271

9.223

.3140

6.221

10.87

3_/4

1.297

2.686

4.507

.8845

3.248

5.466

.5927

3.932

6.737

.4071

4.721

8.170

.2903

5.579

9.695

.2149

6.481

11.28

1.299

2.686

4.507

.8915

3. 248

5.466

.6129

3.933

6.737

.4553

4.721

8.170

.3851

5.579

9.695

.3711

6.481

11.28

1.445

3.358

5.755

1.115

3. 840

6.519

.8228

4.458

7.611

.6055

5.177

8.906

.4527

5.972

10.33

.3461

6.821

11.82

1.449

3.358

5.755

1.123

3.840

6.519

.84O8

4.458

7.611

.7432

5.177

8.906

.5238

5.972

10.33

.4654

6.821

11.82 .

3_/2

1.552

4.836

8.368

1.364

5.173

8.900

1.141

5.661

9.720

.9325

6.260

10.76

.7564

6.943

11.96

.6151

7.691

13.28

1.561

4.836

8.368

1.377

5.173

8.900

1.161

5.662

9.720

.9657

6.260

10.76

.8107

6.943

11.96

.7005

7.691

13.28

271"

1.588

6.370

11.04

1.474

6.620

11.44

1.318

7.007

12.09

1.150

7.504

12.93

.9898

8.089

13.95

.8461

8.745

15.09

1.604

6.370

11.04

1.493

6.620

11.44

1.344

7.007

12.09

1.187

7.504

12.93

1.043

8.089

13.95

.922]

8.745

15.09

,,ig._
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TABLE 3.11.--Frequency Parameters ¢oR%/2p (1 -[- _) /E for SD-SD Shells Subjected to

( 1) 1an Internal Pressure po i.e., N_ = _Ne ; Membrane Theory; _,--_--Concluded
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4poR
n

0

0

1 1.000

2.449

.1095

2 2.000

3.873

.1897

3 3.000

1 5.478

2OO
.2657

4 4.000

7.142

.3397

5 5.000

8.832

.4126

6 6.000

10.54

0

1 1.000

2.449

.1549

2 2.000

3.874

.2683

3 "3.000

1 5.478

100
.3757

4 4.000

7.142

.4804

5 5.000

8.832

.5835

6 6.000

10.54

=m_rR/1

v/10

0.1016

1.115

2.478

.1155

2.042

3.902

.1909

3.023

5.501

.2662

4.015

_/4

0.4391

1.503

2.649

.2237

2.232

4.056

.2165

3.135

5.624

.2743

4.093

,_/2

0.9791

2.110

3.386

.5742

2.709

4.607

.3885

3.477

6.056

.3469

4.348

3_/4

1.302

2.686

4.507

• 8985

3. 248

5.466

.6324

3.933

6.737

.4989

4.721

1.453

3.358

5.755

1.131

3. 840

6.519

.8584

4.458

7.611

.6788

5.177

3_/2

1.569

4.836

8.368

1.389

5.173

8.900

1.181

5.662

9.720

.9977

6.260
7. 161

.3400

5.011 "

8.848

.4129

6.009

10.55

•1022

1.115

2.478

.1595

2.042

3.903

.2694

3.023

5.502

• 3763

4.015

7•161

.4808

5.011

8.848

.5839

6.009

10.55

7.261

.3438

5.070

8.931

.4152

6.056

10.62

.4399

1.503

2.649

.2509

2.232

4•056

.2897

3.135

5.625

.3835

4.093

7.261

.4846

5.070

8.931

.5865

6•056

10.62

7.611

.3761

5.271

9.224

.4319

6.221

10.87

.9811

2.110

3.022

.5888

2.710

4.607

.4381

3.477

6.056

.4429

4.348

7.611

.5121

5.271

9.224

.6020

6.221

10.87

8.170

.4609

5.579

9.695

.4789

6.481

11.28

1.306

2.687

4.507

.9122

3.249

5.466

.6697

3.933

6.738

.5763

4.721

8.171

.5835

5.580

9.696

.6422

6.481

11.28

8.906

.5863

5.972

10.33

.5599

6.822

11.83

1.461

3.358

5.755

1.147

3.840

6•519

•8926

4.458

7.612

•7448

5.177

8.906

.6946

5.972

10.33

7.121

6.822

11.83

10.76

.8615

6.943

11.96

.7765

7. 691

13.28

1.587

4.836

8.368

1.414

5.173

8.900

1.219

5.662

9.720

1.059

6.261

10.76

.9552

6.943

11.96

•9097

7.691

13.28

27_

1.619

6.370

11.04

1.512

6.620

11.44

1.369

7.007

12•09

1.222

7.504

12.93

1.093

8.089

13.95

.9922

8.745

15•09

1. 649

6. 370

11.04

1.548

6.620

11.44

1.418

7.008

12.09

1.290

7.504

12.93

1.187

8.090

13.95

1.119

8.746

15.09
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and 3.101 where only the lowest of the three

frequencies is plotted.
In reference 3.102 comparisons were also made

with the results arising from simplifications of

membrane theory. The first results from neglect-

ing tangential inertia, and yields the formula

8 h 4

2_02R2p(1 + v)/E =-_ (n 2+ X2)_

4 poR/ 1 \

+-_-_tn2+-_h 2) (3.140)

for _= 1/3. The second is from reference 3.104

and is based on the assumptions that No and the

shear stress deformability of the shell walls are

negligible and that axial wave lengths are large

compared with circumferential wave lengths.
The second formula is

I.B

1.6

1.4

1.2

IO

0.6

0.4

0.2

/
/
/
/

/

@/ .,

#/ ,+gY

i++,#,/+o
/ ,//
/ // __,__._..,....

I ,i/ _E_ =o.o,

I I I
0 O. 25 0.5 0.75 1.0

R/#..

3X 4
2_2R2p(l ÷_) /E

(n_+ 1)n_
4 poR (n 2-1) 2

-_ (3.141)
3 Eh n2+l

for v = 1/3. Comparisons of results obtained from

equations (3.138), (3.140), and (3.141) are made

in figures 3.102 and 3.103.

DiGiovanni and Dugundji (ref. 3.2) analyzed

pressurized (N#=2N#) SD-SD shells by the

exact method. The Washizu shell equations were
used; i.e., operators (3.101c) and (2.9b). The ef-

fect of internal pressure upon the axisymmetrie

frequency parameters of isotropie shells is shown

in figure 3.104, where the pressure parameter

poR/C (with C = Eh/(1 -- v2)) has a value of 0.001

and R/h= 1000. The pressure has a significant

effect upon the frequency only for the predom-

inantly radial mode for large mR�1 and for the

torsional mode for small mR�l, whereas the axial
mode is unaffected.

To grasp the significance of the magnitude of

the pressure parameter, consider a shell having

the material properties: E=IO 7 and v=0.3.
Then the circumferential initial stress is

ae_= 1.1 X 107poR/C psi

Figures 3.105, 3.106, and 3.107 show the vari-

ation of the lowest value of [t with poR/C for

n_> 1 and for shells having three values of axial

wave length -mR/l=O.06, 0.5, and 3. Poisson's

ratio was taken at 0.3. Comparison of the figures

13

1.2

I,I

I 1.0
0.9

0.8

0.7

0.6

0.5
0

FIRST #._ 4 PoR =0.01

3 Eh

I I I I I

2.5 5.0 Y.5 1.0 1.25 1.5

R/,t.

FIGURE3.102.--Comparison of exact, first approximate,
and second approximate formulas (eqs. (3.138), (3.140),
and (3.141), respectively) for frequency parameters;
n =2. (After ref. 3.102)

FIGURE 3.103.--Comparison of exact, first approximate,
and second approximate formulas (eqs. (3.138), (3.140),
and (3.141), respectively) for frequency parameters;
n =6. (After ref. 3.102)

1
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FIGURE 3.104.--Effect of internal pressure (Ng=2N=0

upon the axisymmetric (n=0) frequency parameters

of an SD-SD shell; R/h = 1000. (After ref. 3.2)

[n:l ,,f,

0.5 2

O.i_
0.05

002 J , I , _

0.0f
0.01 0.02 0.05 OI 0,2

PoR/C

0.5 I 2

FIGURE 3.106.--Effect of internal pressure (Ng=2N=0

upon the frequencies (n >_ 1) of an SD-SD shell; mR�1 =

0.5. (After ref. 3.2)

k
%

I--

8

0.5 to

0.2

0.1 I
0.01 0.02

.=t s-_ j

mR=3 R
Z _ = IO00

r I , , I ,

0.05 0.1 0,2 0.5 I 2
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I
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0.2

0.1

0.05 I

_:o,o6, _:,ooo

0"005 f

°°° ,!o , , I i , I ,
0.00 I 0.02 0.05 0.I 0.2 0.5 I 2

Po R/6

FIGURE 3.105.--Effect of internal pressure (Ne_=2N= _)

upon the frequencies (n>_l) of an SD-SD shell;

mR�l=0.06. After ref. 3.2)

FIGURE 3.107.--Effect of internal pressure (Ng=2Nj)

upon the frequencies (n_>l) of an SD-SD shell;

mR�l=& (After ref. 3.2)

shows that the value of n for which the lowest

frequency begins to vary significantly with the

internal pressure depends upon the axial wave

length mR/l. For long shells (mR/l = 0.06) there

is a significant increase of £ with poR/C when

n>_ 2, for mR/l = 0.5 the increase becomes signifi-

cant when n>__5, and for short shells (mR�l=3)

when n_> 10. For n _ 1 the frequency is virtually

independent of pressure, especially for short

shells. The two larger frequencies, which cor-

respond to predominantly tangential motions,

were little affected by internal pressure. The

fact that the frequencies of the tangential modes
are virtually unaffected by initial stresses has

been pointed out in many references (cf., ref.
3.85).

In reference 3.2 pressurized orthotropic shells
were also analyzed by the same method. Numer-

ical results for the axisymmetric (n=0) modes

l

#

r _--

v

y

L.
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of a set of shells have already been included in

figures 3.3 through 3.6 of section 3.1.2. In these

figures it is seen that for both circumferential and

axial stiffening, and all values of stiffness ratios,

the frequency of the predominantly radial mode is

slightly increased by the addition of internal

pressure at large values of mR/l. The frequency
of the torsional mode increases with pressure for

small mR�l, whereas the pressure has a negligible

effect on the frequency of the axial mode

everywhere.
For the n = 1 mode ("beam bending"), the ef-

fect of pressure on the lowest frequency is shown

in figures 3.108 through 3.112. The direction and

magnitude of the stiffness ratio E,/Eo varies from

one figure to the next. For circumferential stiffen-

ing (Ee/E=> 1) there is a significant increase in _t
for small mR/l. For axial stiffening (E=/Eo> 1)

the increase in frequency due to pressure occurs

for both small and large mR/l.

For n>_2, figures 3.108 through 3.112 show

that the lowest frequency increases significantly

with internal pressure for all types of stiffening,

the increase generally diminishing with increas-

ing mR�1. It is observed that the frequency in-

crease due to pressure is greater for E=/Eo>I

than for Eo/E_> 1. It was found that the pres-

sure had a negligible effect on the two higher fre-

quencies over the entire _;ange of parameters

encompassed in these figures.
Fung, Sechler, and Kaplan (refs. 3.78 and 3.79)

analyzed SD-SD shells by means of equations of
motion (eq. (3.100)) which used equation (2.9a)

for the [_MOD] operator and equation (3.105) for

the _£_] operator. They found the resulting char-
acteristic equation to be equation (3.138) where,

in this case, the coefficients Ks', KI', and Ko' are

given by

(3.142)

where K2, K1, K0, AK2, AK1, and AK0 are terms
of the characteristic equation in the absence of

initial stress as used previously in equation

(2.35), f_==N=_/Eh, f_o = No_/Eh, and

5I
0.5 n=lO

0.2 n=lO

0.I _ •

0.0_ n=2 I

oo_

0.01 ----- poR/C =0.001

0,005 -n=2 ./_J I _ PoRIC =0

-7/,' i

0.002 Ii l

0.001 R =1000
h

0,0005

0.000"2

0.0001 I [ I

0.01 0.02 0.05 0.1 0.2

I [ I I

0.5 I 2 5 I0

mR/,t

FIGURE 3.108.--Effect of internal pressure (No_=2Nj)
upon the frequencies (n_>l) ot an orthotropic, SD-SD
shell; Ee/E= = 24.2. (After ref. 3.2)
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5 I0

FIGURE 3.109.--Effect of internal pressure (Noi=2N= _)
upon the frequencies (n_> 1) of an orthotropic, SD-SD
shell; Ee/E= =5.35. (After ref. 3.2)
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FIGURE 3.110.--Effect of internal pressure (N0_=2N= _)

upon the frequencies (n>l) of an isotropic, SD-SD

shell; Eo/E= = 1. (After ref. 3.2)
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FIGURE 3.112.--Effect of internal pressure (No_=2N=_)
upon the frequencies (n >_1) of an orthotropic, SD-SD
shell; E=/Ee = 24:2. (After ref. 3.2)
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FIGURE 3.111.--Effect of internal pressure (Ne _= 2N=_)
upon the frequencies (n > 1) of an orthotropic, SD-SD
shell; E=/Eo = 5.35. (After ref. 3.2)

al = _n=(n2-- k=) --!-_--_n 4

+_k4_ (2-- _)2(1-- _)h_n2

--vXn--k{ (XE+n2)(n2X 2

q--_XSn2[(2-- _)XEq-n2

-- (h2+n2)2]}

_f 2 2 1--_
a2=X / (1--v)X q----_-[n_q-(n2--X=) _]

2/'3-p 4 1--v \

a4= _k4 _221-Tn2 I
I

(3.143)
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1 Jr- VX2nS(n 2 _
a_=---_- 1)

b 3-- v 4±2_2_2_n2± .X4
1 --Ib T ix Ib iV

2 (3.143)
--kn2(X2+n 2)

5--v 5--2v

52 = -"_X4"t - T_k2n2-_ -X2

-_-- k_k2 (X2 -Jl- n2) 2

Results obtained from equations (3.142) and

(3.143) were reported in references 3.78 and 3.79

and compared with the results obtained from

the much more simple Donnell-Mushtari equa-

tion (3.137). It was found that equation (3.137)

gives frequencies within 7 percent of the more
exact values obtained from equation (3.142) for

0<X<Tr at n=2 over a wide range of pressures.

Experiments were also reported in references

3.79 and 3.105 for shells having ends which simu-
lated SD-SD conditions. Tests were conducted

f(cps)

-- rn=l i
------ m=2 THEORY

----- m=3

o EXPERIMENT

RADIUS =5.5"

LENGTH = II"
THICKNESS =0.001 "

l

L

0 0.2 0.4 0.6 0.8 I.O 1.2 1.4 1.6 1.8

INTERNAL PRESSURE po(pSig)

FIGURE 3.113--Theoretical and experimental frequencies (cps) for a pressurized

(No t --2N=0 SD-SD aluminum shell. (After ref. 3.78)

20
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on models made of 24S-H aluminum alloy having

R=3.5 in.; h=0.001, 0.002, and 0.003 in.; and

three axial lengths -11, 7, and 3.5 in. Frequen-

cies observed for the shell having h=0.001 in.

and l = 11 in. are plotted as small circles in figure

3.113. Theoretical results from equation (3.137)

are plotted as lines. Figure 3.114 is a magnifica-

tion of the lower left corner of figure 3.113. The

T_

,?,

n=12

099

71t/fl/

Ft//
i[//I

500 f

/
6

/

//

/

/ //
/ ?i/

/j
/

--m=l I
m : 2 THEORY

rn:3

o EXPERIMENT

/

200

overall bending modes (n = 1) are omitted from

these plots because the end masses used in the

experiments affect the frequencies significantly.
The density of frequencies occurring at any given

pressure is readily apparent from these graphs.
The actual experimental end conditions were

somewhere between being shear diaphragm and

clamped ends. Extensive tabular and graphical
data are available in reference 3.105 for the other

experimental shell models described above but,

as in figures 3.113 and 3.114, no mode shapes are

identified with the experimental frequency data,

thus limiting its usefulness and excluding it from
being reproduced here.

Herrmann and Armen_kas (ref. 3.72) derived

a set of shell equations which take into account

that, as the shell deforms, the direction of the

internal or external pressure changes, always

remaining normal to the shell. This is in contrast
with the assumption that the direction of the pres-

sure remains the same, (termed "constant direc-
tional pressure" by Herrmann and Armen_kas).

The equations of motion (2.3) are generalized to
(ref. 3.85) :

R 2 1

[2]{u,}+_-{AF,}+_{AM,} = {0} (3.144)

where [£] and {u_} are as in equations (2.3) and

(3.100); {AF<} = {AF=, hFo, hq} ; AF:, AFo, and hq
are the axial, circumferential, and radial com-

ponents, respectively, of the change of the initial

shell surface tractions due to deformation, ex-

pressed per unit undeformed middle surface

area; C=Eh/(1-v2); the vector {AM_} has

components

AM1

AM_

AMa

_o /Ow

= -m:v+m=-_+R 5me

Ov 0 Am_ 0 Amo l

= m:-_ - m, w- R--oT--s- R -_- j

(3.145)

0 0.1 0.2 0.3 0.4 0.5 06

%

FIGURE3.114.--Magnification of the lower left
corner of figure 3.113. (After ref. 3.78)

0.7

Am=, Amo are the axial and circumferential com-

ponents, respectively, of the change due to

deformation of the moment induced by the sur-

face tractions, expressed per unit undeformed

middle surface area; and m: is the sum of the

products of the radial component of the initial

|

T

lr
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surface traction and the z-coordinate, evaluated

at the two surfaces of the shell, expressed per unit

undeformed middle surface area. The [2_MOD]

operator used by Herrmann and Armeni_kas is

the same as that of Fltigge.
As shown in reference 3.72 for initial uniform

lateral pressure p0,

No{=+-PoR(ITh)[

m_=--_-_(1-Th)] (3.146)

where the upper signs apply to internal pressure
and the lower signs apply to external pressure.

Correspondingly, it is found that

No { Ow
AF_ =

R 20s

F N°{[ Ow\

No{[ Ou Ov

h / 02w 02w\- I (3.147)

h No { Ow
Am= = +_

2R 20s
,

h Noi[ Ow_

in the case where the pressure remains normal to

the shell (hydrostatic pressure), and

, AF= = hF0 = Am0 = Aq = 0 (3.148)

in the case of constant directional pressure.

Using the exact solution function (2.20) for

SD-SD ends, substituting into the equations of

motion (3.144), and neglecting terms (No{/C) _

and (h/R) 2 with respect to unity yields the follow-

ing generalization of the characteristic equation

(2.35)

£6--(K2-}-k AK2)£4-}-(KI+k AKI)£ 2

- (Ko+k AKo) +c(K=N=_+KoNoO =O (3.149)

where Ko, K_, and Ks are given by equations

(2.36); hKo, AK1, and AK_ are the Biezeno-

Grammel coefficients of table 2.4; and

K_= (1 2 _) h2[(X2-]-n_) 2-t- 1

+X2(3-t-2_)]

(l--u)
K0h = {n2(X2Wn 2) 2+n2(3X2

2

+n 2) -7 k[(X2+n2)_--n4--2X2n2]} (3.150)

(1 -- _)
Ko_ = {n2(X 2-}-n_) _--n2 + 2n4

2

-F X212(1 4-,,) - n2(3 +2u)]

-_ k[(X2+n2) 3+n2_2n4

+212(14- _-- 2n_-- 2_n2)] }

where K0_ and K0_ refer to the cases wherein

the circumferential prestress is induced by

hydrostatic and constant directional pressure,
respectively.

Some interesting alternative and simplified

forms of frequency formulas were presented in

reference 3.85. It was shown from equation

(3.149) that the lowest frequency of a shell under

the influence of initial stresses, _,, is related to its

three frequencies of free vibration in the absence

of initial stress, £1, £2, £a, by the formula:

25OO

2O0O

flcps)

/

IC(X) n=5 o ._

n=4 o

50O

EXPERIMENTAL o

Zr,= 2 R� h = 150

0 0.1 0.2 03 04 0.5

mR/,#-

FIGURE 3.11&--Theoretical and experimental frequencies

for an SD-SD shell (dimensions given in text) sub-

jected to combined initial external pressure and axial

compressive force. (After ref. 3.86)

I
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(K*N*_+K°N°O (3.151)
212 = ill2- C(fi22Ba2)

In the case where tangential inertia is neglected

it was shown that

Ko+ AKo+ c(KxN_' + Ko_NoO
(3.152)

where/(1 was given previously in equation (2.43).

For shells vibrating in modes having a large
number of circumferential waves, 1/n _ can be

disregarded in comparison with unity, giving

_2 (12" v2)X4 _-k(k2+ne)+C(X2N_i+n2Nol )
(X_+n_) 2

(3.153)

Taking the linearized form of equation (3.149),

that is, neglecting the _6 and _4 terms, which is a

reasonable approximation if one frequency is
much smaller than the other two, and neglecting

XVn 2 and kn 2 with respect to unity, gives for

hydrostatic pressure,

_2 n_(l+n2)(1-v2)X4 _-'kn_(n2-1)2_l_ _-X2-_

+n2(n2--1) No' (3.154)
n2+l C

and for constant directional pressure,

(1--vT_ 4 ' kn2(n2-1) 2 t_x2N. '
_22 _-(T+---_ -_ n2+l -- C

-+- 2(n2-1)2 NOi (3.155)
n -n--_+l C

Equations (3.154) and (3.155) are not valid for
n=O and'n= 1. In reference 3.86 the XVn _ terms

were retained and X3/n 3 and/on 2 were discarded

as compared to unity to arrive at a formula for

the case of hydrostatic pressure which is more

accurate than equation (3.154):

_22= { (1 -- v2)X4+kn2(n 2 -- 1)2(1 -'{'-4X2)

+ n2[n 2(n 2 -- 1) + X2(2n 2 -- 3) ] (Nol/C)

+ n2X 2(n _+ 1) (N_'/C) }

+ {n2 (n2 +2X 2) + (3+2v)X2n2+n 2} (3.156)

Experimental results for an SD-SD shell sub-

jected to combined initial external pressure and

compressive axial force were given in reference
3.86 for a stainless steel shell having R = 1.50 in.,

h=0.010 in., and l=29 in. These are shown in

figure 3.115 for an external pressure of 2.0 psi

and an axial compressive force of 1500 lb. Analyt-
ical results calculated from equation (3.156) are

also given. The change in frequencies due to
the combined initial stresses can be seen by

comparing figure 3.115 with figure 3.84.

Values of the parameter B to be used in

equation (3.124) for the case of pressurized

(No i= 2N_0 SD-SD shells were found by Bleich

and Baron (ref. 3.94) by an energy approach.
These values are exhibited in table 3.12 for

l <_l/R<_lO and n= l, 2, 3, 4.

Experimental results were obtained by Got-

tenberg (ref. 3.106) for pressurized (Nei=2N_O

stainless steel shells having

h=0.025 in., R=3.012 in., and 1/R=31.86

and simulated SD-SD end conditions. In figure

3.116 the variation of frequency (eps) with the
number of axial nodal circles (m--l) and cir-

cumferential wave number (n) is depicted. The

internal pressure used was 53 psig. Experimen-

tal data are compared with analytical results

calculated from the formula (eq. (3.137)) of the

Donnell-Mushtari theory neglecting tangential
inertia. For n=l the Donnell-Mushtari theory

is grossly inaccurate and an additional curve

(denoted by an asterisk) is plotted on the basis

TABLE 3.12.--Values of B for Equation (3.12_)

for Pressurized (No i= 2N_O SD-SD Shells

n

1

1 2 3 4

1.00

1.25

1.50

1.75

2.00

2.25

2.5O

2.75

3.00

3.50

4.00

5.00

6.00

7.00

8.00

9.00

IO.O0

4.963

2.949

1.810

1.252

.763

.539

7.171

5.186

4.142

3.555

3.207

2.991

11.718

9.869

8.923

8.391

8.071

7.865

.405 2.851

.323 2.758

.273 2.693

.222 2.616

.202 2.574

.195 2.534

.201 2.518

.209 2.511

.215 2.507

.221 2.505

.225 2.503

7.726

7.629

7.559

7.466

7.410

7.348

7.316

7.298

7.286

7.278

7.273

18.55

16.80

15.90

15.39

15.07

14.86

14.72

14.61

14.53

14.43

14.36

14.28

14.24

14.21

14.2C

14.1_

14.1_
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FIGURE 3.116.--Theoretical and experimental frequencies of an SD-SD shell (dimensions given

in text) subjected to internal pressure (No i =2NxO. (After ref. 3.106)
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FIGURE 3.tlT.--Experimentally measured frequency variation with internal pressure

(No _ =2N=O for an SD-SD shell (dimensions given in text). (After ref. 3.106) _r
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of Timoshenko beam theory. Additional experi-

mental data are shown in figure 3.117 where the

frequency variation with internal pressure is
shown for various n and for m =4. Free vibra-

tions of circular cylindrical shells supported at

both ends by shear diaphragms (SD-SD) and

subjected to combined initial stress are also dis-

cussed to some extent in references 3.70, 3.77,

3.80, 3.84, 3.87, 3.91, 3.104, and 3.107 through
3.115. In most of these works the Donnell-

Mushtari formula (3.137) neglecting tangential
inertia is either derived or used.

The preceding results given in this section

have all" been for shells supported at both ends

by shear diaphragms (SD-SD). In this case the

equations of motion and the end conditions are

exactly satisfied by the simple displacement solu-

tion function (eq. (2.20)). For other boundary

conditions the problem is considerably more

complicated and relatively few results are
available.

The method of obtaining exact solutions for

unloaded shells having arbitrary boundary con-

ditions was discussed in section 2.4. This pro-

cedure can also be followed for shells having

combined axial and circumferential uniform pre-

stress, as pointed out by Seggelke (ref. 3.116).

In reference 3.116 the procedure was used to

obtain frequency parameters for clamped-clamped
shells. Numerical results are indicated in figure

3.118. Equations for two theories (Donnell-

Mushtari and Flfigge) are developed in reference

3.116, but one cannot tell which theory was used.

The shell length parameters used to obtain figure
3.118 are not defined. From other calculations in

reference 3.116 it is inferred that R/h=500,
l/R = 2, and v = 0.

The effects of replacing the boundary con-

dition u=O by N_=0 (relaxing the constraint

on the axial membrane force developed during

vibration) are depicted in figures 3.119 and 3.120.

Note in figures 3.119 and 3.120 that the curves
are straight lines, indicating a linear relationship

between _22 and N_ _. This phenomenon was also
observed in section 3.4.2 in the case of SD-SD

end conditions when either the Donnell-Mushtari

theory (neglecting tangential inertia) or the

Fltigge theory (including tangential inertia) are

used. This is because terms containing N= _ in

the initial stress matrix operators (3.101a) and

0.020

0.015

O.OJO

, n=lO

n=6

m=5, n=ll

, n=9

, n=7

,n=8

m=3, n =12

m=3, n=13

0.005 _m=l, n=7

, n=12

I I0
0 0.5 1.0

Nix R_/Eh 2

FIGURE 3.118.--Frequency parameters for a clamped-
clamped shell subjected to combined uniform prestress.
(After ref. 3.116)

(3.102) occur only along the principal diagonal

and N_ i enters each principal diagonal term in

the same way. Thus, for fixed values of Ne _ (as

in figs. 3.119 and 3.120) the curves of _ versus

N= _ will be straight lines for all possible bound-

ary conditions. Following the same reasoning,
plots of _22versus No _ for fixed values of N_ _will

be straight lines for the Donnell-Mushtari theory

and curved lines for the Fltigge theory.

Furthermore, it is important to note that if

the mathematical statement of the boundary

conditions is the same for prestressed and un-

stressed shells (as in the case of a clamped-

clamped shell, where u = v = w = Ow/Ox = 0), then

the exact solution procedure described in sec-

tion 2.4 will yield the same deflection functions

(2.53) (i.e., the same values of X) from satisfying

the eight boundary conditions, independent of

T
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FIGURE 3.119.--Influence of axial constraint (u = 0) upon

the frequency parameters of a shell subjected to com-
bined uniform prestress. (After ref. 3.116)

t

the prestress conditions. This permits one, for

example, to use equation (3.137) for boundary
conditions other than SD-SD provided the

values of k and the right-hand-sides (frequency

parameters of unloaded shells) are known.
As discussed in section 2.4, the Ritz method

or its equivalent for this class of problems, the

Bubnov-Galerkin procedure, is a useful approxi-

mate technique for finding frequencies and mode

shapes of circular cylindrical shells having arbi-

trary boundary conditions. Including the effects

of initial stresses is a straightforward and sim-

ple extension to the procedure. Ivanyuta and

Finkelshteyn (ref. 2.87) laid out the procedure

in detail (see sec. 2.4 for details when prestress

is not considered) and demonstrated it for the

clamped-clamped shell subjected to internal

pressure po(No i= 2N j).

Koval (ref. 3.117) used the approximate de-
flection function

w=C(cos #_1s-cos #+is) cos nO cos o_t (3.157)

where fl±_ = (m +_ 1)_rR/l, to satisfy the boundary

conditions for a clamped-clamped shell. The

Donnell-Mushtari shell theory was used and

Lagrange's equation was written in terms of

the assumed mode. This yielded the following

useful frequency formula:

i

T

FIGURE 3.120.--Dependence of fre-
quency parameter upon circum-
ferential wave number (n) for
partially and completely clamped
shells subjected to combined uni-
form prestress. (After ref. 3.116)

='

%

0.5

0.2

0.1

0.05

0.02

0.01

0.005

0.002 -

0.0015 --

-- u:v:w=awlSx:O

----- Nx:v= w:_w/Sx:O

\

I I I I

0 I 2 3 4 5

I I

7 8

. Z ¢-0 -_'

._._// -_:5oo
• _-=2

/ u :0.5

Nix R _/Eh z :0.5

I iii ] I II0 12 13 14 15_'-

I-

"F

_! : ;: ! L
,r



COMPLICATING EFFECTS IN CIRCULAR CYLINDRICAL SHELLS 263

q__ 2_oo2 k
_2- t v )p2_o+_(#24+2#Qn2+3n4)

3(#22Jrn')" O

+ C(_#QN_i+n'Nol), m= l (3.158a)

_2: (12P2) [ #--14 21- #+14 1

+_[(#_l_ +n2)'+ (fl+i_+ nD_]

1 1 ,
+_[-_(#-12+#+l')N_+n2No'],

m=2,3, . . . (3.158b)

where

#2=2_rR/l, k=hV12R 2, and C=Eh/(1-v 2)

as before.

Mixson and Heer (refs. 3.114 and 3.115) pre-

sented experimental results for two clamped-

clamped circular cylindrical shells subjected to

internal pressure (N# = 2N=0. One shell was made

of 2014-T6 aluminum and had the following
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n

dimensions: l=28.6 in., R= 15.0 in., h= 15.0 in.

Experimental data showing the variation of fre-

quency with internal pressure p0 and circumfer-

ential wave number n are exhibited in figure

3.121. A similar plot is made in figure 3.122

for a stainless steel shell having 1=22.0 in.,

R=12.0 in., and h=0.004 in. In both figures
theoretical results are shown for SD-SD shells

using the Donnell-Mushtari equation (3.137)

neglecting tangential inertia. References 3.114

and 3.115 argue that the experimental data for

clamped-clamped ends should compare reason-
ably well with the theoretical results for SD-SD

ends because the end conditions have only a

small effect upon the frequencies for values of n

above the n for minimum frequency.
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FIGURE 3.121.--Frequencies (cps) of a clamped-clamped,
pressurized (No_f2N=O aluminum shell (dimensions
given in text). (After refs. 3.114 and 3.115)

FIGURE3.122.--Frequencies (cps) of a clamped-clamped,
pressurized (Ng =2N=O steel shell (dimensions given in
text). (After refs. 3.114 and 3.115)
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264 VIBRATION OF SHELLS

Nikulin (ref. 3.84) obtained results for a cir-

cular cylindrical shell clamped at both ends and

subjected to uniform combined initial stresses.

The shell dimensions were h=0.5 mm., l=357

mm., R= 118 mm., and the material properties

were given by E=2X106 dyne/cm _, _=0.3,
p=8×10 -6 dyne.sec2/cm 4. Theoretical and ex-

perimental frequencies (cps) are compared in

figure 3.123 for a=_= 1600 dyne/cm 2 with varying
qei and n.

Miserentino and Vosteen (ref. 3.88) obtained

extensive experimental data for clamped-clamped

shells. Geometric and material properties of the
models used are summarized in table 3.13. Exper-

imental data for these shells are displayed in

table 3.14 for various magnitudes of internal

pressure loading. Because of the type of flange

attachments used to clamp the ends the internal

pressure does not yield Ne_=2N= _ but, rather,

Ne_=poR and N=_=O.117poR for the cylinders

having R = 6 in. and N= _= 0.162 for those having

R = 4 in. As noted in table 3.14, in some instances

the node lines regularly assumed a particular

orientation with respect to the longitudinal

seams.

2000

1600

f(cps)

1200

8OO

40C

ny

EXPERIMENTAL RESULTS:

n=6 v =lO •

=7 _ =11 •

=8 o =12 •

=9 0 I =13 • I
468 936 1404

_ ,dyne/cm z

FIGURE 3.123.--Theoretical and experimental frequencies

for a clamped-clamped shell (dimensions given in text)

subjected to combined uniform initial stress. (After

ref. 3.84)

The test results in table 3.14 for shell 324 (the

one having the smallest R/h ratio) have also been

plotted in figure 3.124. The square of the fre-

quency is plotted as a function of internal pres-

sure for modes having one-half wave length in

the axial direction (m=l) and for a range of

circumferential nodes (n = 2 to 9). Solid straight

lines representing a least squares fit through the

data points are also shown. This straight line

behavior is the type exemplified by the Donnell-

Mushtari theoretical equation (3.137) for SD-SD
shells

In figure 3.125 the experimental results are

compared directly with those from equation
(3.137). The correction formula (2.151) suggested

by Arnold and Warburton (ref. 2.3) to approxi-

mate clamped end conditions was used, with c

taken as 0.3. The nondimensional frequency pa-

rameter _:R2p/E is used as the ordinate in this

plot. The correlation between theoretical and

experimental results is reasonably good except

for n= 2. However, since the slopes of the two

lines for n=2 are approximately the same, the

error lies in the intercept with the ordinate axis,

I I I

0 5 I0

I I psi I J

25 50 75

kN/rn t

INTERNAL PRESSURE, Po

FIGURE 3.124.--Experimental results for pressurized

shell 324, clamped-clamped. (After ref. 3.88)
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COMPLICATING EFFECTS IN CIRCULAR CYLINDRICAL SHELLS 265

TABLE 3.13.--Physical Properties of Circular Cylindrical Shells Referred to in Tables 3.15 and 3.15

t

R

R/h
in.

324 6.01

601 6.01

645 4.00

666 4.00

1001 6.01

1502 6.01

1624 6.01

em

15.27

15.27

10.16

10.16

15.27

15.27

15.27

l

in. em

36.00 91.44

36.00 91.44

24.00 60.96

24.00 60.96

36.00 91.44

36.00 91.44

38.20 97.03

in. mm

D.0185 0.4699

.0100 .2540

• 0062 .1575

.0060 .1524

.OO6O . 1524

.0040 .1016

.0037 .0940

Material

17-7PHstainless steel

301 stainless steel

301 stainless steel

301 stainless steel

2024 aluminum

304 stainless steel

301 stainless steel

lb_s2/in _ kmg/

0.7149 X 10-317639

.7408 7916

.7408 7916

.7408 7916

.2524 2699

.7408 7916

.7408 7916

E

psi

29.0X106

29.0

29.0

29.0

10.0

29.0

29.0

GN/
m 2

2OO

2OO

200

200

72

2OO

2O0

Numbe]
of seam

welds

0.28 2

.32 2

.32 2

.32 2

.3 .32 4

.32 1

.32 2

that is to say, with the inaccuracy of the Donnell-

Mushtari theory for n = 2 for unpressurized shells

(see sec. 2.3.1).
In reference 3.16 the effects of combined axial

and circumferential prestress were included in

the analysis of circular cylindrical shells having

rings and stringers which are represented by

"smeared-out" orthotropy. The resulting fre-

quency formula for SD-SD end conditions is

given by equation (3.39) where the term

Q=

%

1.25 X 10 .2

• =

/// n 9

/// / tt

I00 ///_/ /f 8

/////// 8

/// //

/ i /i I

// /

/ // i" 7

///t /// I/I 7

/,I 1/, _"

' _-- _ - THEORY

0.75

050

0 25

05

N_/Eh

1.0 xlO -5

FIGURE 3.125.--Comparison of theoretical and experi-

mental frequency parameters for pressurized shell 324,

clamped-clamped. (After ref. 3.88)

m2], 2

--(N_+No_2)-_D (3.159)

is added to the right-hand-side to account for the

initial stresses. The vibration of prestressed struc-

turally orthotropic shells is also discussed in
reference 3.118.

The free vibration of orthotropic, circular

cylindrical, membrane shells were studied by

Dym (ref. 3.119).

Other references dealing with free vibrations of

circular cylindrical shells subjected to uniform

combined prestress include references 3.64, and

3.120 through 3.130.

3.4.5 Uniform Torsional Prestress

Applying a torque to each end of a circular

cylindrical shell as in figure 3.126 yields a static

initial stress throughout the interior of the shell

which is essentially N_0 _= constant (that is, other

membrane force resultants and bending moment

resultants may be induced by the type of end

constraints, but they are assumed to be negligibly

small).

From an analytical viewpoint the case of uni-

(
FIGURE 3.126.--Circular cylindrical shell subjected

to uniform torsional initial stress.

£,
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TABLE

VIBRATION OF SHELLS

3.14.--Experimentally Measured Frequencies (cps) for the Shells of Table 3.13

Clamped-Clamped Ends

Having

1

Shell

324

m

1

n fi po_ Shell m n fi po_
cps psi cps psi

a 2 387 0 601 1 2 381 0

a 2 391 2.00 392 1.00

b 2 398 6.00 394 4.00

b 2 400 8.00 395 5.00

2 396 8.00 399 7.00

b 2 403 9.00 397 9.00

2 402 10.00 398 10.00

3 245 0 3 252 0

255 2.00 259 1.00

262 4.00 269 2.00

276 8.00 280 4.00

281 10.00 297 7.00

312 9.00

4 168 0 313 10.00
193 2.00

233 6.00 4 165 0

249 8.00 190 1.00

265 10.00 207 2.00
241 4.00

255 5.00

283 7.00

307 9.00

319 10.00

5 160 0

228 4.00

256 6.00

281 8.00

303 10.00

6 189 0

237 2.00

274 "4.00

306 6.00

335 8.00

355 9.00

7 239 0

294 2.00

335 4.00

376 6.00

413 8.00

429 9.00

8 318 0

370 2.00

490 8.00

508 9.00

9 399 0

450 2.00

540 6,00

581 8.OO

631 10.00

5 122 0

169 1.00

201 2.00

256 4.00
276 5.00

323 7.00

355 9.00
373 10,00

6 121 0
180 1.00

226 2.00

296 4.00

328 5.00

377 7,00

425 9.00

446 10.00

7 270 2.00

349 4.00

447 7.00

500 9.00

524 10.00

8 315 2.00

410 4.00

Shell m

601 1

645

n f' po,
cps psi

8 450 5.00

519 7.00

581 9.00

9 222 0

303 1.00

365 2,00

463 4.00

5O2 5.O0

592 7.00

662 9.00

692 10.00

10 420 2.00

540 4.00

585 5.00

673 7.00

744 9.00

781 10.00

11 338 0

12 453 2.00

2 698 3.10

...... 3 415 1.28

...... 415 1.72

...... 989 5.66

1 _3 415 2.61

1 _ 3 466 7.56

...... 4 466 8.18

1 a4 415 5.79

1 _4 466 8.71

...... 5 415 1.19

...... 5 587 4.53

...... " 5 587 5.38

....... 5 587 5.49

...... " 5 659 7.60

...... _5 659 8.38

...... " 5 830 15.98

...... 5 830 16.22

...... 5 830 16.79

1 " 5 415 4.76

a5 466 5.91

"6 415 3.07

"6 523 5.28

T'

7,

Nodes lines are on seam welds.
b Node lines are off seam welds.



COMPLICATING EFFECTS IN CIRCULAR CYLINDRICAL SHELLS

TABLE 3.14.--Experimentally Measured Frequencies (cps) for the Shells of Table 3.13

Having Clamped-Clamped Ends--Continued

267

1

Shell

645

m n fi po_ Shell m n fi po_ Shell m n
cps pm cps pm

1 a'6 587 6.84 645 1 b 9 740 4.30 645 2 8

6 659 8.78 784 4.94

a6 698 10.00 830 5.66

a6 830 14.31 988 8.44

b 6 415 3.21 _ 9 415 .59

b 6 466 4.22 698 3.65

b 6 523 5.59 740 4.17

b 6 587 7.23 784 4.81

b6 830 15.01 830 5.51

988 8.15

b 7 523

b7

_7

b8

a8

b9

3.81

587 5.00 b 10 415 .37

659 6.40 466 .75

698 7.34 659 2.30

740 8.18 784 3.69

784 9.38 932 5.53

830 10.54 988 6.34

415 2.06 _ 10 466 .45

523 3.62 587 1.45

587 4.69 659 2.11

659 6.18 698 2:56

698 7.05 740 2.98

740 7.95 784 3.41

784 9.01 988 6.19

830 10.20

329 .55

466 2.03

587 3.51

659 4.55

698 5.16

740 5.91

784 6.78

830 7.73

988 11.20

466 1.76

587 3.32

784 6.57

830 7.46

988 11.08

329 .15

415 .67

466 1.07

587 2.29

659 3.17

698 3.74

11 587 .78

698 1.58

784 2.42

988 4.77

12 740 1.16

784 1.56

988 3.66

6 523 3.81

587 5.49

659 7.38

830 12.85

7 415 1.46

659 5.60

698 6.54

74O 7.5O

784 8.61

830 9.86

8 587 3.08

698 I 4.71

666

f,
cps

740

784

830

988

P0!

psi

5.51

6.31

7.28

10.79

9 587 1.99

659 2.91

698 3.36

740 4.01

784 4.57

988 7.88

10 587 1.32

659 1.99

698 2.40

740 2.85

988 6.06

6 523 3.34

587 5.OO

659 6.84

698 8.09

740 9.31

932 12.35

7 587 3.92

659 5.35

698 6.24

740 7.16

784 8.17

830 9.36

8 740 5.35

784 6.12

830 7.12

9 659 2.70

698 3.26

10 698 2.31

b 2 659 0

671 4.05

669 6.20

671 6.60

672 6.90

673 8.00

675 8.10

677 8.30

675 8.70

7

Node lines are on seam welds.

b Node lines are off seam welds.

7"
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TABLE 3.14.--Experimentally Measured Frequencies (cps) for the Shells of Table 3.13
Having Clamped-Clamped Ends--Continued

Shell

666

m n fi Po_ Shell m n fi po_ Shell m n
cps pm cps pm cps

1 b 2 674 8.90 666 1 5 418 4.75 666 1 _ 635

670 9.50 466 5.75 645

672 10.00 492 6.80 675

674 10.20 519 7.40 685

679 11.10 508 7.40 703

680 12.40 507 7.40 714

513 7.60

3 415 2.00 523 7.60 7 579

435 3.20 524 7.95 597

439 3.30 529 8.00 639

437 3.40 529 8.10 648

447 4.30 527 8.10 656

447 4.40 536 8.10 659

448 4.50 548 8.50 677

451 4.80 544 8.70 673

458 5.10 556 8.70 690

457 5.40 549 9.00 697

462 6.00 552 9.10 701

463 6.10 578 9.50 709

473 6.55 567 9.70 713

472 6.80 590 10.10 736

472 6.90 651 12.40 _61

476 7.30 651 12.75 761

479 7.60 766

486 8.00 6 402 3.00 768

484 8.10 412 3.20 794

484 8.10 415 3.25 821

491 8.30 437 3.60 818

490 8.70 458 4.00 826

490 8.78 471 4.30 820

490 8.80 493 4.80 826

492 8.90 498 5.00 850

494 9.00 505 5.20

494 9.00 515 5.30 8 449

496 9.30 517 5.40 568

500 9.60 531 5.70 580

506 10.20 531 5.75 631

513 11.10 548 6.20 663

513 11.28 556 6.45 684

522 12.40 573 6.70 749

4 367 4.20 578 6.90 755

373 4.30 580 7.10 777

383 4.30 596 7.40 781

394 4.79 600 7.60 781

441 6.80 615 7.90 850

446 7.65 620 8.00 848

464 7.90 619 8.00 883

485 8.10 621 8.10 888

525 11.10 616 8.10 884
631 8.30 922

5 402 4.30 629 8.50 915

424 4.70 639 8.70 937

Po!
psl

8.78

9.10

10.00

10.00

10.90

10.90

4.00

4.40

5.30

5.40

5.60

5.70

5.95

6.00

6.35

6.45

6.60

6.70

6.80

7.40

8.00

8.00

8.20

8.20

8.70

9.50

9.50

9.60

9.60

9.80

10.40

1.35

2.90

3.00

3.90

4.30

4.80

5.70

6.00

6.60

6.60

6.70

7.95

8.10

8.70

8.90

9.00

9.60

9.60

10.00

7

L

b Node lines are off seam welds.
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COMPLICATING EFFECTS IN CIRCULAR CYLINDRICAL SHELLS

3.14.--Experimentally Measured Frequencies (cps) for the Shells of Table 3.13

Having Clamped-Clamped Ends--Continued

269

Shell

666

m

1

poe
cps psi

9 537 1.35

648 2.90

671 2.90

719 3.60

758 3.90

759 4.10
804 4.75

902 6.40

927 7.00

1045 9.00

10 405 0

543 1.00

569 1.35

591 1.35
671 2.00

731 2.90
741 2.90

800 3.35

835 4.00

890 4.75

910 5.20

910 5.20

934 5.50

978 5.80

1029 6.70

1179 9.00

1188 9.10

11 149 0

598 1.00

622 1.00

751 2.00

798 2.25

800 2.27

85O 3.25

897 3.30

903 3.40

962 4.00

970 4.10

1120 6.45

12 732 1.00

800 1.65

850 2.00

883 2.25

946 2.90

1054 4.10

1247 6.45

13 800 .65

814 .80

850 1.10

991 2.25

1182 4.10

Shell m n fi Po_ Shell m n fi
cps psi cps

666 1 14 1077 2.25 666 2 5 537

1140 2.90 545

1253 4.10 556

1520 6.90 554

15 1029 .70
1628 6.00

16 1105 .70

18 1425 .70

3 967 3.30

964 3.40
970 4.10

970 4.75

978 5.40
978 5.80

973 6.3O

982 6.35
982 6.50

980 6.60

979 6.90

982 7.00

983 7.00

990 8.00

991 8.10

986 8.20

992 8.85

991 8.90

990 9.00

997 9.60
997 9.60

995 9.80

993 9.90

1002 10.00

1054 11.11

579

570

581

579

585

617

630

652

645

676

678

680

684

683

684

693

696

714

723

4 666 3.00

670 3.40

682 3.50

677 4.30

699 4.75

716 6.00

715 6.30

723 6.42

716 6.70

725 6.95

739 8.10

743 8.15

758 9.33

764 9.80

765 10.00

778 11.10

790 12.40

1001 1

Po_
psi

3.30

3.65

3.90

4.00

4.00

4.30

4.80

4.80

5.00

5.95

6.90

8.00

8.10

9.00

9.25

9.25

9.50

9.60
9.60

10.00

10.20

10.90
11.10

6 497 3.40

524 3.90

545 4.30

544 4.40
591 5.25

607 5.70

609 6.00
624 6.20

630 6.45

646 6.90

2 262 1.00

276 2.00

297 4.00

317 6.00

3 262 2.00

280 3.00

297 4.00

313 5.00

4 212 1.0O
276 2.00

322 3.00

401 5.00
430 6.00

5 225 1.00

301 2.00

356 3.00
i*
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TABLE 3.14.--Experimentally Measured Frequencies (cps) for the Shells of Table 3.13

Having Clamped-Clamped Ends--Continued

l

Shell

1001

m n fi Po_ Shell m n fi Po_ Shell m
cps ps_ cps ps_

1 5 413 4.00 1001 2 4 238 1.00 1502 1

453 5.00 375 4,00

494 6.00 423 5.00

6 283 1.00 5 231 t.00

365 2.00 315 2.00

443 3.00 371 3.00

507 4.00 426 4.00
517 6.00 473 5.00 2

514 6.00
7 309 1.00

421 2.00 6 287 1.00

719 6.00 520 4.00
576 5.00

8 353 1.00 7 330 1.00
48O 2.O0

432 2.00
669 4.00

528 3.00
748 5.OO

613 4,00
821 6.00

683 5.00

9 408 1.00 8 373 1.00

729 4,00 608 3.00 1624 1

10 474 1.00 764 5.00

610 2.00 1502 1 2 451 2.00
816 4.00

452 3.00

11 545 1.00 459 4.00

717 2.00 461 5.00

850 3.00
3 283 2.00

12 617 1.00 296 3.00

784 2.00 314 4.00

951 3.00 324 5.00

1190 5.00
4 240 2.00

13 657 1.00 296 4.00

1303 5.00 5 257 2.00

14 699 1.00 307 3.00

940 2.00 378 5.00

1260 4.00
6 298 2.00

1300 5.00 404 4.00

15 798 1.00 441 5.00

1019 2.00 7 342 2.00
1568 5.00

411 3.00

475 4.00
16 938 1.00

1169 2.00 8 392 2.00

1685 5.00 472 3.00

2 3 276 2.00 9 445 2.00

316 4.00 547 3.00

336 5.00 616 4.00

354 6.00 687 5.00

n L po_
cps ps_

10 595 2.00

688 4.OO

11 551 2.00

13 653 2.00

14 672 2.00

3 647 3,00

659 4,00

6 363 2.00

410 3.00

457 4.00

494 5.0O

7 380 2.00

495 4.00

550 5.00

10 506 2.00

424 1.00

419 2.00

416 3,00

432 4.00

420 4.00

433 5,00

426 5,00

429 6.00

448 6.90

430 7.00

434 8.00

432 9.00

432 10.00

433 11.00

444 11.00

435 12.00

432 13.00

421 14.00

3 279 1.00

285 2.00

290 2.00

303 2.30

309 3.00

317 3,50

344 4.00

324 5.00

334 6.00

346 6.00

352 6,90

361 8.00

371 8.00

369 9.00

380 9.00

2"
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TABLE 3.14.--Experimentally Measured Frequencies (cps) for the Shells of Table 3.13

Having Clamped-Clamped Ends--Concluded

271

g

Shell m n fi Po_ Shell m n fi po_ Shell m n fi Po_
cps psi cps psi cps psi

1624 1 1624 1 1624 13 382 10.00 6 113 0 8 579 4.00

389 10.00 156 1.00 633 5.00

391 11.00 301 2.00 642 5.00

402 11.00 321 2.00 671 5.46

399 12.00 368 3.00 696 6.00

414 12.00 379 3.00 709 6.10

414 13.00 433 4.00 751 7.00

418 13.00 482 5.00 807 8.00

421 14.00 516 6.00 847 9.00

437 14.00 525 6.00 892 10.00

568 7.00 943 11.00

4 170 0 596 8.00 1022 13.00

203 1.00 628 9.00

249 2.00 641 9.00

279 3.00 659 10.00

396 4.00 706 11.00

327 5.00 718 12.00

356 6.00 745 13.00

380 7.00 759 13.00
425 9.00

446 10.00

466 11.00

481 12.00

494 13.00

514 14.00

5 126 0

203 1.00

266 2.00

281 2.30

318 3.00

323 3.00

349 3.50

370 4.00

397 4.00

405 5.00

429 5.00

463 6.00

472 6.00

504 7.00

521 7.00

505 8.00

521 9.00

532 9.00

547 10.00

558 10.00

571 11.00

586 11.00

594 12.00

609 12.00

613 13.00

627 13.00

665 14.00

639 14.00

7 199 .55

256 1.00

265 1.00

316 1.46

364 2.00

382 2.2

441 3.00

479 3.5

497 4.00

524 4.4

551 5.00

558 5.00

606 6.00

617 6.00

634 6.3

652 7.00
740 9.00

775 10.00

814 11.00
820 11.00

881 13.00

8 231 0.55

289 1.00
358 1.47

412 1.94

419 2.00

437 2.20

468 2.56

501 3.00

502 3.00

510 3.00

539 3.50

564 4.00

9 261 .55
344 1.00

413 1.53

472 2.03

569 3.00

682 4.40

717 5.00

793 6.00

813 6.30

971 9.00
1017 10.00

1068 11.00

10 237 .25
294 .55

389 1.00

458 1.47

530 2.00

529 2.02

569 2.38

632 3.00

631 3.00

696 3.50

772 4.44

11 323 .55

410 1.00

763 3.50

848 4.40

1293 11.00

12 208 0

1004 6.20

1077 7.00

1223 9.00

1350 11.00

3 672 9.00

4 473 11.00

529 11.00

8 1183 14.00
-1if--
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form torsional prestress is somewhat more com-

plicated than the cases of uniform axial or
circumferential stress because the initial stress

matrix operators (see sec. 3.4.1) contain terms

having mixed partial derivatives which are of odd

order with respect to 0. Simple solutions using

displacement functions of the forms given either

by equations (2.20) or (2.53) require even num-

bers of derivatives with respect to 0 in the

equations of motion in order to be useful.

Koval and Cranch (refs. 3.131 and 3.132)

generalized the solution procedure by choosing

U = AeXse in° cos cot

v = BeX_e in° cos cot

W = CeXse in° cos cot

(3.160)

Substituting equations (3.160) into the equa-

tions of motion for the Donnell-Mushtari theory

(see sec. 3.4.1) yields the characteristic equation:

2_ 6- _28{2-- (3- _)n2[(h/n) 2-1]

+2kn4[(h/n) 2-1]}

+_2 {(3 -- v) n2[1 -- (h/n) 2]+2n2[v2(X/n) 2 -- 1]

+ (1-- v)n4[(h/n) 2-1] 2

+ (3-- v) kn6[1 -- (X/n) 2]3}

-- (1 -- v)knS[(h/n) 2 -- 1] 4- (1 -- _2) (1 -- _)),4

+i(2N_oihn/C) { --2_ 2- n2_2(3-- v)[(X/n) 2-1]
--n4(1--v)[(h/n)2-1] 2} (3.161)

Upon examining equation (3.161) it is seen that it

is of the same form as the characteristic equation

(2.35) for unloaded shells for the Donnell-Mush-

tari theory (i.e., AK2=AKI=AKo=O) except
thai

(1))_2 is replaced by --h 2 to account for the

more general exponential variation in x used in

equations (3.160) than in equations (2.20).

(2) An imaginary term is added which ac-

counts for the torsional prestress. This imaginary

term is a result of the odd derivative with respect

to 0 which occurs in the third equation of motion.

The amplitude ratios were

where _2 is the usual nondimensional frequency

parameter given by equation (2.26).

The standard procedure at this point is to

determine the eight roots hi, of equation (3.161)

and use these values to form the general solutions

u = _AieXi_ei'_° cos o_t

j=l

8

v = >[BieXiseO_O cos cot

j=l

W = _.. CjeXiseinO cos cot

j=l

(3.163)

Substituting these solutions into the eight bound-
ary conditions leads to a characteristic determi-

nant, the three roots of which are the frequencies.
This procedure parallels the one outlined in
section 2.4 for unloaded shells.

In references 3.131 and 3.132 the algebra was

somewhat simplified by making Yu's (see sec.

2.3.5) assumption, Ih/n12<<l. Then equation

(3.161) becomes

where
h4_ i(alN_oi/C) X_ c_2= 0 (3.164)

(1 - v)(1 - _2)al = 212n_ 4-n3(3- v)_22 ]

+ (1 -- v)n _]

(1 v)(1 --vOa2=2_6--_412+(3--v)n2

+kn 4] +_2[(1--v) |

(n2+n 4) + (3 -- v)kn 6] |
-- (1 -- v)kn s)

(3.165)

and the amplitude ratios reduce to

A=h 2_t2+ (1-- v)n 2 ]

C 2_4-(3-v)n2_2-t-(1-v)n_ _

B . 2[t2-- (1-- v)n _ |
-- = _rb 4
C 2_2 --(3--v)n2a2+(1--v)n4)

(3.166)

C-h v[t2+-_--n2[v(h/n)2+l] _4+---_-n2_2[(h/n)2-1]+---_n4[(h/n).L_l]_

(3.162)
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For a shell supported at both ends by shear

diaphragms (boundary conditions given by eqs.

(2.33)) references 3.131 and 3.132 show that the
formal solution to the problem of finding the

frequency parameters _ is given implicitly by

_4n(n2+}2) =alNxo_/C (3.1673)

(n2-- _2)2--4n2(n2-- _ 2) =Or2 (3.167b)

where al and as are defined by equations (3.165)

and, further,

2nl _l _l

cos = cosh cos
3n4+2n2_2-_- _ 4 _l _l

_ 2_n_V/_2+_ 2 sinh _ sin _ (3.168)

where
_2 = 2_2 + _2 (3.169)

For large v_lues of _l/R, equation (3.168) reduces

to

tan_= 2_n2%/2n_+ _2 (3.170)
R 3n4-_-2v2_2+ _4

In reference 3.131 two approximate procedures

were also used to obtain results for the SD-SD

shell. The Donnell-Mushtari equations neglecting

tangential inertia were used with the Galerkin

procedure in one case. A deflection function

z

w=cos nO,am sin ks
m=l

oo

+sin nO _bm sin
m=l

ks (3.171)

was used, _¢here X= m_rR/1. A first approximation

formula for frequency parameters is

_2=MI-[-M_ ,_/(M1--M2_ 2 _ N_d
2 _ )+H1- V (3.172)

where

/ j2_r_R_\2

Mj = k _n2-+_ )

/ j2_2R2\2 /--1,2,... (3.173)

_'(n_÷--_)

and

H -418nR_2
l_-6\-V } (3.174)

A second and more accurate approximation for

_t2 is the implicit formula

N_o_=8_R{[(MI-_)(M2--f_)(M3-_)]

4 36
+ [_(M 8- It) +_-_(M 1- _) ] } (3.175)

The second approximate procedure used in

reference 3.131 was based upon assuming an

approximate vibration mode shape, formulating

the expressions for strain energy and kinetic

energy, and applying Lagrange's equations to
solve the problem. The assumed mode shapes are

u = A_x[_(x) cos (_x +nO)] I

v =B_(x) sin (_xWnO) | (3.176)

w=C,_(x) cos (_x +nO) )
where

_(x) = sin _x (3.177)

with _ = m_rR/l and/_ an undetermined parameter
which varies with N,d. These displacements

yield u = v = w = 0, O_w/Ox 2# 0 at the boundaries.

Applying Lagrange's equations yields the char-

acteristic equation

1_'3_"_6-- ./_2_'_4--{--/_1_'_2 --/_ 0= 0 (3.178)

where

Ks = A 1+ (;_ +_2) (A_+A a)

K1 = A_[(X2+_)A_+ A 1]+ A _A2

Ko= A IA _A_+ 2AaA_A6-- A 2A6 _
--A,A_2-A1A4 _

l--Y 2

A_ =n2+(V)(k2+_2)

+k[n2+2(1 -- v) (k2-t-_)]

A _= 1 -t- k[(X_-t- _ _)2-t-4X2_-i-n_
-t-2n2(k2+_0 ] -2_nN_o_/C

A _= n + k[n_+ (2- v) n(X2-t-/_)]

Aa = (_-_)n(k2+O _)

A6 = v(k2-t-_ _) (3.179)

y-

r.

L
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Assuming that the parameter 3 varies linearly
with N=0_, taking on values 3 =0 when N=0_=0

and 3=3cr for the limiting case of buckling
(£2=0), the roots of equation (3.178) can be

found. Numerical results for a shell having

R/h = 300, l/R = 4, v = 0.3, E = 30 × 106 psi., m = 1

and n=8 are given in figure 3.127 for both the

second approximation Galerkin procedure and

the assumed mode energy procedure.

Nikulin (refs. 3.83 and 3.84) obtained the fol-

lowing formula for the frequency parameters of

SD-SD shells (see earlier references in this

chapter) subjected to twisting moment:

(1 -- _2)M-Fk(XLFn2)4- _Xn(X2+n2) 2

(X2 -_-n 2) 2"_-n2_- (3 +2v)X 2

(3.180)

where X=m_R/l and k=M/12R 2 as before.

Curves showing the decrease in frequency ratio
w/_0 (_0 is the frequency in the absence of initial

stress) are shown in figure 3.128 for a shell hav-

l

FIGURE 3.127.--Comparison o_
approximate solutions for a
"freely supported" (u =v =w =
O, 02w/02_0) shell. (After ref.
3.131)
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FmURE 3.128.--Frequency ratio versus torsional
stress ratio for an SD-SD shell; R/h=500,
I/R =2, m = 1. (After ref. 3.84)
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ing R/h = 500, 1/R = 2, and m = 1. The quantity

(N,g)_r used for the ratio of initial stresses is the

least value of N_g at buckling (i.e., _=0, which

occurs for n = 12).

Koval and Cranch (refs. 3.131 and 3.132) also

presented numerical results for clamped-clamped

shells. Following the exact solution procedure

outlined earlier in this section, it is found that

the formal solution for frequency parameters is

contained implicitly in equations (3.165), (3.167),

and (3.169), and

i'l _l 2nl 3n2 sinh i'l sin _l
cos _ co_ _-- cos -_-:-_ _ _ (3.181)

In the case of long shells (_l/R>>l), equation
(3.181) simplifies to

0.6801_
v = (3.182)

tan (_l/R)

The equations were further simplified by neg-
lecting tangential inertia (see see. 2.3.4), giving

(1 --/22)o/1 _- 2n 5 (3.183a)

(1--u2)a2=£2n4--kn 8 (3.183b)

in place of equations (3.165). Then equations

(3.167a), (3.182) and (3.183a) uniquely deter-

mine v and _ for a given N=g, and the frequency

is determined from equations (3.167b) and

(3.183b). A plot of the frequency parameter £2
versus the torsional shear stress at0 _ is shown in

figure 3.129 for a shell having R/h = 300, 1/R = 4,

_=0.3, and E=30X106 psi.

In reference 3.131 two approximate procedures

were also used to obtain results for the clamped-

clamped shell. The Donnell-Mushtari equations
neglecting tangential inertia were used with the

Galerkin procedure to arrive at the following

first approximation for a frequency parameter
formula:

where

G+F //G-F\ 2 N=g

2 _]_--) +H2_- (3.184)

G = (Ml+Ms)/2
i

F= (2Mo+M2)/3 _ (3.185)
!

H2 = (32)3n2R2/675P J

and Mj is defined by equation (3.173). Further-

more, a second approximation was found from

N ' Cl /
=0!= _-R({ (M_--F M,- 2aO[ (2Mo-.F M 2

- 3_ 2)(M2 -F M4 -- 2_ 2) - (M2 - _2) 2]}

+ { (_)2(M2+M4-- 2£')

/64\/352\ M

(3.186)
where it is computationally easier to substitute

into equation (3.186) a value of _2_ lower than

the load-free value and solve directly for the cor-

responding torsional stress. In figure 3.130 the

first and second approximation Galerkin-type
solutions are compared with the exact solution

w

?

0,022

0.020

0,018 "_'_ _*_

0,016 =12 _
I AXIAL WAVE
2 AXIAL WAVE

0.0,4 \\

0.o,2 n=,l \\
..... _ CLAMPED EDGESO.OLO

_ E = 30XlO s PSI
R/h = 300

0.008 "_ _ u :o.3

o,oo_ _._...

o.oo \

0 ] I I I I [ I I I
2000 6000 IO,O00 14,000 I8,000

INITIAL SHEAR STRESS,_io,psi

FIGURE 3.129.--Lowest frequency

parameters for a clamped-

clamped shell subjected to uni-

form torsional prestress. (After

ref. 3.132)

1

T
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0.010
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0.008

0.007

0,006
I

"-_ 0.005
&
%
,, 0.004
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R/h = 300

A/R= 4
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E= 50 x I0 s psi
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I I I I I i I I I _l_, I 1 I I I'_. I

2000 4000 6000 8000 IO,O00 12,000 14,000 16,000

INITIAL SHEAR STRESS, .°:!8'psi

FIGURE 3.130.--Comparison of exact and approximate
solutions for a clamped-clamped shell. (After ref. 3.131)

described earlier for the clamped-clamped shell
having R/h=300, l/R=4, v=0.3, E=30X106

psi., m= 1 and n=9.

The assumed mode energy approach using
Lagrange's equations described earlier was also

used in references 3.131 and 3.132 to analyze

the clamped-clamped shell. The function _(x)

used in equations (3.176) is (in this case) the

beam function for symmetric modes (odd num-
bers of axial half-waves)

_(x) = cos axWt, cosh ax (3.187)

in terms of a coordinate origin emanating from
the middle of the shell, where

, a = m_rR/l

m= 1.506, 3.500, 5.500, . . .

_=sin (m_/2)/sinh (m_/2)

For axially unsymmetric modes (odd number of

nodal circles) the corresponding beam function is

_(x) = sin ax-_ sinh ax (3.188)

where a and _ are as before, and

m=2.500, 4.500, 6.500, . . .

The resulting characteristic equation (3.178)
now has the coefficients

K0=l

KI=AI+A2+A3

• 2= I+ (-- 1)N# =

,I,_ = (a' +rio [1 + (-- 1) _#=]

(3.189) +
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where N is the number of nodal circles (number

of axial half-waves plus one).

In figure 3.131 comparisons of the lowest fre-

quencies obtained by the two approximate meth-
ods are made with the "exact" values for the

shell previously used (R/h = 300, l/R = 4, _= 0.3,

and E = 30× l0 t psi). The frequency for _=0_= 0

is lower from the energy method (f_=0.00623)

than the corresponding values given by the

"exact" solution (f_ = o.0o635) and by Galerkin

method (_=0.00645) because the energy solu-

tion ineludes tangential inertia, whereas the

others do not. It was found in reference 3.131

that the initial torsional stress has a negligible

effect upon the two higher roots of the frequency
equation (3.178).

Experimental data were also presented by

Koval and Cranch (refs. 3.131 and 3.132) for

clamped-clamped shells subjected to torsional
prestress. The test specimens were made from

steel shim stock 0.010 in. thick and had R/h = 300

l/R=4 (the same as the shell parameters used

in the previously discussed theoretical results).

Numerical data are depicted in figure 3.132.
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FIGURE 3.131.--Compari-

son of solutions from

two approximate meth-

ods with an "exact"

solution for a clamped-

clamped shell; torsional

prestress. (After ref.

3.132)
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FIGURE 3.132.--Theoreti-
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clamped-clamped shell
(dimensions given in

text) subjected to tor-
sional prestress. (After

refs. 3.131 and 3.132)

T

T'-
>



278 VIBRATION OF SHELLS

Theoretical values plotted are those of the pre-
viously described "exact" solution and are iden-

tified by number of axial half-waves and values

of n. The experimental tests verified the theo-

retical implications that the axial nodal lines

follow helices, the helix angle increasing as the

torsional prestress is increased. This phenomenon
is depicted in figure 3.133 wherein the mode

having one axial half-wave and n = 10 is excited

under a prestress of ax0_= 4200 psi.

The assumed mode energy approach using
.Lagrange's equations described earlier was also

used in references 3.131 and 3.132 to analyze the

clamped-freely supported shell. The beam func-

tion _(x) used in equations (3.176) in this case

is equation (3.188) where a=mTrR/l; m=1.25,

2.25, 3.25 .... ; and # = sin mTr/sinh m_r. Again,
the conditions u=v=w=0 are satisfied at the

"freely supported" end, and M_#0. The charac-

teristic equation yielding the frequency param-

eters _22 is again equation (3.178) with terms as

defined in equation (3.189), except that now

2/ 2 sin 2m_r\ 2 2 "_

XI'l=a (1+# ---m_---)+ fl (l--g) !

_I'2= 1 _#2
(3.190)i

,I% = (a4+5 4) (1 _#2) [

+6a2_2(1-{-# 2 "si_m_7) J"

The free vibration of circular cylindrical shells
subjected to initial torsional stresses was also
studied in reference 3.133.

Additional information for circular cylindrical
shells subjected to torsional initial stress is avail-

able as a special case in section 3.4.6.

3.4.6 Combined Uniform Axial, Circumferential,
and Torsional Prestress

In section 2.4 the procedure for using the Ritz
method with beam functions to accommodate

shells having arbitrary boundary conditions was

laid out. The resulting cubic characteristic equa-

tion for the frequency parameter _2 was given

by equation (2.67), with the coefficients K2, K1,

Ko as defined by equations (2.68) and (2.69).

Gontkevich (ref. 3.41) also gave the generaliza-
tions of these coefficients to account for the

presence of uniform axial, circumferential, and

FIGURE 3.133.--Experimental nodal lines for a clamped-

clamped shell subjected to torsional prestress showing

helical pattern. (After refs. 3.131 and 3.132)

torsional initial stresses. The resulting coeffi-

cients to use in equation (2.67) (after correcting

apparent typesetting errors) are given in equa-
tions (3.191), where K=, K1, K0, _, #_, and 3'_ are

as used in equations (2.68). Equations (3.191)
provide a powerful formula for the solutions of

numerous problems. However, the reader is cau-

tioned to use them with care, paying particular

attention to the signs on the initial stress terms,
verifying that changes in initial stresses cause

appropriate changes in frequency parameters.
In reference 3.41 the formulas for the coeffi-

cients of the frequency equation in the case of

initial stresses were also given for orthotropic

shells. In this case the coefficients are as given in

equations (3.192), where K2, K1, and K0 in this

case are the coefficients for unloaded orthotropic
shells given by equations (3.42) and, in this case,

Exh
C = --

(1 --v.vo)

The same caution must be applied for equations

(3.192) as was mentioned in the previous
paragraph.

l
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-- 1 _ 2

K2 = K_+_(t_r_Nx'+n No

- 2nt_m.y,,Nxo _)

- 1 1 2 2

"l

+2(1 -- v) _m_m2]} (,m2N_ _
#

+n2No i - 2n_m,y,,N_e i)

Ko=go+ c{[t_me+_(l-v)5,,n2][ne

+_(1-_)_m._ 2 , --ff

_m 2

%

+2(1- _)_u_2] / (._N_'
]

+ n_No _- 2ntt,,"/,,NxoO

3.191)

Nikulin (refs. 3.83 and 3.84) analyzed SD-SD

shells subjected to combined uniform axial, cir-

cumferential, and torsional prestresses (see dis-

cussion of method in sec. 3.4.3) and arrived at

the following formula:

{ (1 - _)x4+k(v+n_) 4

+ (h2Wn 2) 21[N_X2+No_(n 2 -- 1)

-2Nxo_Xn] } + { (X2+n2)2+n2

%

+(3+2u)X 2} (3.193)

This formula was also given by Prokopev (ref.

3.134).

Results for a clamped-clamped shell having

h=0.5 mm., R=l17 mm.,/=357 mm., and m=l

and having E=2X10 G dyne/cm 2, _=0.3, and

p=8Xl0 -6 dyne.sec2/cm 4 are given in figure

3.134 (from ref. 3.84) for various combinations

of initial stresses. Both experimental and the-
oretical data are shown.

3.4.7 Nonuniform Initial Stresses

R2 = K_+-_(u,.2N_ +n2No

-- 2nu,. y.,N.o _)

K 1
L"" JLu,,n

C66 -1 F D22

+4_,6,.t_r_2]}(.,.2N='+n2N, '

2 i-- nu,. y,.N.o )

llr coo ]re,.
I t_,,_+--8,,n_ --n _

/_0 : g0+_ [ ell JLCl,

C66 1 C12

C6612 [

C66 k ]¢022

+-C-_x/_,.26,.) J (.,,,2Nj +n'No '

- 2nta,_T,_N.o _)

(3.192)

Consider first the case of a circular cylindrical

shell subjected to a gross bending moment M_

acting at its ends as shown in figure 3.135. Then

the axial initial stress is given by

_i=_ cos 0 (3.194)

which is a case of the axial initial stress varying

circumferentially. The gross bending moment is

then determined by

M_= h_R cos O(R dO) =_rR2h_ (3.195)
dO

Weingarten (ref. 3.135) analyzed the generali-
zation of equation (3.194) which accounts for

superimposed uniform axial and circumferential

stresses as well; i.e.,

(Txi=O'a+ffb COS O}ao_= pR/h (3.196)

where _ = P/2_rRh, P is axial end load (positive

in tension), and p is internal pressure. The

Donnell-Mushtari shell equations neglecting tan-

gential inertia were used with the Galerkin
method, with 18 terms of the deflection series

7
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EXPERIMENTAL DATA: THEORETICAL DATA:
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} I (g) 0 --60 -120

468 936

_ri_dyne Icm= o-_ dyne/cm 2

FIGURE 3.134---Frequencies (cps) of u clamped-clamped shell (dimensions given in text) subjected to combined uniform

axzal, circumferential, and torsional prestresses. (After ref. 3.84) (a) a=_=1632 dyne/cm 2, a=0_=488 dyne/era 2.

(b) ae _ =700 dyne/cm 2, a=e _ =488 dyne/cm 2. (c) ae _ =700 dyne/cm 2. (d) a=_ = 1632 dyne/em 2. (e) a= _ --1632 dyne/cm 2,

eel=700 dyne/cm_. (f) _=e_=488 dyne/cm _. (g) All prestresses on abscissa.

1

T"-

=.

R
I

I' Z _l

FIGURE 3.135.--Circular cylindrical shell subjected

to gross bending moment.

N

. T_/rxw(x,O,t) = sin-/- cos _0t a, cos nO (3.197)
n=0

to represent _n SD-SD shell. Numerical results

were obtained for _n aluminum shell (E = 106 psi.,

pg=O.098 lb/in2, _=0.33) h_ving R/h=250,

R=4 in., and l/R=l.91. Computed frequencies

for an external pressure of 2 psi _nd v_rious

values of gross bending moment are shown in

tsble 3.15 and by the solid curves in figure 3.136.

_A



COMPLICATING EFFECTS IN CIRCULAR CYLINDRICAL SHELLS

TABLE 3.15.--Theoretical Frequencies (cps) o] an SD-SD Shell Subjected

to Gross Bending Moment (Dimensions in Text)

ab/_a

m n

0 0.2 0.4 0.6 0.8 1.0

5

6

7

8

9

10

11

12

13

14

8OO8

5849

3233

1849

1152

778

583

520

565

683

846

1040

1258

1498

1759

8OO8

5849

3233

1849

1152

780

601

481

564

686

847

1040

1258

1498

1759

8OO8

5849

3233

1849

1154

789

624

410

542

698

851

1042

1259

1499

1759

8OO8

5849

3233

1850

1158

8O2

630

317

509

716

858

1045

1261

1500

1760

80O8

5849

3233

1851

1163

821

466

174

(a)
623

868

1050

1264

1501

1761

8008

5849

3233

1853

1169

841

(a)
(_)

413

608

883

1056

1267

1503

1762

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 8009

1 7332

2 5850

3 4376

4 3237

5 2430

6 1877

7 1511

8 1291

9 1194

10 1203

11 1296

12 1451

13 1652

14 1889

8012

7697

6884

5856

4846

3973

3269

2726

2326

2054

1897

1845

1884

1998

2173

8009

7332

5850

4376

3237

2431

1880

1519

1330

1097

1204

1297

1458

1656

1891

8015

7694

6884

5856

4847

3974

3271

2731

2337

2084

1936

1699

1830

2028

2180

8012

7330

5851

4378

3241

2441

1903

1585

797

1239

1048

(a)
(a)
1685

1907

8942

7672

6884

5858

4851

3984

3291

2770

2423

1250

2160

1792

1551

2463

1993

8014

7328

5851

4379

3244

2449

1924

1632

581

1372

938

1183

1524

1714

1921

8062

7657

6883

5859

4855

3992

3308

2850

2466

935

2140

2314

1363

1677

(_)

8017

7326

5851

4380

3248

2459

1950

1343

190

1665

8O5

1114

1755

1524

1939

8087

7638

6882

5861

4860

4003

3330

2851

1135

(a)
(a)

2312

(a)
1540

1849

a Values did not converge.
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FmURE 3.136.--Variation of frequency with gross

initial bending moment; SD-SD (After ref. 3.135)

In the presentation of these results the bending

moment is expressed nondimensionally as ab/aa,

where aa is the value of compressive axial stress

which causes buckling in a long shell; i.e.,

Eh

_-<,- R _v/3-( 1 _ v_) (3.198)

Identification of mode shapes for the shell

loaded by end moments is difficult. As ab/ea

increases the circumferential mode shapes become

irregular and the value of n loses meaning. This

behavior is shown in figure 3.137 for m= 1 and

n=5 and in figure 3.138 for m=l and n=6.

Because of symmetry about the vertical axis,

only one-half of the mode shape is shown in fig-

ures 3.137 and 3.138. In plotting figure 3.136 it

was found that by taking closely spaced values

of ab/a_ one could obtain smooth frequency curves

for 0_<ab/a,< 1. The value of n for a given curve

in figure 3.136 is that value when ab/a_=O. The

results shown in figure 3.136 and table 3.15 indi-

cate that as Mb increases some of the frequencies

increase, whereas others decrease.

Experimental data were also presented in ref-
erence 3.135 for the same shell. These are listed

in table 3.16 and are also shown by data points

in figure 3.136. The experimental results in all

cases fell above the analytical curves. The differ-

|

"T

TABLE 3.16.--Experimental Frequencies (cps) of an SD-SD Shell Subjected

to Gross Bending Moment (Dimensions Given in Text)

m n

5

6

7

8

9

10

12

7

8

9

13

1471

1134

895

782

747

805

1081

1292

1988

1655

1459

1361

1833

0. 106

1131

761

711

1079

1290

2009

1663

1447

ffb/_a

0. 168

1127

893

752

703

803

1286

1992

1675

1541

1441

1868

0.232

1509

1126

897

748

692

807

1076

1281

1977

1646

1525

1415

0.293

1441

883

734

662

8OO

1277

1953

1974

1631

1511

0.355

1435

1112

878

73G

634

i071

1294

192¢

201_

163_

1374

£.

i,.



r',:1

!

!

r !

I

r.;

P : "I

iI

r t
I

t ,I

' t

rl

NORMALIZED DEFLECTION

o , i , i , , i , i ,

o+

_o

NORMALIZED DEFLECTION

_ o _

o_

i,

g _

_° _

_

,+,

_"

o

,_o

m

NORMALIZED DEFLECTION

_ o pm _ o

!'

@

NORMALIZED DEFLECTION

m o

t...........

NORMALIZED DEFLECTION

m o
o , , + , , , , , , ,

+ <
m aq;
o

NORMALIZED DEFLECTION

_ p o

+i
o

NORMALIZED DEFLECTION

o , i , , i , i , + ,

o_,

N
0 NORMALIZED DEFLECTION

_ _ o o o

i , i i , _ , ; , i ,

m_

+i

._E_

_._

r !

NORMALIZED DEFLECTION

_o oo

o_

o

NORMALIZED DEFLECTION

_ _ o _ _o
o • i , , , i , , i ,

8

_ o_,

o

NORMALIZED DEFLECTION

_ o oo
' _ , i , i , i ,

m --

NORMALIZED DEFLECTION

_ o
oi , , i , i , i , i ,

m

0

_g



284 VIBRATION OF SHELLS

ence was attributed to the difficulty in simulat-

ing SD-SD end conditions. No experimental
results were obtained beyond ab/ea =0.355 since

buckling occurred at ab/aa = 0.43.

The problem of the circular cylindrical shell

subjected to gross bending moments at its ends

was also studied both theoretically and experi-

mentally by Seggelke (ref. 3.136). The theoretical

analysis was based upon the Donnell-Mushtari

equations neglecting tangential inertia. The

normal displacement for an SD-SD shell was
taken as

N

m_rxw = sin T cos _t (a_
n=0

cos nO+b,, sin nO)

(3.199)

along with a compatible Airy stress function. The

a_ and b_ coefficients were used separately for

symmetric and antisymmetric modes, respec-
tively. The Galerkin method was used to solve

the problem. Numerical results for the frequency

parameters _R_p/E are plotted versus _b/_a and

ab/E in figures 3.139 and 3.140 for

h_

-i_(1-_)2R2=9.16×10-6 and 3.67×10 -7

respectively (i.e., R/h = 100,and 500, respectively,

for _ =0.3). The stresses _b and aa are defined by

equations (3.194) and (3.198), respectively. The
circumferential wave number n identifies the

number of circumferential sine waves in the

unloaded (ab=0) condition. As seen earlier in

this section in Weingarten's work, additional
Fourier components of equation (3.199) are re-

quired as ab increases. The contribution of the

other Fourier components to the n = 9 mode can

be seen in figure 3.141 where the relative magni-

tudes of the Fourier coefficients are indicated,

subject to the normalizing condition

N

_an 2= (3.200)
1

n_0

The necessity of using terms other than n=9

clearly increases as ab increases as shown in fig-
ure 3.141. The appearances of the symmetric and

antisymmetric modes for the lowest frequency
(n --9) for

0.5

T

FIGURE 3.139.--Frequency parameters for an SD-SD

shell subjected to gross initial bending moment;

R/h=lO0. (After ref. 3.136)

%

O.15

O.I

0.05

n=12

_=___--_.- _ _ .._.._.

I

I

I

$

%.

-_-._
m

----- _ =2 .,

.=ol
=40..... I11

0.5 I.O o"b

I I I I

0 0.SxlO -_ IXlO -a % 1.5X10-3

"-E-

FIGURE 3.140.--Frequency parameters for an SD-SD
shell subjected to gross initial bending moment,
R/h =500. (After ref. 3.136)
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°" t _: 500 %
-- = IXlO-S

I i'- v =0.3 [ . E0.5_Z _: 2 _:%o.oo_3
I I I | I I I I ,

0 5 6 Y 8 9 I0 I_1 12 13 14 15 n

°;t = IXlO-4

0.5 I 3 oo.o_

L Ii
I I I I I I I

0 5 6 7 8 9 I0 I_ 12 13 14 15 n

0.5 _ =0.532.,I I,
0 5 6 7 8 9 I0 II 12 15 14 15 n

AXIS OF BENDING

8 = 270 °

285

°;F "_- =I.IXlO -3

cr

,111
0 5 6 7 8 9 I0 N 12 1"3 14 15 n

FIGURE 3.141.--Normalized Fourier coefficients a. of the

mode shapes of an SD-SD shell subjected to bending

moment; n =9. (After ref. 3.136)

R/h = 500 ab/E = 4 X 10-4

X = mTrR/l = 2

are depicted in figure 3.142.

Experimental results were also given by Seg-

gelke (ref. 3.136). Figure 3.143 shows frequency

(cps) versus bending moment Mb(m.kp) for two
SD-SD shells having lengths of 48.5 mm. and

48 mm. Both shells had R = 25 mm., h =0.05 mm.,

and were made of steel (p= 8X 10 -6 kp.sec2/cm 4,
E = 2.1 X 106kp/cmg). The bending moment was

varied from 0 to 1.58mkp (_b/#a=0.63). Figure
3.144 shows a similar plot for a third shell of the

same material and having the same dimensions,
except l = 75 mm. In this figure the lowest fre-
quencies for the first three axial wave numbers

(m= 1,2,3) are given. Examples of experimen-

tally measured circumferential mode shapes for

the second shell (1= 48 mm.) are shown in figures
3.145, 3.146, and 3.147 [for n=9, 8, and 11,

respectively. Theoretical and experimental fre-

FIGURE 3.142.--Circumferential mode shapes of an SD-

SD shell subjected to bending moment; n =9. (After

ref. 3.136)

40o0

n=l/.

3000'

n=7

_- n=ll

n=8

n=lC

n=9

#_
u_

2000

IO0O

--'_- -_ --'-"- - z,---_- ....
n=6

n=l:5

_--_--_----e--,-'--,,--,,--.

_--_--"---t-- _--'-_--4_---

Lo_________
o

-_----T-:uiP:. 1-_-.-_---_....
• '-I, 'i• •

"°'_-'_----@-" _-" "-I ,

• ,_ SHELL NO,I (l=48, Smm.)

• o SHELL NO.2(_=48mm.)

o ----v

,_-.... __...... ___....

-_- .... -l- .... -_ ......

-@...... g__.

0,4 0.8 1,2 mkp

BENDING MOMENT M b

1.6

FZGURE 3.143.1Experimentally measured frequencies of

shells subjected to gross initial bending moment

(dimensions given in text). (After ref. 3.136)
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4000
n=14
n=12

n=13

n=4

5O0O
n=8 ¸

n=ll_
n=12

n=ll
u

n= 5

Z
w

n= IC
V

w

._ 2000n=6
n=9

n=8
n=7

I000

_,_. _: _-_---

;T-;--7
-_-1----'-t-

-e---- --e ....

_-.._- _ _ _,

4----II ....

SHELL NO.3 (j= 75mm)

$------@ m=l

_-- - ---,_ m=2

¢----'-¢' m: 3

..... B- 4-'---:@

I----@---@

.l---Jl-------.I

0 0.4 0.8 m.kp 1.2

BENDING MOMENT M b

FIGURE 3.144.--Experimentally measured frequencies of

a shell subjected to bending moment (dimensions given

in text). (After ref. 3.136) "

m=l
W(8 )

_ =0.o32

o ,.j

I 90 ° 8 180°

W =o.232

0 f"_ _ '.

V v 90 ° 0 180"

w(o) _,

_ =o.433

0 _"_ _ I

0 180°

FIGURE 3.1,t&--Experimentally measured circumferen-

tial mode shapes for shell no. 2 subjected .to bending

moment; n =9. (After ref. 3.136)

w(e)

m=l

-%-:0.032

iV v, v oV,:o°
w(e) %

L _,._o:0.132

I\ A /,
°V ..

w(e) I %
v k,,._./' v '

° W _90o e i80 o

FIGURE 3.146.--Experimentally measured circumferen-

tial mode shapes for shell no. 2 subjected to bending

moment; n =8. (After ref. 3.136)

w(e)

o

m=l
o"b

=o.os2

90 ° O 180"

FIGURE 3.147.--Experimentally measured circumferen-

tial mode shapes for shell no. 2 subjected to bending

moment; n = 11. (After ref. 3.136)

quencies for the first shell (l=48.5 mm.) are

compared in figure 3.148.

Sampath (ref. 3.74) also studied the problem
of the SD-SD shell loaded by overall end mo-
ments. The Galerkin method was used with the

Donnell-Mushtari equations, and the deflection

function (eq. (3.199)) was assumed. Retaining
50 terms in the solution series, numerical results

were obtained for a shell having m= 1, l/R=4,

R/h= 1000, and _=0.3. Frequency parameters
which have converged to five significant figures
are listed in table 3.17 for various ratios of the

loading parameter a_/a_,, where a_ is the magni-

L



COMPLICATING EFFECTS IN CIRCULAR CYLINDRICAL SHELLS 287

tude of the stress causing the gross bending

moment, as in equation (3.196), _a=0, and at, is
the lowest buckling stress in the case of uniform

axial loading; i.e.,

E
act = 0.5606 X 10-3._ (3.201)

(1- _)

The ratio ft_/_02 versus zb/zc, is plotted in figure

3.149, where £0 _ is the square of the frequency

parameter in the unloaded case for the same

circumferential wave number, n.

In reference 3.74 an axial stress varying cir-

cumferentially according to

_J=_2 cos 2n8 (3.202)

was also investigated. Again, using equation

(3.197) and the Galerkin procedure yields table

3.18 and figure 3.150 as complements to table

3.17 and figure 3.149, respectively, for the same

shell. Comparing tables 3.17 and 3.18 it is seen
that the significant differences in frequencies
occur for large loading parameters for n>3.

4000

n=13

n=12

n=7,_

n=ll,_

n=8__

n=lO _

_ n=9_

_ 2000
w

u_

J

v- --_ -v-

v-----_7 EXPERIMENTAL

THEORETICAL

0 I m.kp 3

BENDING MOMENT M b

FIGURE 3.148.--Comparison of experimental and theo-

retical frequencies for shell no. 1 subjected to bending

moment. (After ref. 3.136)

Two other problems having spatially-varying
initial stresses were investigated in reference

3.74. The first of these is the shell subjected to

axial stress which varies linearly in the axial
direction; i.e.,

• k x
_='= 04-1_1_ (3.203)

This is the situation which would arise if the

shell were loaded axially by its own weight and
supported at one or both of its ends. In the

other problem the circumferential stress varies
linearly in the axial direction.

A few other references deal with nonuniform

initial stresses. Kessel and Schlack (ref. 3.137)

(&)' o_

n=5 n,9

.=o,i,2

_n=?

o ,
_b /%r

FIGURE 3.149.--Variation of the frequency ratio (£/£e)"

with loading ratio ab/_, for an SD-SD shell subjected

to gross bending (dimensions given in text). (After ref.
3.74)

1,6

n=9

1.2

0.8 - n=0,1,2

0.4

0

0.2 0.4 0.6 0.8 1.0 1.2 IA 1.6

_2 /%t

FIGURE 3.150.--Variation of the frequency ratio (£/£0) 2

with loading ratio a_/_, for an SD-SD Shell subjected

to an axial initial stress a i =_ cos 20 (dimensions given
in text). (After ref. 3.74)
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TABLE 3.17.--Frequency Parameters _2 = o_2R_p(1_ v2)/ E of an SD-SD Shell Subjected to Gross Bending Moment

(Dimensions in Text)

QO

i

! :I

!;

i'I

r'1

i

r t

ffb /ff cr

9. 1000 X 10 -I

1. 3245 X 10 -x

1. 6246 X 10 -2

3.7517X10 -s

1.2770X10 -8

5. 8234 × 10 -4

3.6998X10 -4

3.4580 X t0 -4

4. 3087 X 10 -4

6. 0709 X 10 -4

0.2

9. 1000 X 10 -I

1. 3245 X 10 -I

1. 6246 X 10 -2

3. 7526 X 10 -3

1. 2798 X 10 -3

5.9122X10 -4

3. 8136 X 10 -4

2. 8847 X 10 -4

4. 4868 X 10 -4

6. 1253 X 10 -4

0.4

9. 1000 X 10 -1

1. 3245 X 10 -1

1. 6247 X 10 -2

3. 7541 X 10 -3

1. 2848 X 10 -8

6. 0607 X 10 -4

3. 6485 X 10 -4

2. 3606 X 10 -4

4. 6698 X 10 -4

6. 2370 X 10 -4

0.6

9. 1000 X 10 -1

1. 3245 X 10 -1

1. 6247 X 10 -2

3. 7552 X 10 -3

1. 2882 X 10 -3

6. 1367 X 10 -4

3. 5243 f 10 -4

2. 0865 X 10 -4

4. 7222 X 10 -4

6. 3374 X 10 -4

0.8

9. 1000 X 10 -1

1. 3245 X 10 -1

1. 6248 X 10 -3

3.7579X10 -3

1.2968X10 -s

6. 2471 X 10 -4

3.2263X10 -4

1. 5231 X 10 -4

4.7372X10 -4

6. 6404 X 10 -4

0.9

9. 1000 X 10 -I

1. 3245 X 10 -1

1. 6248 X 10 -2

3. 7595 X 10 -3

1. 3021 X 10 -3

6. 2871 X 10 -4

3. 0592 X 10 -4

1.2357X10 -4

4. 7076 X 10 -4

6. 8207 X 10 -4

9. 1000 X 10 -1

1. 3245 X 10 -1

1. 6248 X 10 -2

3.7614X10 -s

1.3079X10 -s

6.3193X10 -4

2. 8827 X 10 -4

9. 4533 X 10 -5

4. 6600 X 10 -4

7. 0081 X 10 -4

1.1

9.1000 X 10 -1

1. 3245 X 10 -I

1.6249X10 -3

3.7656X10 -s

1.3100X10 -3

6. 3601 X 10 -4

2. 5072 X 10 -4

3.5726X10 -5

4.5175X10 -4

7. 3821 X 10 -4

TABLE 3.18.--Frequency Parameters _2 = _o2R2p(1_ u2)/E of an SD-SD Shell Subjected to an Axial Initial Stress
a_=a2 cos 20 (Dimensions in Text)

1.2

9. 1000 X 10 -1

1. 3245 X 10 -1

1.6250X10 -2

3. 7706 X 10 -3

1. 2951 X 10 -3

6. 3686 X 10 -4

2. 1077 X 10 -4

6.0170X10 -6

4.3318X10 -4

7. 5605 X 10 -4

O

O

t_

r_

rl

rt

r t
P

r

cr 3 /O'cr

n

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

9.100O X 10 -I

1. 3245 X 10 -1

1. 6246 X 10 -2

3. 7517 X 10 -3

1. 2770 X 10 -3

5. 8234 X 10 -4

3. 6998 X 10 -4

3. 4580 X 10 -4

4. 3087 X 10 -4

6. 0709 X 10 -4

9. 1000 X 10 -x

1. 3249 X 10 -1

1. 6246 X 10 -3

3. 7525 X 10 -3

1. 2783 X 10 -3

5.8592X10 -4

3. 5289 X 10 -4

3. 3649 X 10 -4

4.4397X10 -4

6. 1059 X 10 -4

9. 1000 X 10 -1

1. 3252 X 10 -1

1. 6247 X 10 -3

3. 7532 X 10 -3

1. 2820 X 10 -3

5. 8818 X 10 -4

3. 1877 X 10 -4

3. 1158X10 -4

4.6606X10 -4

6. 2659 X 10 -4

9. 1000 X 10 -1

1. 3256 X 10 -1

1. 6247 X 10 -2

3. 7550 X 10 -3

1. 2882 X 10 -3

5. 8453 X 10 -4

2. 7881 X 10 -4

2. 7656 X 10 -4

4. 8590 X 10 -4

6. 5412 X 10 -4

9. 1000 X 10 -1

1. 3259 X 10 -1

1. 6248 X 10 -3

3. 7576 X 10 -3

1. 2969 X 10 -s

5. 7737 X 10 -4

2. 3557 X 10 -4

2.3551X10 -4

5. 0091 X 10 -4

6. 8672 X 10 -4

9. 1000 X 10 -1

1. 3263 X 10 -1

1. 6248 X 10 -2

3.7609X10 -s

1. 3082 X 10 -3

5.6768X10 -4

1. 9002 X 10 -4

1. 9073 X 10 -4

5. 1037 X 10 -4

7.2105X10 -4

9. 1000 X 10 -l

1. 3266 X 10 -I

1. 6249 X 10 -2

3. 7649 X 10 -3

1. 3220 X 10 -3

5.5578X10 -4

1.4266X10 -4

1. 4349 X 10 -4

5. 1420 X 10 -4

7. 5545 X 10 -4

9. 1000 X 1O-l

1. 3270 X 10-1

1.6250X10 -2

3.7697X10 -s

1. 3385 X 10 -3

5. 4189 X 10 -4

9. 3846 X 10 -5

9.4510X10 -5

5. 1275 X 10 -4

7. 8893 X 10 -4

9. 1000 X 10 -1

1.3273X10 -1

1. 6251 X 10 -_

3.7752X10 -s

1.3575X10 -s

5.2614X10 -4

4.3816X10 -5

4. 4222 X 10 -3

5. 0656 X 10 -4

8. 2083 X 10 -4
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considered gyroscropic forces induced by spin

around the shell axis with simultaneous steady

precession about a nutation axis. Bushnell (ref.

3.138) analyzed a shell subjected to constant

axial stresses and an internal pressure which is

proportional to the normal displacement w; this

situation arises, of course, when the shell con-
tains an elastic core. Thermal initial stresses

were considered by Buckens (ref. 3.139) and by

Ong and Herrmann (refs. 3.81, 3.140, and 3.141).

3.4.8 Open Shells

The previous sections dealing with the effects
of initial stresses upon vibration frequencies and

mode shapes considered in great detail the closed

circular cylindrical shell. As was found in chapter

2 in the case of unloaded shells, considerably less

information is available for open shells, even

though the number of possible types of boundary

conditions is far greater.

Consider the open circular cylindrical panel

depicted in figure 2.141. As in section 2.8 certain

information is available for prestressed panels

having their lateral edges 0=0 and 0=0o sup-

ported by shear diaphragms with various bound-

ary conditions along the ends x =0 and x = l.
This information comes from the modes of closed

shells having one or more circumferential waves,

the SD boundary conditions bein_ duplicated at

node lines of the closed shell. Section 2.8 may be

reviewed for the technique of utilizing such
results.

The case of an open shell supported on all four

edges by sheer diaphragms and subjected to uni-
form initial stresses is examined in references

3.44, 3.103, and 3.142. However, as indicated in

the preceding paragraph, for these boundary con-
ditions the same results can be obtained from

closed shells. Procedures for analyzing open shal-

low shells subjected to initial stress and having

arbitrary boundary conditions are laid out in

references 3.46 and 3.143, but no numerical

results are given.

Reissner (ref. 3.46) also included uniform ini-

tial stress terms in his nonlinear (large deflection)

analysis of open circular cylindrical shells (see

section 3.3.5 for further description of approach)

supported on all edges by shear diaphragms. The

ratio between nonlinear and linear frequencies is

given by equation (3.93), where _o2is now given by

o[ + +[ ]
Eh (_r/l)'

+-_ [(n/R)_+(_r/l)_] 2 (3.204)

3.5 OTHER COMPLICATING EFFECTS IN

CIRCULAR CYLINDRICAL SHELLS

In this section three other types of compli-

cating effects which affect the free vibrations of

circular cylindrical shells will be reviewed briefly:

(1) Effects of surrounding media

(2) Shear deformation and rotary inertia

(3) Nonhomogeneity.

A significant amount of literature deals with each

of these, and a great deal of space could be de-

voted to each. However, each topic introduces

considerable complexity into the picture, the in-

tricate details of which are beyond the scope of

this monograph.

The presence of a surrounding medium such

as air or water introduces coupling of the shell

equations with the governing field equations of

the medium. As stated from the beginning of this

work, coupling of shells with their environment

(as in the case of structures) has generally been

omitted. Nevertheless, some of the aspects of

this topic which carry particular practical value

will be examined briefly.

Introducing shear deformation into a shell

theory results in a completely different theory.

The order of the system of governing differential

equations is raised from eight to ten, and the

number of boundary conditions per edge which
must be defined increases from four to five. Thus,

the added complexity in this case is in the theory.

Nonhomogeneity introduces another set of in-
dependent physical parameters into the problem.

For example, in chapter 2 the nondimensional

frequency parameter _2 depends upon the l/R

and R/h ratios, the wave numbers m and n, and

Poisson's ratio. A nonhomogeneous (or hetero-

geneous) shell permits variation of the elastic

constants E and _ (in the case of isotropy) in all

three directions, x, 0, and z, which gives rise to

a limitless number of material descriptions. In

practical application, a great deal of current

interest exists in layered (or laminated) shells--

each layer is represented by an orthotropic ma-

J
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terial. The numbers, thicknesses, and material

properties of layers here again give rise to limit-

less configurations.

For the above reasons only a brief summary of

some of the most important aspects of each of

these topics appears herein. However, a sub-

stantial reference list will be provided for each

topic to expedite further in-depth study.

3.5.1 Effects of Surrounding Media

The numerous theoretical results for the fre-

quencies and mode shapes of free vibration of

circular cylindrical shells which are given else-

where in this chapter, as well as in chapter 2,

apply when the shell is in a vacuum. Neverthe-

less, in virtually all practical applications, the

shell is immersed in a surrounding medium,

notably air or water, and/or contains a fluid. It

is clear that vibration of the shell wall requires

movement of the surrounding fluid, and this

mass added to the system causes a reduction in

the frequencies.

Thus, the shell is coupled with its surrounding

medium by means of continuity conditions of

displacement and velocity at the interface of the

shell with the fluid. The shell must satisfy its

equations of motion (see sec. 2.1) and boundary

conditions. The fluid must satisfy (for example,

in the commonly assumed case of a compressible,

inviscid fluid) the wave equation for its velocity

potential function and certain regularity condi-

tions at the central axis of the shell (r = 0) and/or

at a large distance away from the shell (r = oo).

Consideration of the effect of the shell upon the

fluid leads one into the field of acoustics. This

work is only concerned with the effect of the

fluid upon the shell.

However, before looking into the effects of sur-

rounding fluids, consider first another significant

type of surrounding medium--the elastic founda-

tion. The elastic foundation receives a great deal

of attention in the study of beams and plates;

however, it is virtually ignored in the literature

of shell vibrations, perhaps because it is less likely

to be encountered in practical application.

The elastic foundation supplies components of

restoring force which are proportional to the dis-

placement components in magnitude and oppo-

sitely directed. Thus, in the matrix equation of

motion (2.3) the force vector

_ Kuu ]

{F}=-I K,v _ (3.205)
I,K_w)

must be added to the right hand side, where Ku,

Kv, and Kw are nondimensional spring constants
associated with the u, v, and w displacements,

respectively. In the case of sliding contact,

K_,=K,=O. In general, the terms of equation

(3.205) would be carried through the solution
procedure in a straightforward manner. For

example, the convenient solution form for infinite

and SD-SD shells given by equations (2.20)

could still be used; however, the resulting char-

acteristic determinants (cf., eq. (2.21)) would
have an added constant term in each of its

diagonal elements. Furthermore, in three cases

the added terms would cause no added algebraic
complexity. These are

(a.) Ku = K, = 0

(b.) g,,=g_ =g,_

In these cases the numerical results of chap-

ter 2 (except those where tangential inertia

is neglected) are directly applicable to the

problem, except that the frequency parameter

_22= _o2R2p(1 - p2)/E is replaced by

2=_2R2p(1-_'_) Kw (3.206)
E

Two of the earliest studies of the elastic shell

of infinite length filled with, or surrounded by,

a fluid were by Rayleigh (ref. 3.144) and Nikolai
(ref. 3.145). In the first reference the shell

enclosed a compressible fluid. In the second
reference the fluid was assumed to be incom-

pressible, but the shell could be either filled with

or immersed in the liquid.
Gontkevich (ref. 3.146) shows how beam func-

tions can be used to approximate the mode shapes

of a shell having arbitrary end conditions. The

surrounding compressible fluid medium, either

inside or outside the shell, is represented by a
potential function of a infinite field. Other works

which study the effects of an infinite fluid field

upon a circular cylindrical shell include references

3.24, 3.94, 3.99, 3.121, and 3.147 through 3.162.
Livanov (ref. 3.110) showed that if the total

mass of the shell is much greater than that of an

I

,A
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enclosed compressible fluid (particularly in the

case of a gas), then the coupled frequency equa-

tion of the shell and gas reduces approximately

to the uncoupled frequency equations for the

vibrations of a fluid in a rigid cylinder and the vi-

brations of a pressurized circular cylindrical shell.

Mnev (refs. 3.163 and 3.164) analyzed the

problem of a thin, elastic circular cylindrical shell
immersed in a compressible, inviscid fluid. How-

ever, the extent of the fluid is limited by a con-

centric rigid boundary either inside or outside of

the shell as shown in figure 3.151. The fluid

surrounding a shell of infinite length is considered

by means of a suitable potential function.

The dynamic behavior of liquids in moving

containers was the subject of a previous NASA

monograph edited by Abramson (ref. 3.165).

Chapter 9 of the monograph, by Kana, is devoted
to the interaction of elastic shells with internal

liquids and is a summary of relevant literature

(see also ref. 3.166). References 3.46, 3.107, 3.113,

3.115, and 3.167 to 3.186 are summarized therein.

RIGID BOUNDARY

SHELL \ \ \ \ \ \ \ \ \ \ _

RIGID BOUNDARY

\ \ \ \ \ \ \ \

"1 \ \ \ \ \ \ \ \ \\

(a) RIGID INNER BOUNDARY (b) RIGID OUTER BOUNDARY
/

FIGURE 3.151.--Shell separated from a rigid

boundary by a fluid.

INTERFACE

LIQUID DEPTH
b

FIOUaE 3.152.--Circular cylindrical shell partially
filled with a liquid.

A comprehensive monograph dealing with the

vibrations of an elastic shell partially filled with

a liquid was written by Rapoport (ref. 3.187).
The work is devoted to the formulation of the

governing sets of equations and no numerical

results are presented.

Abramson, Chu, Kana, and Lindholm (refs.

3.188 and 3.189) analyzed the bending (n=l)

and breathing (n >_2) vibrations of full or partially

full shells, where the surface of the liquid is

perpendicular to the axis of the shell, as shown in

figure 3.152. Reference 3.190 is an experimental
study. An electromechanical analogue to the

coupling which occurs between transverse shell
wall vibrations and free surface oscillations of a

liquid in a partially filled elastic shell is described

in reference 3.191. Other works which pertain to

flexible circular cylindrical shells containing

liquids include references 3.64, 3.114, 3.184, and
3.192 through 3.210.

Note that although a number of the references

listed in the preceding two paragraphs deal with

circular cylindrical tanks which are partially
filled with a liquid, none consider the case of the

closed tank having a fluid surface which is parallel
to the shell axis.

The nonhomogeneous shell filled with a liquid
and subjected to internal pressure and axial

initial compression was studied by Mugnier and

Schroeter (ref. 3.80).
If a shell is surrounded by a moving fluid field,

the problem becomes even more complicated
leading to, for example, flutter analysis. Such

problems will not be considered here.

Another type of surrounding medium which
is considered completely beyond the scope of this

work is the magnetic field. In general, the shell

equations of motion are affected by nonlinear

body force and body moment terms and the

field is affected, in turn, by the motion of the
shell.

Other investigations dealing with the free vi-

brations of circular cylindrical shells surrounded

by a fluid medium include references 3.211

through 3.218.

3.5.2 Shear Deformation and Rotary Inertia

Consider the motion of the shell element de-

picted in figure 1.2. The drawing is misleading,

l
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for the element has infinitesimal dimensions ds,

and ds_ parallel to the middle surface, whereas

its dimension in the z-direction is finite, h. In a

careful treatment of the six equations of motion,

components of rotary inertia would be added to

the three moment equations of motion, in addi-

tion to the translatory inertia terms which ap-

pear in the force equations of motion. Lord

Rayleigh (ref. 3.219) showed, in the case of

beams, that rotary inertia effects become signifi-

cant as the length/depth ratio decreases. Sub-

sequently, Timoshenko (ref. 3.220) established

that, for beams having these depths, the effects

of shear deformation are equally important. The

incorporation of shear deformation and rotary

inertia effects into plate vibration problems is
summarized in reference 3.1.

To generalize the problem further to the shell,

one can say that the effects of shear deformation

and rotary inertia become increasingly signifi-

cant as the thickness ratios R/h and 1/h decrease.

However, the effects can be significant for rela-

tively thin (say R/h>20) or long shells as well,

as the numbers of circumferential and longi-

tudinal waves increase. Thus, the effects become

significant for _hort wave lengths, certainly for

those of the same order as the thickness, or less.
Only a brief description of how shear deforma-

tion and rotary inertia enters into the deriva-

tion of shell theories will b_ given below. Shear

deformation enters through the generalization

of the strain-displacement equations. Rotary
inertia enters in the fundamental forms of the

equations of motion, as described above.

Not only are the resulting equations of motion

greater in number (five, rather than three) and

more complicated, but, as seen below, the nu-

merical results are more difficult to interpret,

for there exist five (rather than three) frequencies
for each circumferential wave number n for

closed, circularly symmetric cylindrical shells.

Equations (1.37) for the displacements U, V,

and W become, for a circular cylindrical shell,

U(x,y,z) = u(x, 0)A-z_bx(x, 0) ]

V (x,y,z) = v(x,O) +zg/o(x,O)

W(x,y,z) =w(x,O) ]

(3.207)

where _bx and _b0 are now used to denote the

changes in the slope of the normal to the middle

surface, in place of 0, and 08. If shear deforma-

tion is to be permitted, then the first two of

equations (1.34) stating the Kirchhoff hypothesis
(normals remain normal) must be dropped as

constraining equations. Then _hx and _b0 are no

longer related to u, v, and w as in equations
(1.39), but become additional variables in the

problem.

The equations of motion can ultimately be
written in the form

[.C*] {ul} = {0} (3.208)

where now {ul} is the generalized displacement

vector containing five components,

{ui} =_ (3.209)

instead of the three used in equation (2.4), and

[2"] is now a matrix differential operator of the
fifth order.

As before, [._*] can be written as the sum of

two operators; i.e.,

_* k *[2"]=[ D-M]+ [2_MOD] (3.210)

where [2*-M] is the differential operator accord-

ing to the Donnell-Mushtari theory, generalized

to take into account shear deformation; [_OD]
is a modifying operator which alters the Donnell-

Mushtari theory to yield another shear deforma-

tion shell theory; and k is the thickness parameter

defined in equation (2.6). The differential oper-

ator for the Donnell-Mushtari type of shear de-

formation shell theory (from refs. 3.131 and
3.221) is

ra'lal a130 !
, a21 a2_ a23 0

an an2 aa3 a34 a35

0 0 a43 a44 a45|

0 0 a53 a54 a55]|

(3.211)

where
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all _-
02 p(1-v2)R 2 02 (l--v) 02

-- bll =
002 E Ot2 2 002

a22 --
(l--v) 05 02 p(1-v2)R 2 02

2 _s 2-t- 002 E Ot-_2 b22= - k_

1 K1V2w-'] -p(1-v2)R2 05a3s = --
E Ot2

02 (l--v) 02 ] --gla44= k o--_8_+ -_ o02

a55=k[ (1-v)2 Os202_-vv_05] --.KI

(l+v) 05
a12 = a21 --

2 Os 00

kp(1-- v2)R 2 05

E Ot2

kp(1-v2)R 2 02

E Ot2

0
als : aal = v--

Os

0
a34 = a43 ---- -- K1 _-'-

os

0

as5 = asa = --KIo- 0

k(l+z,) 02
a45=a54 (3.212)

2 Os O0

where s = x/R, as before,

Xw 12 t

_i -- --W-K 2 (3.213)
z

and K2 is a shear correction coefficient taken vari-

ously as 5/6 (ref. 3.221), 0.86 (ref. 3.222), 8/9

(ref. 3.223), and 92/12 (ref. 3.224). The coeffi-

cients all, a22_ a12_ a21_ a13, and a31 are the same
as those of the eighth-order shell theory given in

equation (2.7). The rotary inertia terms are

clearly seen in the coefficients a44 and a55.

An example of the modifying operator

'bll b12 bls b14 b15]
]

b21 b22 b23 b24 b25|

[2_OD]='bn bs2 bss bs, b,s(((3.214)
]

b41 b42 b43 b44 b45|
!

b_l b52 bss b54 b55)

is, for the theory of Naghdi and Cooper (ref.

3.221)

02 (l-v) 05 o(1-u2)R 2 02
bx4 = b41

OS 2 2 002 E 0$ 2

Ki 0
b2_=b_2=-- --

l_ O0

_l (l--u) 02
b2_=b_2=-_-{- _ Os2

05 p(1.-u2)R 2 05

005 E Ot2

0
b_ =b_= - --

O0

b3_= b_4= b_ = bi2 = be1 -- bia = bal -- bi_ = b_i

=b24=b42=ba4=b43=b4_ =b_4=O (3.215)

These equations reduce to equations (2.9e) if

shear deformation and rotary inertia are neglected
(ref. 3.221).

Similarly, the coefficients of the Herrmann-

Armen_kas (ref. 3.72) for use in equation (3.214)
are (see also ref. 3.225)

(l--u) 02
511 --

2 002

1+ 02

bas = (_Jr 1 )

b55 _ --gl

02 (l--v)02 p(1-- vS)R2 02
bx4 = b_l =

Os2 2 002 E Ot2

1 1'

(i 1) (1-_) 02b2_=b_2=_i -t- -{ 2 Os2

0 2

002

p(1-- _2)R 2 02

E Ot2

_x 0
ba4=b_s ....

k Os

ba_ = b_s = - (1 d-_l) O (3.216)

l

r
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The resulting equations of motion of this theory

reduce to those of Fliigge, Byrne, and Lur'ye

(see eq. (2.9d)) if shear deformation and rotary

inertia are neglected.

Other tenth order theories incorporating the

effects of shear deformation and rotary inertia

include those of Hildebrandt, Reissner, and

Thomas (ref. 3.226); Vlasov (ref. 3.227); Herr-

mann and Mirsky (refs. 3.222, 3.224, and 3.228) ;

Yu (ref. 3.229); Lin and Morgan (ref. 3.223);

Chou (ref. 3.230); Mizoguchi (ref. 3.231); and
Herrmann and Armen£kas (ref. 3.72) also in-

cluded the effects of initial stress in their shear

deformation theory. In addition, an orthotropic

theory was developed by Mirsky (ref. 3.232) and

a nonlinear (large deflection) theory by Yu (ref.

3.233).
Consider now the two closely related free vibra-

tion problems:

(1) A shell of infinite length

(2) A shell of finite length, l, supported at both

ends by shear diaphragms.

As in the case of the eighth order theories (see

secs. 2.2 and 2.3), both problems have the same

exact solution functions for the generalized dis-

placements in the form

U _ Amn

v = Bm,_

w _- emn

_bx= Dm,_

_o =E,,,.

cos XS cos nO cos cog

sin _s sin nO cos cot

sin _,s cos nO cos cot

cos _s cos nO cos col

sin hs sin nO cos cot

(3.217)

In tho case of the shell supported at both ends by

shear diaphragms (SD-SD) the boundary condi-

tions are given by

w=Mx=N_ =v=¢o=O (3.218)

Equations (3.218) are exactly satisfied by equa-

tions (3.217) provided h is taken as

m_rR
k =-- (m = 1, 2 .... ) (3.219)

l

In the case of the infinite shell, circumferential

"node lines" (v=w=0, u_0) will occur at
intervals of l.

Substituting equations (3.217) into the tenth

order set of equations of motion (3.208) yields,

for a nontrivial solution, a characteristic deter-

minant of the fifth order. Expanding the deter-

minant gives a fifth degree polynomial equation

in the nondimensional frequency parameter

_22=w2R2p(1- _,2)/E of the type

_I°-K4_S+K3_6-K_fl4+KI_2-Ko=O (3.220)

This equation will have five real roots, and conse-

quently five independent mode shapes, for each
value of circumferential wave number n.

In the special case of axisymmetric modes

(n=0), the five equations of motion become

uncoupled into two sets (ref. 3.224). One set

consisting of three equations, describes the

flexural or radial modes in terms of u, w, and _b_.

The other set corresponds to motions which are

purely circumferential and involve v and _b0.This

yields a cubic characteristic equation for the first

set and a quadratic equation for the second set.

Tang (ref. 3.234) used the shell theory of

Herrmann and Mirsky (ref. 3.222) to analyze the

axisymmetric motions (radial and flexural) of an

SD--SD shell. Letting n = 0, and substituting the

solution functions for u, w, and _ from equations

(3.217) into the three uncoupled equations of

motion yields the following characteristic equation

for the frequency parameter 12 (ref. 3.234) :

..}__2 k4(l+2K1)_.i_k2 2+___2

_-k2(1 -- 92)(_) ] = 0 (3.221)

with K1 as defined previously in equation (3.213).
Numerical results were obtained in reference

3.234 for one shell having R/h=36 and 1/R=4
and another shell having R/h = 10 and l/R =8.

In both cases v and K2 were taken as 0.25 and 0.86,

respectively. The results are displayed in tables

3.19 and 3.20. In the tables the frequency

parameters are also compared with those of
eighth order theory (neglecting shear deformation

and rotary inertia in the Herrmann-Mirsky

theory). Significant differences exist between the

theories for the lowest frequency (corresponding

to a predominantly radial mode) as m increases,

l

F"



COMPLICATING EFFECTS IN CIRCULAR CYLINDRICAL SHELLS

TABLE 3.19.--Comparison of Frequency Parameters _ for the Axisymmetric

Modes of an SD-SD Shell; R/h = 36, 1/R = 4 (from ref. 3.234)

m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

0.7105

.9285

.9458

.9523

.9585

.9675

.9818

1.002

1.031

1.070

1.121

1.183

1.258

1. 346

1.448

1. 562

1.688

1.827

1.977

2.138

Tenth order theory

1.055

1.614

2.379

3.158

3.940

4.723

5.505

6.290

7.075

7.860

8.645

9.430

10.22

11.00

11.79

12.57

13.36

14.14

14.93

15.71

69.78

69.80

69.83

69.88

69.93

69.98

70.00

70.15

70.25

70.35

70.48

70.60

70.58

70.90

71.05

71.23

71.43

71.60

71.83

72.03

Eighth order theory

0.7105

.9285

.9460

.9525

.9590

.9685

.9828

1.004

1.034

1.074

1.126

1.190

1.268

1.360

1.465

1.585

1.718

1.865

2.024

2.196

1.055

1.614

2.379

3.158

3.940

4.723

5.505

6.290

7.075

7.860

8.645

9.430

10.22

11.00

11.79

12.57

13.36

14.14

14.93

15.71
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TABLE 3.20.--Comparion of Frequency Parameters _ for the Axisymmetric

Modes of an SD-SD Shell: R/h=lO, l/R=8 (from ref. 3.234)

Tenth order theory Eighth order theory
m

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0.3716 1.008

.7105 1.055

.8895 1.264

.9299 1.614

.9446 1.993

.9558 2.379

.9686 2.768

.9858 3.158

1.009 3.548

1.040 3.939

1.079 4.331

1.128 4.723

1.186 5.114

1.255 5.506

1.334 5.899

1.424 6.290

1.521 6.683

1.629 7.075

1.745 7.468

1.870 7.860

18.76

19.40

19.43

19.46

19.51

19.56

19.64

19.71

19.80

19.89

20.00

20.13

20.24

20.36

20.50

20.65

20.80

20.96

21.14

21.31

0.3716

.7105

.8900

.9308

.9461

.9580

.9720

.9906

1.016

1.049

1.093

1. 147

1.213

1.291

1.381

1.485

1.600

1.728

1.868

2.019

1.008

1.055

1.264

1.614

1.994

2.379

2.768

3.158

3.549

3.939

4.331

4.723

5.115

5.506

5.899

6.291

6.683

7.075

7.468

7.860
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particularly for the smaller R/h value. The second

frequency corresponds to an axial mode and
varies negligibly between the theories. The third

frequency does not exist in the eighth order
theory.

Herrmann (ref. 3.235) also obtained results for

the axisymmetric modes of infinitely long shells.
Comparisons were made between solutions ob-

tained from eighth and tenth order shell theories

and the three-dimensional elasticity theory. For

the three-dimensional results, the approximate

solutions of McFadden (ref. 3.236) were used.

These are, for the radial (breathing or exten-
sional) mode,

_o h 1 1

(1-v)(2-_)[ 1+ _+_(_- 1)_2-_(_- 1)_3]

(3.222)
where

_c2_X-4-2G ]

-T/
2_---1 / (3.223)

2(1 --3v) /

X and G are the Lam_ elastic constants,

x = (1+_) (-5- 2_) (3.224)
E

and for the thickness (or pinching) mode

o_=_rRI1 4(:::_);1_1

hL 1r2(4 h__ 1) J (3.225)

The shell theories used were taken from reference

3.228. Values of ¢/_c are given in table 3.21 for
R/h=30, 4, and 1.5. Note that the thin shell

(i.e., eighth order) theory predicts the breathing

mode frequencies quite well for R/h as large as
four, whereas fairly large discrepancies exist be-

tween values for the thick shell (tenth order) and

elasticity theories for both the breathing and

pinching modes. The thin shell theory does not
recognize the pinching mode.

Reismann and h_[edige (ref. 3.237) obtained

numerical results comparing frequency param-
eters with and without the inclusion of shear

deformation and rotary inertia effects. The Herr-

mann-Armen&kas theory (eqs. (3.216)) was used.

Data were obtained using _=0.3, K2=0.86,
l/R = 6, and R/h = 5. These results are exhibited

in figures 3.153, 3.154, and 3.155 for n=0, 1, and

5, respectively, where the parameter _/X is

plotted versus the number of axial half-waves,
m. The number of roots of the characteristic

equations are seen by the separate curves in
these plots for n = 0--three roots with shear de-

formation, two without; for n>0--five roots

with shear deformation, three without.

No numerical results are available in the

literature which apply tenth order shell theories

to boundary conditions other than SD-SD. How-

ever, an exact procedure similar to the one out-

lined in section 2.4 for eighth order theories

X

1.5

1.0

0.5

/
/

/
/
/

/
/

/
/
/

--TENTH ORDER THEORY

.... EIGHTH ORDER THEORY

I I I I
25 50 75 I00

m

FmURE 3.153.--Comparison of results for an SD-SD

shell; R/h =5, l/R =6; n =0. (After ref. 3.237)
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TABLE 3.21.--Comparison of Frequency Parameters co�coofor an

Infinite Shell According to Various Theories

Breathing mode Pinching mode

R

h- Elasticity Tenth order Eighth order Elasticity Tenth order
theory shell theory shell theory theory shell theory

3O

4

1.5

0. 906

•911

• 939

0. 990

• 985

• 970

0.904

.904

.904

94.3

12.93

6.07

104

13.97

5.42
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0.5

I
/

/

\/

v-
/
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/

TENTH ORDER THEORY

.... EIGHTH ORDERTHEORY

I I I I
25 50 75 I00

FIGURE 3.154.--Comparison of results for an SD-SD

shell; R/h =5, l/R =6; n = 1. (After ref. 3.237)

could be followed. The solution equations (3.217)

would then be generalized to

u=u,(s) cos n0 cos cot

v = v_(s) sin n0 cos cot

w=w,(s) cos nO cos cot (3.226)

_ = #x_(s) cos nO cos _t

¢_o=¢Jo.(s) sin n0 cos cot

(s = x/R) where the form of the functional varia-

tion in the longitudinal direction is yet to be

g

x

!

/

_TENTH ORDER THEORY

..... EIGHTH ORDER THEORY

0 I I I I
0 25 50 75 I00

m

FIGURE 3.155.--Comparison of results for an SD-SD

shell; R/h =5, l/R =6; n =5. (After ref. 3.237)

determined. Substituting equations (3.226) into

equations (3.208) yields, for each n, a set of five

(except three for n=O) simultaneous, linear,

ordinary differential equations having constant

coefficients. However, these equations may be

solved and the boundary conditions may then

be prescribed to determine the appropriate mode

shapes in a manner analogous to that described
in section 2.4.

The influence of rotary inertia alone (i.e.,

neglecting shear deformation) was studied by

Warburton and A1-Najafi (ref. 3.238). An SD-SD

L-

L
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TABLE 3.22.--Effect of Rotary Inertia Upon the

Frequencies (cps) of SD-SD Shells (R =2.073

in., l=17.56 in.)

m h_ in.

Rotary inertia

Neglected Included

0.125 903 903

.1875 1254 1253

.25 1623 1620

.125 2174 2171

.1875 3251 3242

.25 4330 4308

.1875 3492 3482

.25 4595 4571

.125 4123 4113

.25 8239 8165

.125 4254 4244

.25 8459 8381

.125 4529 4518

.25 8859 8774

.125 4990 4977

.25 9468 9372

• 125

• 25

6645

13284
1 6621

13094

)
t

.125 6760 6735
2

.25 13500 13305

shell having R = 2.073 in. and l= 17.56 in. was

anaiyzed using the Fltigge eighth order theory.

Numerical results are presented in table 3.22.

The effects of shear deformation and rotary

inertia upon the free vibration frequencies and

mode shapes of circular cylindrical shells are

also referred to in references 3.239 through 3.254.

3.5.3 Nonhomogeneity

Nonhomogeneity (or heterogeneity) in mate-

rials can arise in many ways. One of the most

frequent ways occurs in circular cylindrical shells

when the shell is made of layers, each layer being
homogeneous. The possible configurations of such

combinations of layers is endless, although a
great deal of attention has been paid to

(1) Two layered shells

(2) Sandwich (i.e., three-layered shells), where

the middle layer (core) is considerably thicker

and less rigid than its surrounding (face) layers

(3) Multilayered shells, as occur in laminated

shells using composite materials.

The layers can be individually orthotropic, as

well as isotropic. If the angles of material ortho-

tropy are not parallel to the shell coordinates, the

resulting shell equations appear, in general, to be

anisotropic (more particularly, aelotropic) in
form.

In addition to the stepwise heterogeneity dis-

cussed above, material properties can vary con-
tinuously through the thickness. Such a case

arises, for example, when certain materials, such
as styrofoam, are used or when severe thermal

gradients exist, causing a degradation of material

properties. Also, material properties can vary in

the r and 0 directions for the same reasons,

although no known work in the literature takes
this into consideration in vibration also.

One of the effects of heterogeneity is to cause

additional coupling between bending and stretch-

ing modes of shells. For example, no coupling

exists for plates laminated symmetrically with

respect to their midplanes (if shear deformation

is neglected) ; however, the coupling does exist in

a symmetrically laminated shell.

In deriving equations of motion for layered

(particularly sandwich) shells a large number of

possible alternative assumptions can be made.

For example, assume that either the Kirchhoff

hypothesis or the linear displacements account-
ing for shear deformation remain valid over the

entire thickness of the shell. Or it can be assumed

that the linear variation exists for each layer, but

changes from layer to layer. It may be assumed

that the face layers carry no transverse shear

strain, or that the core withstands no normal

stresses, or that the flexural rigidity of the face

layers about their own middle surfaces are negli-

gible. Because of this complexity, no attempt will
be made to sort out the numerous theories which

exist for layered shells.

Consider now the development of a Donnell-
type theory for a layered circular cylindrical

shell. Assume that the shell consists of N layers,

the k th layer being typical and having a thickness

|

T-
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h_ bounded by the surfaces z=zk and z=zk-1,
where z is measured from a reference surface

within the shell (see fig. 3.156). Assume further

that each layer is homogeneous and orthotropic.

Then, the stress-strain relations (3.2) can be

written for the cylindrical shell coordinates as

a(_k)] [A_ ) A_ ) 00 lIe_01
a_k)| = |A_ ) A2(_) e0 (3.227)

rit'J" L O 0 A_' "y_

for the k th layer, where

E_ , A22= Eo ]2_11 l__PxVe 1--YxYe

yxEo _ uoE_ , A_6=G
A12=l-v_vo 1-uxuo

(3.228)

In evaluating the force and moment resultant

integrals (eqs. (1.75)), the integrations must be

carried out piecewise through the thickness. The

resulting equations of motion can again be writ-

ten as in equation (2.3), where the elements of

the third order matrix differential operator are

now given by (refs. 3.7, 3.255, and 3.256):

02 02 02

el,=Cil +Coo -ohR2 

02 02 02 ,

2_22= C 66-_? + C 22_ -- ph R2-_2

2 02 02 02
+-_( D12* =+ D22* =_ + C22+ phR 2-

n\, es 2 Oo2} Ot2

02

2_12=oC21 = _(C12+C66) as oo

o_18:_31_.C12___ Dl1" o3R Os 3

1 o_

+_ (Dl_.* + 2D66*)Os 002

C O . D22" 03
¢'_23 _-- _32 = 22_-_ R 003

1 03

+_(D_2* +2D66*)0fi 0O (3.229)

where

_Zk_ I

Is, LA'_ER _ ?

2 no LAY ER _/_

REFERENCE

SURFACE

kth LAYER --

b k

N th LAYER --

FmURE 3.156.--Element of a layered shell.

N

{C_j, D_*, D_j} = A_){ (Zk--Zk--1),-_(Zk --Z2_l),
k=l

1 3
_(zk 3-zk-x)} (3.230)

N

k=l

and where h is the total thickness. The operators

given by equations (3.229) are generalizations of
those used in the homogeneous, orthotropic equa-

tions of motion (eq. (3.8)) and that additional

cross-coupling terms containing D_j* coefficients

are also present.
Other works which develop theories for shells

having heterogeneous material properties with

respect to the thickness direction include refer-
ences 3.24, 3.91, 3.233 (nonlinear), 3.248, 3.257

through 3.274, and 3.275 (nonlinear).

Dong (ref. 3.7) analyzed the case of a two-

layered, SD-SD shell having an isotropic inner

layer and an orthotropic outer one, thereby

simulating a layer overwrapped with filaments.

The data for the layers are given in table 3.23,
with the interface taken as the reference surface.

The exact solution functions (eq. (2.20)) were

used in equations (2.3) and (3.229), yielding a

cubic characteristic equation in o_2. A plot of the

frequency parameter _R_ph/C2_ versus the
circumferential wave number is shown in figure

3.157 for a shell having R/h=25, l/R=20. In

l

7

r ¸
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TABLE 3.23.--Data for Two-layered Shell

All2

psi

6.70X106

33.0X10 e

A12_

psi

2.11X106
ll.0X106

A_2.,

psi

12.0X106
33.0X106

A e 6.,

psi

2.51X10 e
13.2X106

h,

in.

0.20
.20

0.1

2 0,05

0.02

O.Ol

0005

Density

O. 5po

1. Opo

I

0,02

0'010 I 2 5 4 5 6 7 8 9 10 II 12
n

FIGURE 3.157.--Frequency spectrum for a two-layered,
SD-SD shell. (After ref. 3.7)

figure 3.158 frequency envelopes (lowest fre-

quencies) are shown for m = 1 and for various

R/h ratios, plotted versus the l/R ratio. Figure

3.158 can be compared with the frequency

envelopes for homogeneous orthotropie shells

given previously in figures 3.16 and 3.17.

In reference 3.7 it was found that neglecting

tangential inertia terms in the equations of mo-

tion increased the frequencies in approximately

the same ways as for homogeneous shells (see sec.

2.3.4), although tangential inertia was included

in the subsequent calculations.

Other types of boundary conditions were also

examined in reference 3.7 for two layered shells.

0,002

O,OOI
0 [2 0.5 _i0 210 510 IOiO 2010 50,0

_/R

FIGURE 3.158.--Frequency envelopes for two-layered,
SD-SD shells. (After ref. 3.7)

The exact solution procedure outlined in section

2.4 using equations (2.53) was followed. Numer-
ical results were obtained for the shell described

previously in table 3.23 for R/h=lO0 and

l/R = 20 for three sets of edge conditions:

(1) Both ends supported by shear diaphragms

(SD-SD)

(2) Both ends clamped (u = v = w = Ow/Ox = O)

(3) One end clamped and the other supported

with axial restraint (u = v = w = M= = 0).

The frequency envelopes for these cases, are

exhibited in figure 3.159.
Jones and Whittier (refs. 3.270) made a study

b.

i •

L,

•.÷J < " .
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of the axisymmetric motions of two-layered shells

whose layers are connected by a thin, massless

bond of arbitrary stiffness. Results were compared

with those obtained from a theory derived by

Payton (ref. 3.272), which assumes that the bond

between the two layers is extremely flexible in
shear. The behavior of the shell was shown to be

highly dependent upon a bond stiffness parameter
B defined as

Gh 2
B (3.231)

b(CI+C2)

where G and b are the shear moduli and thickness,

respectively, of the bond material; h = hi+h2, the

sum of the thicknesses of the two layers; and C1

and C_ are the stretching stiffnesses of the two

layers (i.e., C_=E_hi/(1-vi2)).

In reference 3.277 the two layered shell was

analyzed by three approaches, one based upon

the exact three-dimensional elasticity equations,

and the others being modal and finite difference

10.0

5,0

0.2

3

0.05

2.0

&9
1.0 _9X9 _PINNED- FIXED SUPPORTS

\\\_,-.\ / (u=v=w=c)w/ax=o mid

05 _8 u=v=w=M_= O)

6 FIXED-SUPPORTS

(u=v=w:aw/ax=O)

5 5

0.02

S-D_S-D 2

00, (Nx:MX:W=v:O) "_'_" n: I

o.oo_ .-°,oo

0.002 I I I I I I I
0.2 0.5 i,o 2.0 5.0 _0.0 20.0 50.

$/R

FIGURE 3.159.--Frequency envelopes for two-layered

shells having various end conditions. (After ref. 3.7)

solutions of a Fliigge-type set of shell equations

developed in reference 3.274.

Baker and Herrmann (ref. 3.257) analyzed

three layered (sandwich) shells. It was assumed

that the facing sheets of thickness ti and t2 are

very thin relative to the thickness h of the sand-

wich, that the elastic moduli of the facing sheets

are much larger than the corresponding moduli

of the core and, consequently, that the core

material resists only transverse shear forces and

the facing sheets do not resist tran.sverse shear

forces. Thus, the theory developed is of the tenth
order, including the effects of shear deformation

and rotary inertia. Initial stress terms were also
included.

Numerical results and an excellent discussion

were presented in reference 3.257 for SD-SD

shells all having the following parameters:

A ii = 0.376, t-_= (3.232)

pi p2 50, tI+t_
.... rt =-_ =0.1p3 pa

where AII, A1=, and AGe are the elastic constants

of the identical facing sheets, as defined by equa-
tions (3.228) ; and pl and p_ are the mass densities

of the facing sheets and the core, respectively.

A typical example of the frequency as a func-
tion of X = m_rR/l is given in figure 3.160 for n = 2.

The curves shown are for R/h= 100, rs = 1, and

rg,=ro = 1, where

6 -- 4

x

IE

?

0 4 8 12 16 20

rnlrR
X= --

2,.

FIGURE 3.160.--Frequency parameters for a three-lay-

ered, SD-SD shell; dimensions given in text. (After

ref. 3.257)

l
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Eol

gxGx a

r, =--_, (3.233)

KoGo a

r% -_

E_, and Eo_ are Young's moduli in the x-direction

and 0-direction, respectively, for a facing sheet;

Gx, and Go, are the transverse shear moduli of the

core material, i.e.,

rx_, =Gx#_,,! (3.234)
r_o, = Go#_zJ

and K_ and Ko are shear coefficients matching the

cutoff frequency of the thickness-shear vibration

from the shell theory to the frequency of the first

antisymmetric thickness shear mode of the exact

theory. For the sandwich shells considered here,

the values of _ and d0 are close to unity. Because

a tenth order shell theory was used, five values of

the frequency parameter £=_¢/plh(tl+t2)/E_
are shown in figure 3.160 for each value of X.

Although the modes are numbered in the proper
order for small values of X, this order is not neces-

sarily preserved for larger X; for example, for

> 28 the third mode has a higher frequency than
the fourth mode. The value of _ for h=0 is
0.0035.

Figure 3.161 shows the effect of an initial cir-

cumferential tension, fiTo=N#/E_,(tl+t2)=0.001
on the lowest natural frequency, _, of a sandwich

cylinder with a thickness-to-radius ratio of 0.01,

a shear modulus ratio (ro., r%) of 0.001, andre = 1.
The number of circumferential waves n consid-

ered was 0, 1, 2, 3, and 4. The circumferential

tension does not affect £ for n =0; it decreases

slightly for n= 1; and increases _ considerably

for n = 2, 3, and 4. As the value of X increases, the

effect of No _ decreases; at X = 100, the initial cir-

cumferential tension has a negligible effect on _.

For h <0.2 and n> 1, the percentage increase in

due to the initial tension of No _ decreases as the
value of n increases.

If shear deformations are neglected, as in the

case of monocoque cylinders under initial stress

(see sec. 3.4), the effect of initial circumferential

stress becomes negligible for very large values of

n. However, for sandwich cylinders this is not the
case.

Also investigated in reference 3.257 was the

effect of transverse shear modulus,

ro_= rg0= 0.001, 0.0001

and initial circumferential tension,

Nol/Ex,(tl+t2) = 0, 0.001

on _ for X<0.4, n=3, 4. The remaining param-

eters were the same as those shown in figure

3.161. The increase in _ due to No _was approxi-

mately 8 percent greater if ra0 = 0.0001 rather than

0.001. The effect of initial circumferential stress

on the four higher modes was negligible for every

value of the parameters which was investigated.

The effect of axial initial stress, N_ _, on the low-

est natural frequency is shown in figure 3.162 for

three values of transverse shear modulus,

ro_=rge=0.01, 0.001, 0.0001. Curves are shown

for N_=N_/Ex,(t_+t2) =0, 0.005, and --0.005.

For low values of X, X< 2, the effect of N_ is very
small. For larger values of X, axial tension in-

creases the frequency and axial compression

._XlO 4

n=4
4

n=0

5

2--

n=5

n=4

n=2

n=5

n:l n=2

0 I I
0 0.1 0.2 0.5 0.4

X= rn 'rr R
L

FmURE 3.161.--The effect of circumferential prestress
on the lowest natural frequency of an SD-SD, 3-layer
shell; dimensions given in text. (After ref. 3.257)
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6

4
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FIeURE 3.162.--The effect of longitudinal initial stress

and the transverse shear modulus on the lowest natural

frequency of an SD-SD, 3-1ayer shell. (After ref. 3.257)

decreases the frequency, as expected. When

Nx = --0.005 and rg. = rg8= 0.0001,

_=0 at X=14.5

indicating that the cylinder is statically unstable

under a Nx=-0.005. The critical buckling pa-

rameter N= for this case, therefore, is less than
0.005. As in the case of circumferential initial

stress, as the transverse shear modulus decreases,
decreases and the effect of initial axial stress

increases. For this particular case, axial com-

pression has a larger effect than axial tension of

the same magnitude.

At large values of X, the curves with initial

stress become parallel to the corresponding
curves without initial stress. If shear deflections

had been neglected, the effect of initial axial

stress would be negligible for very large values

of X. The value of n has very little effect on _ if

is large; figure 3.162, therefore, would be very

similar, except near the origin, for other values of
n. The effect of initial axial stress on the four

higher modes was found to be negligible in
reference 3.257.

The effect of a positive initial moment on the

natural frequency of an infinitely long cylinder
(X=0) was investigated in reference 3.257 for

ro0=0.001 and R/h= 30, 100, 1000. Two values

of n were included for each value of h/R (n= 2

and n=_rR/h), and the stress due to initial

moment was zol/Ee,= 6X 10-S. The maximum

effect of the initial moment was a decrease of the

lowest natural frequency, fi, by 0.5 percent.

If combined initial moment and hoop com-

pression are considered, it was found that initial

moments can have a large effect on 5 at elastic

stress levels if the compressive force is very near

the critical buckling force. The compressive force,

however, must be so near the critical buckling

force (within 1 percent) that this case is of little

practical interest. "

A cylinder with h/R = 1/30 and rgo= rg_= 0.0001
was considered next by Baker and Herrmann
(ref. 3.257). For very large positive initial mo-

ments in each direction (z_i/E_, =zo_/Exi = 10 -2)
and for very short wavelengths (n = 100, X =50),

the initial moment decreased _ by 6.5 percent.

This example was given to show the very large

values of z/E, n, and X which are necessary to

cause a noticeable change of £ due to initial

moment. Even though the effect of initial mo-

ment on the natural frequencies of sandwich
cylinders appears negligibly small, the effect is

much larger than for homogeneous isotropic

cylinders. As in the previous cases of initial

stresses, the effect of initial moments on the

higher modes was negligible.

The effect of orthotropic facing sheets on the

first three natural frequencies is shown in figure

3.163. Figure 3.164 shows only the first natural

frequency for a wider range of X. The ratios of

moduli studied were r_=0.5, 1, and 2; whereas

h/R=l/30, n=2, and ro =rgo=O.O01. For sim-

plicity, A I_/A 1_and A 68/A n were kept constant.

As expected, values of rE less than 1 decrease the

natural frequencies, and values of rE greater than

one increase the natural frequencies. The largest

effect of varying r_ on the third mode occurs at

X=0 and might be expected because the mode

shape associated with the third natural frequency

at X = 0 is mainly a circumferential displacement.
The second mode is not affected at X = 0 because

the predominant motion is an axial displacement.

Note that the second natural frequency decreases

as X increases for the case of rE=0.5. At X=20,

the effect of varying rE has very little effect on

the second and third natural frequency. The first

natural frequency is changed considerably by

orthotropic facings at very low values of X and

at high values of X. At X = 1, £ is about the same

for all three values of rs. The orthotropic facings

t
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FIGURE 3.163.--Three lowest natural frequencies for

SD-SD, three-layer shells with orthotropic facing

sheets. (After ref. 3.257)
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n=2 h_ I
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gx rg 8
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I I I0
O 4 8 12 16

X = mTrR
L

FIGURE 3.164.--Lowest natural frequency for SD-SD,

three-layer shells with orthotropic facing sheets. (After

ref. 3.257)

had very little effect on the fourth and fifth
modes.

The lowest natural frequency for a sandwich

cylinder with facing sheets of unequal thickness

was investigated in reference 3.257 for

1
n = 2, h/R = --,

30

_7= =27_ =0, rg, =r_0 = 0.001,

rE=l, rt=0.1

(3.235)

The facing sheet ratios rh = tl/& = 1, 2, 3, 1/2, 1/3

were investigated while the ratios h/R and t/h

were kept constant. The total depth of the two

facing sheets (t = tl-F&), therefore, was a constant.

If X<0.2, the value of _ for rh=l/2 or 2 was

approximately 5 percent lower than that of fi for

rh = 1; whereas the value of fi for rh = 1/3 or 3 was

approximately 12 percent lower than that of

for r_=l. This would be expected because the

flexural rigidity of the sandwich is smaller if the

total facing sheet thickness t is not divided equally

between the two facing sheets.

As the value of X increases, the effect of rh
decreased until at X = 20 the values of _ for the

five rh ratios considered were within 2 percent of
each other. The second and third modes are

unaffected by rh. The natural frequencies asso-

ciated with the fourth and fifth modes (_4, _) are

increased if the facing sheets are unequal. This

increase is due to the decrease in the rotary

inertia of the sandwich. The percentage change in

magnitude of _4 and _5, due to changing the

value of r_, is about the same as the percentage

change in magnitude of _. At X= 20, the effect of
rh on _4 and _5 is small. It can be shown that the

thickness shear frequencies also increase if the

facing sheets are unequal.

Kagawa (ref. 3.247) presented _ set of equa-

tions for sandwich (three-layered) shells which

are generalizations of Mirsky and Herrmann's

ref. 3.224) formulation for homogeneous shells
(i.e., including the shear deformation of the core).

Exact solutions for SD-SD (or infinite) shells were

obtained by using equations (3.217). Numerical

results were given for sandwich shells where the
isotropic core and face layers were assumed to be

cellular cellulose acetate and aluminum, respec-
tively, for which

I
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El(1 - v_2)

)_(1_ vi2) 2177,
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= 34.4,
p2

_1 (3.236)
El(l+v2) = 1683, --=3.27,
E2(1 -- _1) v2

vl=0.091

where the subscripts 1 and 2 identify the (identi-

cal) face layers and core, respectively. Calcula-
tions were made for 0, 1, 2, and 6 circumferential

waves n and R/h = 30, 10, and 5, where h is the
total shell thickness. The numerical results are

depicted in figures 3.165 through 3.170 for

h2/hi = 5 (core thickness/thickness of each face).
Extensive numerical results for three-layered

shells are also available in references 3.278, 3.279,

_o _.////
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FIGURE 3.165.--Frequency parameters for SD-SD, three-
layer shells; n =0, R/h =30. (Afar ref. 3.247)
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FIGURE 3.167.--Frequency parameters for SD-SD, three-
layer shells; n =2, R/h =30. (After ref. 3.247)

5

2

I

o2-_
Z O.i
3

0.05

0,02

0.01
0.0005 0,002 0,005 0.01 0,02 0.05 0.1 0,2 0.5

hz/2£

FIGURE 3.166.--Frequency parameters for SD-SD, three-
layer shells; n = 1, R/h =30. (After ref. 3.247)
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FIGURE 3.108.--Frequency parameters for SD-SD, three-
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OF SHELLS

and 3.280, including some results for clamped-
clamped shells in reference 3.280.

Modi (refs. 3.129 and 3.281) considered iso-

tropic circular cylindrical shells having con-

tinuous variation of the material properties
through the thickness. Equations of motion were

presented which accounted for arbitrary varia-
tions of E and i, with z. Particular attention was

given to the case of thermal gradients through
the thickness. Under this condition assume that

the gradient is linear, causing a linear variation

of E with z, and that v is constant. It was found

that the frequency parameters in this case do not

depend explicitly upon the R/h ratio but, instead,
upon the ratio Pb/P1, where

fh/2 E }

P1 = ! _2 dz
J-h�21 --v

1 fh/2 Ez 2 (3.237)

For the linear variation in E, the ratio Pb/P1
becomes

/lEo\ 27
P°=_ I 11 E'} I

I (3.238)
\1+_,/J

where E; and E0 are the elastic moduli at the

inner and outer radii of the shell, respectively,

and k=M/12R 2, as usual. When E is constant,
Ps/P1 becomes 1/k 2, the usual parameter for
homogeneous circular cylindrical shells.

Numerical results were obtained in reference

3.129 for SD-SD shells using the exact displace-
ment functions (eq. (2.20)). In figures 3.171 and

3.172 the variation in the frequency parameter
£*2 with X=mTrR/1 is shown for a shell made of

Inconel-X (which determines v), where

£,2 = w2R 2Ph
p_ (3.239)

(£* is the same as £ for constant E), for Pb/PI

=0.0258X10 -6. As seen from equation (3.238),
there is no unique combination of k 2 or Eo/E_ for

a particular value of Pb/PI; however, Pb/PI can

be obtained with an Inconel-X shell, for example,
if R/h = 1750 with the outside maintained at room

temperature and the inside heated to 1800 ° F.

J_
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FIGURE 3.171.--Frequency spectrum for large values of X for an SD-SD shell subjected to a

radial thermal gradient. (After ref. 3.129)
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FIGURE 3.172.--Frequency spectrum for small values of X for an SD-SD shell subjected to a

radial thermal gradient. (After ref. 3.129)

One of the effects of increased temperature is a

reduction in the stiffness of the shell and, hence,

in its frequencies. Percentage reduction in fre-

quency for the case described above is given in

table 3.24. Variation of the frequency parameter

a*_/(1-_ _) with X at two extreme values of

Ps/PI is plotted in figure 3.173 for n=3.

The effects of initial stress (prestress) upon the

free vibrations of nonhomogeneous shells are

considered at least in part in references 3.7, 3.80,

3.129, 3.257, 3.278, 3.282, and 3.283.

Free vibrations of nonhomogeneous circular

cylindrical shells are also discussed in references
3.3, 3.276, and 3.284 through 3.302.

g
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TABLE 3.24.--Percentage Reduction in Frequency Due to Thermal Gradient in an SD-SD Shell

I

0.0

.2

.4

.5

.6

.8

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

10.96

35.27

i1.20

6.52

7.20

6.83

5.77

5.97

6.81

7.13

7.25

7.69

20.53

47.35

8.48

11.19

8.92

2.61

47.44

14.35

5.27

5.56

22.72

4.90

.14

14.26

8.2

11.16

10.11

.40

5.08

7.99

8.04

8.73

1.36

4.05

1.87

9.41

7.4O

9.33

7.47

6.57

5.03
6.52

5.26

5.02

6.83

7.66

7.03

7.32

6.87

14.27

4.99

5.82

5.41

6.03

6.82

7.29

7.18

6.99

4.39

4.98

6.82

5.90

5.37

4.73

6.49

5.21

5.92

6.05

4.97

4.73

5.24

5.38

5.98

8.96

7.87

7.63

5.92

6.47

8.50

7.72

6.45

2.22

5.07

9.16

8.57

8.23

7.89

8.41

5.73

8.97

7.51

8.23

.55

7.16

.78

1.88

6.66

8.74

9.38

10.23

8.78

6.57

10

8.9(

8.8;

9.0(

7.5l

.1_

.0_

1.05

4.76

11.80

18.01

13.15

11.48

6.31

_2 2
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FIGURE 3.173.--Variation of frequency parameter _*_/

(1--v _) with k for extreme values of P6/Pz. (After ref.
3.129)
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Noncircular Cylindrical Shells

Chapter 4

A cylindrical surface is defined by a straight

line (called the "generator") always moving par-

allel to itself. In the special case where the gener-

ator moves in a circular arc, it generates a

circular cylindrical surface, for which both radii

of curvature are both constant. In the general

case, one of the radii of curvature is variable,

thereby yielding equations of motion with vari-

able coefficients. For this reason alone, relatively

very few results are available in the literature

for the free vibrations of noncircular cylindrical
shells.

4.1 EQUATIONS OF MOTION

A noncircular cylindrical shell having thick-

ness h and length l is shown in figure 4.1. The

longitudinal coordinate is x (as in chapters 2

and 3), whereas the circumferential coordinate is

defined either by 0 or S, where S _s the arc length
such that

dS = r dO (4.1)

and r = r(O) is the radius of curvature.

To obtain the equations of motion (see sec. 1.7)

the coordinates x and S are used in place of a and

B in thg general equations; correspondingly,

R,= ¢¢, Ra=r, and A=B=I. The Donnell-

Mushtari equations (2.3) and (2.7), for example,

are generalized to (cf., refs. 4.1 and 4.2)

FIGURE 4.1.--Coordinates for a

noncircular cylindrical shell.

O_u 1--_ 02u F1q-v 02v 0/w\
Ox '-_ 20S 2 20x_+UOx_r)

(1 --v 2) 02_
--p

E 0t2

1-4-_, 02u 1--_, 02v 02v 0 [w\

2 0_ _ 20_-_+_r) (4.2)

(1 --v 2) 02v

- P E Ot2

Ou 1Or w h 2 (1--_)02w
r OxA-r O-SA-_-[-_ v4w= --P S Ot2

where V 4= V2V2, and the V_ operator is now given

by

02 02

V 2=_x2 +_-_2 (4.3)

The generalization of equations (4.2) correspond-

ing to the Reissner-Naghdi-Berry theory of chap-

ter 2 are obtained by adding the terms (cfs., refs.

4.3 and 4.4)

k_F (1-,,_ O2v 02 [v\ O3w O3w]

_L/" "_ Tx2+r_-ff2_r)-roz--_os-r-_J (4.4a)

Ox2 OSk, r] OSa\r] J

to the left sides of the last two of equations (4.2),

where the definition of k 2 is now generalized from
that of equation (2.6) to

h2
k--- (4.5)

12r0 _

and ro is the average radius of the shell.

The generalization of equations (4.2) corre-

sponding to the Donnell equations and the

Fliigge equations are given in reference 4.5 for

an orthotropic material including nonlinear, large

deflection terms. The orthotropic linear Donnell
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322 VIBRATION OF SHELLS

equations are also given in references 4.6 and
4.7 for the case of added initial stress terms to

account for external pressure.

The membrane theory results when h 2 is set

equal to zero in equations (4.2).

4.2 ELLIPTICAL CYLINDRICAL

Consider first the elliptical cylindrical shell

having a middle surface defined by

+_ = 1 (4.6)

as"shown in figure 4.2, where a and b are the

semi-major and semi-minor axes, respectively.

It was shown in reference 4.8 that in the case

of torsional motion, u = w = 0, and, if v is consid-

ered independent of S, the first and third of equa-

tions (4.2) are satisfied identically and the second
reduced to

02v p 02v
(4.9)

Ox_ GOt 2

Then the frequency of torsional motion is not

influenced by the ellipticity of the cylinder.

Flexural motions of the elliptical cylindrical

shell were studied in reference 4.8 for the case

when the displacement components are inde-

pendent of S. An energy method was used with

displacements in the form

u(x,t) = A sin Xx cos _t /

v(x,t) =B cos hx cos _0t/ (4.10)w(x,t) = C cos _,x cos _t

FIGURE 4.2.--Coordinates for an elliptic cross section.

Herrmann and Mirsky (ref. 4.8) analyzed the

free vibration problem according to the mem-

brane theory. Consider first the purely longi-
tudinal motion (v=w=O). The motion is then

governed by the first of equations (4.2) alone. The
analysis for this case in refergnce 4.8 was limited

to shells which are only slightly elliptical; i.e.,

b
- = 1 --_ (4.7)
a

where e<<l. Under this assumption the equation
of mo¢ion can be transformed into a Mathieu

equation which has an exact solution in terms of

tabulated functions and that the resulting lowest
frequency is given by

_o2a2p
- 1 q-e (4.8)

G

where G=E/2(lq-_). The corresponding fre-
quency for a circular cylindrical shell is

_2a2p/G= 1 (R=a)

Thus the square of the lowest longitudinal fre-
quency of a slightly elliptic shell is the arithmetic

mean of the frequencies of circular shells having
radii a and b, respectively.

_2

4

5

",4'4--Z//I/

0 0,5

ff

b

b

1.0

FIGURE 4.3.--Frequency parameters 6_abp/E for the

flexural modes of an elliptic, cylindrical, membrane

shell. (After ref. 4.8)
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where X=_-/l. Numerical results were obtained

for a/b = 1.2, _, 3, and 6. The frequency param-

eter _abp/E is shown in figure 4.3 plotted Versus

the length ratio _/_/l. The frequency parameter

thus implies a shell of a given cross-sectional area

7tab having a circumference which varies with

a/b. The ratio V_/l is a generalization of the

R/l ratio of the circular cylindrical case. Because

membrane theory is used, the results do not

depend upon the thickness ratio, h/%/_-_.

For shells having the same cross-sectional area,

the mass of the shell obviously increases with the

elliptieity of the section. However, it is of inter-

est to find the influence of ellipticity upon a shell

which was originally circular, but was deformed

into an ellipse without straining the middle

surface; i.e., keeping the circumference constant.
The circumference can be written as

a 1
C_=Trb(b+ )K (4.11)

where K is a number greater than unity depending

upon a/b. For example, for a/b=3, K= 1.0635.

For a/b = 19, K= 1.216. The ratios of the squares

of the frequencies of the two flexural modes to

those of a circular cylindrical shell having the

same circumference is shown in figure 4.4 for
a/b = 3.

An experimental study of a clamped-free ellip-

tical cylindrical shell was made by Park et al
(ref. 4.9). The specifications of the model tested

are shown in figure 4.5, as well as the transducer

locations to measure amplitudes. Typical mode

shapes are depicted in figure 4.6. The frequency
spectrum is shown in figure 4.7. Resonant fre-

quencies were found at 49.2, 65.5, 123.6, 126.7,

78.1, 98.5, 133.2, 149.0, 163.3, and 184.4 cps,

although no well-defined mode shape could be

determined for the 126.7 cps frequency. A com-
parison of the frequencies with those of a

clamped-free circular cylindrical shell having the

same specifications, except a radius of R = 10 in.,

is shown in figure 4.8. In making the comparison,

note that the cross section of the elliptical shell
is smaller than that of the circular shell.

Slepov (refs. 4.6 and 4.7) analyzed the problem

of the elliptical cylindrical shell supported at

both ends by shear diaphragms. The shell was

considered to be orthotropic and loaded by an
initial external pressure. The Donnell-Mushtari

I

r_

_Z
z

_o

I F
REFERENCE FREQUENCY c_o_ [S FOR A CIRCULAR SHELL

OF SAME CIRCUMFERENCE z

o

T=3

kO_WER FREQUENCY

0 0,5 1.0

T

FmuR_. 4.4.--Comparison of flexural mode frequencies for
elliptic and circular cylindrical shells. (After ref. 4.8)

T
12 INCHES

48 INCHES I
I

+-_

12 INCHES

12 liCHES

LENGTH: INCHES
MAJOR AXIS: 20 INCHES

MINOR AXIS: 12 INCHES
SKIN THICKNESS: 0,03 INCHES

MATERIAL_ LOW CARBON STEEL

TRANSDUCER SPACING

RING I = 1-7/t6 INCHES
RING 2 I-7/16 INCHES

RING 3 = ].7/I 6 INCHES
RING 4 = 4-5/I 6 INCHES

FIOURE 4.5.--Specifications of a clamped-free

elliptical cylindrical shell. (After ref. 4.9) v_
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FIGURE 4.6.--Typical mode shapes of a clamped-free elliptical cylindrical shell. (After ref. 4.9)
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FIGURE 4.7.--Frequency plots for a clamped-free

elliptical cylindrical shell. (After ref. 4.9)
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form of the shell equations were used. The prob-

lem was solved by the Galerkin method using
normal displacement functions in the form

w = sin X}_C, sin nk_ sin (4.12)

n

where, in tl_is case, X=_r_/l, }=x/Q _=S/_,
k = 4_/_0, 7o = SoIL and _ is the maximum radius

of curvature of the shell cross section. Assuming
that the dimensionless radius of curvature

pc = r/_ and its reciprocal are expanded in series as

pc =_o0+ p_cos ik_
i=1

1 1(1_ +V(I_ (4.13)

_=_,;Io ,_t;/_ cosik,

It is shown in references 4.6 and 4.7 that the

square of the frequency for the orthotropic shell
is given by the formula

FIGURE 4.8.--Comparison of frequencies of clamped-free

elliptical and circular shells. (After ref. 4.9)

w_=p_po{(E_X4+E_ntk4+E3X2n2k2)po

4b,,. p(l_ (1_ 1
4 E:X4_#_E,n_E3X.n_k2L \7]o- \7],: J

--qk2[n'(_oo'+ _ p, ')
i = 1,2

+ 1[7r2 1) " 7tab X__t_-'P" . _(t'piO-'l-_-_o_-Tpo]j (4.14)
/=1,2

where D_=E_hS/12(1-v,v.); p is the mass den-

sity, h* = h_4E_; E_ and E. are Young's moduli in

the x and S directions, respectively;

E 2E_(1 --v_v_)
3-_ _ +E_v.+E_v_ (4.15)

v_ and v_ are the orthotropic Poisson contraction

coefficients (see see. 3.1) ;

i

T ¸

r

w
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b,'-- 3(1- _,,_,,)E,E,(_)2 /

. q_ 12p(1_ _,,_.)(h)3 j (4.16)

So is the circumference of the shell; p is the uni-

formly distributed external pressure; and a, b
are the semiaxes of the shell cross section. In

the case of an isotropic shell, Ex=Es=E and

_= _8= _ in equation (4.14). For the unloaded

shell, q is zero in equation (4.14). The sandwich

elliptical shell was also analyzed in reference 4.7.

4.3 OVAL CYLINDRICAL

Consider next the oval cylindrical shell defined

by the equation

r0
r - (4.17)

1-}-e cos -_o

for its cross section, where r0 the average radius

of curvature (the radius of a circle having the
same circumference) and, as before, S is the arc

length. The parameter e is then a measure of the

noncircularity of the cross section.

The free vibrations of oval shells defined by

equation (4.17) were studied in a series of reports

by Klosner and Pohle (refs. 4.4, 4.10, and 4.11).
The generalization of the l_eissner-Naghdi-Berry

theory including bending terms was used (see

sec. 4.1). The plane strain problem (u and all

derivatives with respect to x are zero) was con-

sidered in reference 4.4. The non-zero displace-

ments v and w were assumed as doubly infinite
series in S as follows:

v = _Bn sin f_S cos o) t

n=0

(4.18)

w = _Cn cos f_S cos o_t

n_0

where f_=n/ro and ¢ is a perturbed frequency

which can be expressed as a power series in the

parameter _ by

o_=_o2+C1_+C2e2+ • • • (4.19)

where _o is the frequency of a circular cylindrical

shell of radius r0. In reference 4.4 equations (4.18)

were substituted into the equations of motion

and terms multiplied by coefficients up to the
order e2 were retained. Numerical results for the

frequencies of the first five (primarily) exten-
sional and flexural modes of an infinite shell hav-

ing an axis ratio of b/a= 1.1 (_=0.1427)and a

thickness ratio of ro/h=91.7 are given in table

4.1. This table lists the percentages by which the

frequencies of the circular cylindrical shell (hav-
ing the same average radius r0) are increased.

Table 4.1 shows that the smgll noncircularity of

the oval cross section causes only a small change

in the frequencies. The effect of noncircularity
on the primarily extensional modes is to stiffen

the shell due to the increase in strain energy
which results from coupling of the modes. For

example, for n=0 the circular cylindrical shell

has a purely radial (v=0) extensional motion,
whereas the oval shell has both radial and tan-

gential components of displacement. For n= 1,

the flexural mode of the infinitely long circular

shell corresponds to rigid body translational

motion having zero frequency, but not in the case

of the oval shell. For n> 2 the frequencies of the
flexural modes of the oval shell are less than those

of the circular shell. Calculations for the plane

strain case were subsequently carried out in

reference 4.10 retaining terms up to the order ed.

The results obtained changed very little from

those of table 4.1, thereby validating the rapidity
of convergence of the perturbation approach.

In references 4.10 and 4.11 the analysis v<as

TABLE 4.1.--Percent Increase in

Plane Strain Frequencies of an
Oval Shell in Comparison with

a Circular Shell (b/a=l.1,
ro/h =91.7)

Type of plane strain mode

n

Predominantly Predominantly
extensional, % flexural, %

0.255

.128

.136

.055

.032

.021

0. 924

--. 117

--. 096

--. 064
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also extended to include the torsional and flexural

modes having displacements of the form

u = A sin _x cos/_S cos _t_

v=B cos _x sin f_S cos _t/ (4.20)
w = C cos _x cos _S cos _0t

Numerical results for these modes for the shell

described previously in table 4.1 are given in

table 4.2 for various nondimensional half-lengths

(l) of the longitudinal sine wave. Results are

given for b/a = 1.4 (e = 0.5), as well as for b/a = 1.1

(e=0.1427) and for to�h=91.7. The frequencies
of all modes in table 4.2 increase with noncircu-

larity and with the wave length. The amplitudes

of the lower flexural modes were found to vary

from C/A = -9.510 for l= 1

to C/A = -0.1035 for l= 10

For the higher mode, C/A varied from 0.1052 for

l--1 to 9.661 for l= 10. For all flexural modes,

B/A = 0. Thus for the lower modes the effect of

noncircularity should be more significant for the

TABLE 4.2.--Percent Increase in Torsional and

Flexural Frequencies of an Oval Shell in Com-

parison With a Circular Shell (ro/h =91.7)

b
1

a

1.O

1.25

1.5

.75

2

2.5

3.5
5
10

.0

.25

1.5

• .75

2

2.5

3.5

5

L0

1.1

1.4

Type of mode

Torsional,
%

Lower
flexural,

%

1.25

.81

.58

.45

.36

.27

.14

.06

.03

14.47

Higher
flexural,

%

O.01

.01

.02
•04
.67

- .03
.04
.14
.20

.O5
9.60 .10

6.93 .21

5.36 .58

4.38 7.86

3.26 --.51

1.68 .71

• 72 1.74

.38 2.59

smaller wave lengths because the deformation is

primarily dilatational rather than longitudinal

extensional. The reverse is true for the higher

modes since the displacements become primarily

dilatational for the longer wave lengths.

Sathyamoorthy and Pandalai (ref. 4.5) inves-

tigated the nonlinear (large deflection) vibrations
of orthotropic oval shells. The middle surface of

the shell was defined as in equation (4.17). It was

shown that the solutions for the plane strain

modes of an infinitely long shell were the same as

for oval rings, in both the isotropic and the ortho-

tropic cases. Results for the plane strain modes

were obtained according to the inextensional
theory (i.e., the middle surface deforms without

stretching; this theory is discussed for circular

cylindrical shells in section 2.4.5). A mode shape
for w was taken as

w(S,t) =AoWA_ cos BS-_B_ sin _S (4.21)

where, B=n/ro, as before, n_2, and the coeffi-

cients A o, A_, and B_ are undetermined functions

of time. The nonlinear differential equation is

approximated by the Galerkin procedure.
Numerical results for the solution described

above were presented in reference 4.5 for the

infinitely long isotropic shell having ro/h= 100

for three values of the noncircularity parameter:
= 0, 1/2, and 1. The circumferential wave num-

ber n was taken as 2 and 4 in equation (4.21).

The nondimensionalized average amplitude ,4

(averaged over one cycle of vibration) is plotted

versus the frequency parameter _ro2V_2p/Eh a

for n=2 in figure 4.9, and for n=4 in figure 4.10.

The nonlinearity is of the "softening type"; i.e.,

the frequency decreases with increasing ampli-

tude. It was found that the effect of orthotropy is

to increase the softening tendency of amplitude-

frequency curves. For zero amplitude the motion

corresponds to the linear, small displacement
solution. Values of these linear frequencies are

summarized in table 4.3. Note from figure 4.9
that, for n = 2 and a given amplitude, an increase

in the noncircularity parameter e decreases the

frequency for small amplitudes, whereas it in-

creases the frequency for large amplitudes.

A study of oval shells of finite length having
the boundary conditions
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120

80

I,

40

l0

0 I
2 2,75 3.0

FIGURE 4.9.--Amplitude versus frequency for the large

deflection plane strain vibrations of infinite oval shells;

ro/h = 100, n =2. (After ref. 4.5)

TABLE 4.3.--Frequency Parameters

_ro2_,/-_p/Eh 3 for the Linear

(Small Deflection), Plane Strain

Vibrations of Infinite Oval Shells;
ro/h = 100

n

0

3

8
15
24
35

1/2 1

2. 936 2. 746

7.911 7.673

14.89 14.58

23.88 23.55

34.88 34.53

_gw

w=--=u=N=,=O (4.22)
0x 2

was also made in reference 4.5. For this case it was
found that

(1) The frequency increases with increasing
noncircularity.

(2) The amplitude-frequency curves are of the
softening type.

E=0

4 I/I

5

2

I

0 I I
14 14,25 14,5 14,75 ]5

¢_ to2%/"_'-p / E h 3

FIGURE4.10.--Amplitude versus frequency for the large
deflection plane strain vibrations of infinite oval shells;
ro/h=lO0, n=4. (After ref. 4.5)

The free vibration of oval cylindrical shells

are also analyzed by a perturbation procedure in
references 4.12, 4.13, and 4.14.

4.4 OPEN SHELLS

An open cylindrical shell was depicted by fig-

ure 2.141 in chapter 2. In that figure the radius

of curvature is constant (r= R), the special case
of the circular cylindrical shell.

A study of open noncircular cylindrical shells

was made by Kurt and Boyd (ref. 4.2). The

shells were assumed to be supported by shear

diaphragms along their curved edges and to have

arbitrary boundary conditions along the straight

edges. The Donnell equations of motion (4.2) were
used. Displacement functions were assumed to be

mixed algebraic and trigonometric functions; i.e.,

/u = cos Xx z.4A_n-1 _t

UI /

a-i

a_

i.= j
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where ), =m_r/l, _ = S/l,, and /8 is the arc length

of the cylinder in the S direction. It is clear that

equations (4.23)satisfy the shear diaphragm

boundary conditions exactly at x = 0 and x = 1.

Substituting equations (4.23) into equations (4.2)

yields a set of three simultaneous recursion rela-

tionships among the coefficients An, Bn, and C,.

If eight of the constants are found from the

boundary conditions, the remainder are found

from the recursion equations.

The procedure described above was applied to

a class of noncircular cylindrical shell segments
described by the equation

18 lr

r =_+c_ (4.24)

0D350

o

_: 0.0300

3

0_250

, , , , , , , ,
o.,o o2o 0.30 o.4o

FIGURE 4.11.--Frequency parameters for a class of

open, noncircular cylindrical shells• (After ref. 4.2)

p

TABLE 4.4.--Frequency Parame-

ters _,_ls_ph3/D for a Class of
Open, Noncircular Cylindrical
Shells

Tangential inertia
C

Included Neglected

0
• 05
• 10

• 15

• 20

.25

.30

0.0245

.0257

.0271

.0284

.0297

.0311

•0323

0•0262

.0276

.0291

.0306

.0322

.0338

.0354

where c is an arbitrary constant. Boundary con-
ditions along the straight edges were taken to be

u=v=w=M_=O at _=0,1 (4.25)

Numerical results for frequency parameters

_2182ph3/D (where D=Eh3/12(1--_2)) were ob-

tained for 0<c<0.3, 1/l_=4, l_/h=200, m=l,
and p =0.3 are shown in figure 4.11 and table 4.4.

These results were obtained using 25 as the upper

limit for n in the summations of equations (4.23).

Note in figure 4.11 that the square of the fre-

quency varies essentially linearly with c, with
or without tangential inertia terms.

General methods were presented by Oniash-

vili (ref. 4.15) and Gontkevich (ref. 4.16) for the

analysis of open noncircular cylindrical shells of

arbitrary curvature and having arbitrary edge

conditions. Both methods use the Galerkin pro-

cedure and beam functions as given previously

in equations (2.168). However, Oniashvili sug-

gests using straight beam functions to represent

the variation in the _ (or S) direction, while

Gontkevich recommends using the eigenfunc-
tions of noneircular curved beams. Gontkevich

(ref. 4.17) used his procedure to investigate the

problem of the vibration of a parabolic cylin-
drical segment immersed in a fluid.

Mazurkiewicz (ref. 4.18) also developed a pro-

cedure for shell segments of varying curvature

and having arbitrary edge conditions. A double

Fourier series approach is used, leading to an

infinite characteristic determinate, which must
be solved by successive truncation to obtain

convergent frequencies.
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Conical Shells

A conical shell has a middle surface which is

generated by a straight line (called the "genera-

tor") which moves so that one point on the line

(the vertex) is always fixed. For the practical pur-

poses of this work, the shell will be limited to finite

length; that is, the middle surface is generated

by a line segment of length 82, having one end

fixed, while the other end generates a curve in

space (see fig. 5.1). If the generator rotates about

a fixed axis, so that a constant angle a (vertex

half-angle) is kept with respect to the fixed axis,

then the resulting surface of revolution is a circu-

lar cone. If the generator of a circular cone

retains constant length as it rotates about the

axis, its end forms a circle arc, called the base Or

large end of the cone. The base can also be

regarded as being the intersection of the conical

surface with a plane. If the plane is perpendicular
to the axis of the cone, the surface describes a

right circular cone. Finally, if the cone is bounded

by two planes (s=sl and s=s2 in fig. 5.1), then

R +R

AVERAGE RADIUS _= --_

sz __

FIGURE 5.1.--Right circular conical shell, showing

conventional force resultants.

Chapter 5

the surface is a frustrum of a cone; otherwise, for

a shell containing the vertex (i.e., having an

apex) the term "complete conical shell" will be

used here. This chapter is organizationally lim-

ited to shells having circular conical curvature.

Furthermore, no results have been found in the

literature for conical shells having noncircular

boundaries; thus, the scope of the chapter is
further limited.

The class of conical shells described above is a

simple generalization of circular cylindrical shells.
Put in another way, the cylindrical shells dis-

cussed in chapters 2 and 3 are the special case

arising when the vertex half-angle a is zero. Thus,
conical shells have all the classifying parameters

of cylindrical shells described at the beginning

of chapter 2 and in the separate sections of chap-
ter 3, with a being an additional parameter.

Thus, the primary organization of chapters 2 and

3 (i.e., boundary conditions and complicating

effects) is repeated here, with a being treated as

one more geometrical parameter to be considered

in each problem discussed.
However, if the reader correlates the following

sections of this chapter with those of chapters 2

and 3 the following will be readily noted:

(1) No specific results exist in the literature

for open conical shells (see sec. 5.4).

(2) No information is available for conical
shells of variable thickness.

One unfortunate (and unnecessary) complica-
tion which exists for conical shells is that there is

no significant agreement among authors as to the

proper nondimensional form for expression of the

frequency parameter. This is due partly to dis-

agreement on what constitutes the fundamental

length parameters for a shell. That is, should one

use s2-sl or l (see figs. 5.1 and 5.2)? Should one
describe the radius by R1, R2, /_ (the average

331
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S

R
W

r2= s2tan a

FIGURE5.2._Conical shell, side view.

radius, (R1+R2)/2), rl, r2, or _ (_= (rl-t-r2)/2)?

Additional choices for frequency parameters arise

because of the choice of elastic constants. Thus,
at least a dozen distinct forms of nondimensional

frequency parameters have been found in the

literature and are used in this chapter.

Finally, it should be mentioned that rudi-

mentary surveys of the literature of free vibra-

tions of conical shells are given ill references

5.1, 5.2, and 5.3.

5.1 EQUATIONS OF MOTION

The shell coordinates to be used are s and 0

as shown in figure 5.1. Following the procedure
outlined in section 1.7 the equations of motion

are synthesized for a conical shell by using the

following parameters in tables 1.1 through 1.5
(see fig. 5.2):

a=s, 3= 0 I

A=I, B = R = s sin a

R, = _ Ro = r = s tan a )

(5.1)

In _ case of t.e Donnell-Mushtari theory the
equations of motion are found to be (cf., refs. 5.4
and 5.5)

02u 10u (l--v) 1 O2u

_s2+s Oss -_ 2 s 2 sin2--_ O0_-

+[(1+v) 1 02v (3-v)
k 2 s sin a Os O0 2

;]
1 ;]s2 sin a

1 l[vsOW_w ] p(1--_) 02u+ t_n _ 2' os J= E or2

(l+v) 1 02u (3-v) 1 Ou]2 s sin a as _q 2 s 2 sin a

(5.2a)

+r(1-_) a2v 1 O2v
_s_ -E s2 sin 2 _ 002

-f (1- _) 1 ov (1- _) v ]2 s Os 2 s2
J

r COS Ve OWl p(1--v2) 02V-F[ si-_mra _ j = E Ot2 (5.2b)

1 lr ou ] r cos a ovl

/
S2 tan2-_-t-i-2 V4w = E Ot 2

where u, v, and w are the components of displace-

ment in the s, 0, and z directions, respectively
(see fig. 5.2 for true-length views of u and w

components--v is perpendicular to the plane of
fig. 5.2), and V4= V2_ 72, where

02 1 0 1 02

V2 _'_82-'1-; _8-'1" 82 sin2 a 002 (5.3)

Equations (5.2) can be put into a form more like

equations (2.3) and (2.7) for circular cylindrical
shells by expressing them in terms of the radius

R= R(s) used in figure 5.2 and equations (5.1).
That is, equations (5.2) become

02u . Ou (l--_) 02U_sin2 c_ u ]O-Tg+sin a_s+ 2 002

+[(12+__) 02v (3-_) 0_]O_ 00 -_ sin OOJ

[Ow ] p(1--_,2)R2 02u (5.4a)+ cos a v_--sin a w = E Ot-7

i

T'-



[(1_ v)02u+(3-u)-0_ _2---

+[(1-

(l-v)
2
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ou]
sin _-_j

u) 02v 02v (1--_) Ov
_+-_+--5-- sin_

] [ aOw] =p(1-È2)R20:v----sin 2_v + cos OOJ E Ot2

(5.4b)

L o_ 00j

+[ cos2 _ w+kV4w]= P(1-_2)R5 05w (5.4c)
E Ot2

where no_w

0 2 0 0 2 1

v2=_+sin _+_=_v5 (5.5)

and where the nondimensional length, _=s/R

has been introduced, and where k=h2/12R 5.

Letting a--*0 in equations (5.4) and (5.5), it is
clearly seen that they take the forms for circular

cylindrical shells, equations (2.7) and (2.8), re-

spectively. Remember, however, that _ in equa-

tions (5.4) and (5.5) corresponds to s in equations
(2.7) and (2.8).

The equations of motion of other shell theories

(see chapter 1) are obtained by adding certain

terms to the left-hand sides of equations (5.2)

or (5.4). For example, the equations of the
Novozhilov theory result when ,

0 (5.6a)

hSr cos _ 03w . cos _ 02w

i2[ s _si_ [ a _ + (1 -- 2_)s _ _--n a Os O0

cos_ o_w]
• --(2--_)ssi---n--aOsSO0 j (5.6b)

hi_[ cos_ o_+3s:os_ osvs 3 sin _ a 0-_ sin a Os O0

_(2_.)cos. o"_ ]
s si--n_ Os500J (5.6e)

arc added to equations (5.2a), (5.2b), and (5.2c),

respectively fief. 5.6, and after correcting some
obvious errors, ref. 5.7).

The Flfigge equations for a conical shell are

given in reference 5.8, p. 399. A different set of

equations was derived by Pflueger (ref. 5.9) and
Federhofer (ref. 5.10) which also reduce to the

circular cylindrical shell equations of Fltigge (see
eqs. (2.9d)) as a-_0.

Looking at the Donnell-Mushtari equations
(5.2) and (5.4), note that they are not symmetric.
That is, if they were written in matrix differential

operator form as equation (2.7) for cylindrical

shells, the matrix operator would be unsym-
metric. The terms (5.6b) and (5.6c) added to

yield the Novozhilov theory also add to the

asymmetry of the equations. The Fltigge-type
equations given in references 5.8 and 5.10 also

contain unsymmetric terms which are multiplied
by h5/12. Note that the equations of reference

5.10 were derived by a variational principle.
For the Donnell-Mushtari theory another for-

mulation in terms of an Airy stress function

(see sec. 1.9) is often used. Neglecting tangen-
tial inertias, the equations of motion and

compatibility which must be satisfied are,
respectively

05w'l

DV'w+VR2_'=:Ph-o_ I (5.7)V4_o- EhVRSw =

where D =Eh3/12(1 - u2), as before, Y4= 7275 for

a conical shell is given by equation (5.3), VR5 is

1 05
v_2= _ -- (5.8)

s tan a Os 5

the membrane forces are related to the Airy

stress function by (cf., refs. 5.11 and 5.12)

N,=s 5sin _a_ s Os

No = 05_
Os--_ (5.9)

ssm_\s00 0_-_

the bending moments are related to w by

5w
LOs5

/10w 1 02w\ -1

V OSw 1 Ow 1 O2w] (5.10)

Mo [ as s as s 5sin _a 005j= -- D v-g_2 +- --+._ --

Mo. D(1--u)[ 05w 1 Owl

it

\

\

J..
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and the transverse shearing forces are determined
from

O'= - DO(V2w) / (5.11)

Q, _ D_ 0__(V2w)/
s sin a 00 )

5.2 COMPLETE CONE

The vast majority of numerical results for the
free vibrations of conical shells deal with the

frustrum of a cone; that is, the conical surface

is cut by two planes located at distances sl and s2

from the vertex as shown in figure 5.1. In the

case of the complete cone, the shell includes the

vertex and is bounded by a single plane located

at 8=82.

The complete cone can also be regarded as the

limiting case of a cone frustrum as sl--_0. How-
ever, two difficulties are encountered in taking
this limit:

(1) The solutions of the equations of motion

contain singularities at s = 0.

(2) Care must be exercised in using the proper

boundary conditions at s = sl to obtain the correct

convergence.

The first point will be elaborated upon later in

this section where methods of solving the equa-

tions of motion are discussed. As an example of

the second difficulty, consider the problem of

obtaining a free vertex as a limiting case of a cone

frustrum. If clamped conditions are applied at

s =sl, the vertex becomes fixed in the limit. If

free boundary conditions are used, the vertex

always has a small hole in it as s_-_0. The correct

boundary conditions for a free vertex are (see

fig. 5.1 for force resultants)

Ow 0 }

V=O--_=

u sin a--w cos a =0 (5.12)

Na cos a--Q, sin a = 0

whereas, for a completely fixed vertex

OW

u=v=w=_s =0 (5.13)

Other possible types of external partial constraint

can exist at a vertex, but these will not be elabo-

rated upon here.

The equations of motion are solved by assum-

ing displacement functions of the form

nt/u = y u,(s) cos cos

n=0

¢o

= _vn(s) sin nO cos wt
V (5.14)

w = >:w,(s) cos nO cos _0t

where u,, v,, and w, are yet undetermined func-
tions of the meridional coordinate s. If the shell

itself is axisymmetric (e.g., no cutouts) and has

axisymmetric boundary conditions, then the

vibration modes uncouple with respect to 0 and

the summations can be dropped in equations

(5.14).

Substituting equations (5.14) into, for example,

equations (5.2) yields an eighth order set of

ordinary differential equations having variable

coefficients which must be integrated in order to

determine u,, v,, and w,. However, equations
(5.2) show that the variable coefficients which

arise are all powers of s. This suggests a solution

in terms of power series which, if convergent,
will be exact.

Using the classical method of Frobenius, solu-

tions for u_, v_, and wn are assumed in the form

= 8J>_ais iu

i=o

_o

= sJ>: b_s_ (5.15)V

i=O

= 8i>_ el8 iw

i=o

Dreher and Leissa (refs. 5.11 and 5.12) also added

terms of the type w=c/ns in order to improve

convergence. Substituting equations (5.15) into

the eighth order set of ordinary differential equa-

tions arising from equations (5.2) leads to a set

of recursion equations among the coefficients a_,
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b_, and c_ and a characteristic equation yielding

eight independent roots j. The ultimate result is

eight independent constants ai, bi, and cl (corre-

sponding to the eight roots). In the case of a

complete shell, four of the constants must be set

equal to zero to satisfy regularity conditions at

the apex. For a conical frustrum, four boundary
conditions are written at each edge, yielding an

eighth order characteristic determinant for the

eigenvalues (frequency parameters).

5.2.1 Clamped Base

"- The boundary conditions at the clamped base

are (see figs. 5.1 and 5.2)

u=v=w=OW=O at s=s_ (5.16)
Os

Dreher and Leissa (refs. 5.11 and 5.12) used

the exact solution procedure described in section

5.2 involving expansion of the displacements in

I0'

I I I I

I0 -t I0 ° IO t I0z 10 3 104

K= 12(l-'_a)(r21h)_

ton4a

terms of power series to study the axisymmetric
n = 0 free vibrations. The Donnell-Mushtari shell

theory was used. Frequency parameters

_2 = __°flr22p
E

were obtained for the first eight axisymmetric

modes for v=0.3 and over a wide range of the

stiffness parameter K = 12(1 - v_) (r2/h) 2/tan 4 _.
Numerical results are given in table 5.1 and

figure 5.3 in the case where the vertex is free.

A representative fundamental (i.e., lowest fre-

quency) mode shape for Wo(S) is shown in figure
5.4 for K = 1000.

Note that if the parameters K and _2 are used,

there is no explicit dependence upon a. That is,

the values in table 5.1 and figure 5.4 apply to all
values of a.

The first solution of the free vibration of the

clamped conical shell was presented by Feder-

hofer (ref. 5.10) in 1934. In that paper the equa-

tions of motion of Pflueger (see sec. 5.1) were
given and the difficulties of their solution in series

were acknowledged. Thus, an approximate Ritz

solution procedure was followed using the simple
trial functions

u = As2(s-s_) 2 cos nO cos _t_
!

v=Bs_(s--s2) 2 sin nO cos _t _ (5.17)
!

w=Cs2(s-s_) 2 cos nO cos _t)

Although not mentioned in reference 5.10, equa-

tions (5.17) clearly satisfy equations (5.13) for a

0.8

_ °_

8
N 0.4

0.2

I
0.2 OA 0,6 0.8 1.0

DISTANCE ALC_G GENERATRIX SIS 2

FIGURE 5.3.--Frequency parameter fi2 versus stiffness

parameter K for the axisymmetric (n =0) modes of a

clamped, complete conical shell. (After rcf. 5.12)

FIGURE 5.4.--Fundamental mode shape for a clamped,

complete conical shell; K=1000, _2=3.574, v--0.3.

(After ref. 5.12)



TABLE 5.1.--Frequency Parameters _2 = _r22p/E for the Axisymmetric (n = O)

Modes of a Clamped, Complete Conical Shell Having a Free Vertex; _ = 0.3

au-i

0.1

.2

.4

.6

.8

Mode number

1049.661

527.844

266.933

179.961

136.474

15826.797

7918.076

3963.715

2645.594

1586.533

79409.734

39711.992

19863.121

13246.830

9938.685

250241.404

125130.175

62574.560

41722.688

31296.752

610145.734

305084.828

152554.375

101710.891

76289.147

632176.406

316102.574

210744.633

158065.660

585364.445

390254.223

292699.094

10

20

40

60

80

100

200

4OO

6OO

8OO

1000

2000

4000

6000

8000

10000

20000

40000

60000

80000

100000

110.380

58.184

32.065

23.341

18.966

16.330

10.986

8.154

7.095

6.498

6.096

5.082

4.317

3.957

3.733

3.574

3.148

2.800

2.625

2.511

2.429

2.200

2.008

1.911

1.848

1.802

1591.096

800.221

404.779

272.961

207.048

167.498

88.373

48.740

35.457

28.757

24.688

16.215

11.373

9.453

8.366

7.648

5.950

4.805

4.302

4.000

3.792

3. 256

2.845

2. 646

2.521

2.431

7953.797

3984.021

1999.131

1337.498

1006.680

808.187

411.190

212.654

146.435

113.291

93.373

53.268

32.522

25.098

21.116

18.575

12.872

9.353

7.922

7.102

6.554

5.229

3.302

3.883

3.627

3.449

25041.191

12530.067

6274.503

4189.313

3146.717

2521.158

1270.032

644.445

435.891

331.592

268.994

143.621

80.395

58.810

47.674

40.764

25.869

17.208

13.863

12.008

10.801

7.997

6.162

5.379

4.917

4.604

61036.103

30530.011

15276.964

10192.614

7650.438

6125.132

3074.514

1549.189

1040.732

786.489

633.932

328.704

175.715

124.310

98.282

82.415

49.249

30.785

23.897

20.167

17.780

12.400

9.040

126458.276

63243.509

31636.125

21100.329

15832.430

12671.691

6350.207

3189.454

2]35.858

1609.050

1292.957

660.693

344.299

238.530

185.378

153.263

87.487

52.127

39.272

32.428

28.107

18.596

12.883

234166.008

117099.869

58566.789

39055.760

29300.247

23446.939

11740.318

5887.000

3935.885

2960.321

2374.976

1204.233

618.675

423.266

325.356

266.425

147.106

84.598

62.330

50.619

43.299

27.471

18.259

998330.648

665565.555

499184.832

399354.262

199696.465

99867.565

66591.354

49953.068

39970.209

20004.372

10021.464

6693.822

5029.993

4031.699

2035.051

1036.591

703.603

536.952

436.814

235.268

131.544

95.218

76.297

64.554

39.514

25.297

TABLE
5.2.--Frequency Parameters _*_ = w2R22p(1 - _2) / E for Clamped Conical

Shells Having a Fixed Vertex; hS/12R22= 10 -_, v = 0.3

deg.
0 1 2 3 4 5

15 O. 22318 O. 15413 O. 080113 O. 071504 O. 12968 O. 27698

30 .80040 .49382 .21578 .13198 .15980 .29174

45 1. 50149 .72558 .27640 .15463 .16841 .29213

60 1. 76599 .54498 .19263 .11399 .14290 .27154

75 .73942 .15492 .059238 .051842 .10576 .24464

T"
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fixed vertex• Minimizing the functional with

respect to A, B, an d C the resulting characteristic

determinant for the frequencies was in the form:

2an a12 a13]

a12 2a22 a23=0 (5•18)
als a23 2a38

where

3 1--v n 2 1

Ftl/1--v_ 3/ n \2]

3 1 [ 1a33 =_--_-_22+k 7 tan 4 a+tan 2 a+_

-- (1-- v) (1-- _,n) tan 2 a

3 n

t

3

a13= --_ tan a

+k[--tan 3 oe+(_--1)tan a]

a23 ---- V n
28\cos a]

+_(1--V)(c--_s a)7_ tan 2 a] (5.19)

where

337

09

08

-4

%

05

FIGURE 5.5.--Frequency parameters t2.2 for clamped

conical shells having a fixed vertex; h2/12R2_=lO-5,
v=0.3. (After ref. 5.10)

table 5.2 and figure 5.5 is _,2= _022R22p(1- v2)//E

(see fig. 5.1 for R2). As for circular cylindrical

shells, the fundamental frequency does not occur

for n = 0 but, for this value of k, at n = 3 for all f_.

In figure 5.6 the frequency parameter is plotted

versus B and tan f_. Amplitude ratios A/C and
B/C corresponding to the roots _2.2 for n = 0 and

n= 3 are given in table 5.3. For n = 0 the funda-

mental mode changes from predominantly trans-
verse motion to predominantly meridional as

increases. Many of the Previously given results
are also discussed in reference 5.13.

TABLE 5.3.--Amplitude Ratios for Clamped Coni-

cal Shells Having a Fixed Vertex; h2/12R2_=
10 -5, v = 0.3

_,_ = 0 for n = 0

7_ = 1 for n#O _,
deg.

and _22= w2r22p(1 -- v2)//E and k = h_/12r22. Numer-
ical results obtained in reference 5.10 for the low-

est roots of equation (5.18) are presented in 15
table 5.2 and figure 5.5 for shells having a thick- 30

ness ratio of h2/12R22 = k/cos 2 a = 10-5 and v = 0.3 45

and for B = 15°, 30 °, 45 °, 60 °, 75 ° (B = 90 °- a, as 60
in figure 5.2). The frequency parameter used in 75

n

A/C

0.07416

.1684

.3334

.8261

3.075

A/C

-0.009611

--.02094

-.03241

--.03703

-.02602

B/C

0.07996

.1584

.2305

.2876

.3223

l

r_

T _
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o sl should be less than the exact values because the

0.7

o6 conditions used at the apex are less rigid. For

05 small vertex angle the exact solution results may
_4_ / o:7_, be inaccurate because of limitations of the
o2V'F / \ Donnell-Mushtari theory. The numerical inte-

0.5_0.25

, o.,8b/ / \_ \ o.5

,j' 0.12I- / / _ q

o.,Vj \
o \\

0'05 L "_1 0.3
0041 I I I I I I _ =" 20 30 40 45 50 60 70 75°

I I I I I I I I I I I I I 0.2

0.5 04 0.5 0,6 0.8 1.0 1.5 2 2.5 3 3.5 "0

lon/_ ,!_

FIGURE 5.6.--Frequency parameter _t*2 versus /9 for

clamped conical shells having a fixed vertex; h_ll2R_ 2 = 0.I

10 -5, v----0.3. (After ref. 5.10)

For purposes of comparison, frequency param- i i I I
0 o i0 o 20 ° 50 o 40 °

(a)eters for clamped conical shells were also pre-
sented in references 5.11 and 5.12 which were

obtained using Kalnins' (ref. 5.14) numerical

integration scheme for shells of revolution.

The results are listed in table 5.4. It was necessary

to use slightly different conditions at the apex
(N,= Q_=dw/ds=O, rather than eqs. (5.12)).

Twenty equal segments were used, except for

a=35 °, where fifty equal segments were used.

Values obtained from numerical integration

TABLE 5.4.--Comparison of Frequency Parameters

for the Complete Conical Shell Having a Clamped
Base and a Free Verte:

75

65

45

35

15

10

K 12(1--,') (r2_'
= ta---E_T;-_\_-1

10'

10'

104

104

105

10 s

Exact

method

3.574

3. 574

2.429

2.429

1. 802

1. 802

Numerical

integration

3. 538

3.471

2.384

2.431

1. 898

1. 736

Or,

deg.

0.5 -

n=S_
0.4 0.01

0.3

0.2

0.1

I I I I I
0 ° I0 ° 20 ° 30 ° 40 °

(b)

FIGURE 5.7.--Frequency parameter [_* for clamped coni-

cal shells (vertex conditions not known). (After ref. 5.3)

(a) n=2. (b) n=3. (c) n=4. (d) n=5. (e) n =6.

t

_ _'_ _ - ....... "I.... - _- -,---- _ ',',- _ T- ":-" "_ - "'_ T_ F
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gration method obviously yields frequency

parameters which depend upon K and a explicitly•
The Ritz method was used by Gontkevich

(ref. 5.3) to obtain extensive numerical results

for clamped co_iical shells as shown in figures 5.7.
The trial functions used were not given, nor was

it stated whether the vertex was clamped or free,

and Poisson's ratio is not known.

0.5

0.4

0.3

v_

3
n

*_ 0.2

(c)

0.1

'.2

3
n

(d)

R_ =0.02
/

I I I I I

0 o I0 ° 20 ° 30 ° 40 °

F

0.5-

0.4

0.3

0.2

0.1

n=5

I

0 o I0 ° 20 ° 30 ° 40 °

Kolman (ref. 5.7) used the Novozhilov theory
and showed that the frequency parameters for

the axisymmetric (n=O) torsional modes of a

clamped shell having a fixed vertex are the roots

of the equation
Jl(fi) =0 (5.20)

where _ = _s2_v/2p(14- _)/E, and J1 is the Bessel

function of the first kind. That is, f_ is independent
of a.

In reference 5.5 the "method of parallel

springs" (which is equivalent to the Southwell

method) is demonstrated for a conical shell hav-

ing a clamped base and vertex and having two

particular sets of dimensions: a = 30 °, s2 = 30 cm.,
h = 0.33 mm. and 0.71 mm., E = 2.05 × 106 kg/cm 2,

p =7.95 × 10-6 kg'sec2/cm% and _ =0.30. Circular

frequencies _ are shown for the two thicknesses

in figure 5.8. Experimental data are also shown.

0.6

0.5

0.4

er-

a 0.3
u

0.2

0.1

0.0067 .....

h : 0.02

n=6

0.01

I I I I

oo ioo 20° 30o 40°
(e) a

o..q_____

FmURE 5.7.--Concluded.
F

L
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h = 0.71 ram,

h=0,33 ram,

t I I _ I I I

3 4 5 6 7 8 9 -
n

FIGURE 5.8.--Circular frequencies for a conical shell
having a clamped base and vertex (dimensions given
in text). (After ref. 6.5)

5.2.2 Base Supporte d by a Shear Diaphragm

The boundary conditions at the base of a

conical shell supported by a shear diaphragm are
(see figs. 5.1 and 5.2)

N,=v=w=M,=O at s=s2 (5.21)

where M, is the meridional moment resultant.
Strangely, this problem has no known solution in
the literature of free vibrations.

Kolman (ref. 5.7) addressed the problem of the

complete conical shell having a fixed vertex and

a base supported by hinges. Only axisymmetric

motion was considered. In this case the boundary
conditions are

u = w = Ms = 0 at s = s2 (5.22)
/

The finite difference method was used to solve

the problem. Various solutions were obtained

using the conventional finite difference repre-
sentations for derivatives; e.g.,

W' = _(W_+I- W__I) (5.23)

Results for lowest frequency parameters and

mode shapes of a shell having s2/h=400 and

a =30 ° are shown in figure 5.9. The three parts of

the figure correspond to solutions using four, six,
and eight meridional divisions in the finite dif-

ference grid. Figure 5.9 also shows that the mode

shapes change considerably as the number of grid

subdivisions is increased. The mode shape for the
third frequency arising from the eight subdivi-

sion solution is depicted in figure 5.10. The fre-

quency parameter in this case was found to be

"s2"V/2p(1-I-1')/E=2.37, whereas for four sub-
divisions the value found was 3.52.

In reference 5.7 improved accuracy results were

<_

d
¢e

w

d
o_

bJ

d
u_

¢_Sz,v_(I + v)/E= 222

w

I

o ! 2 3
4 4

u_s2 %/_p(I + _,)/E = 2.05

w

6 6 6 6 6

_s2,v/_(l+_)/E = 1.94

w

7 I s

FrGURE 5.9.--Lowest axisymmetric frequency parameters
and mode shapes for a complete conical shell having a
fixed vertex and u--w---M, =0 at the base. (After ref.
5.7)

FmUR_. 5.10.--Third axisymmetric frequency parameter
and mode shape for a complete conical shell having a
fixed vertex and u =w-_M, =0 at the base. (After ref.
5.7)

also obtained using second approximation finite
difference formulas; e.g.,

W'= 1
1_(- W_+_+SW_+_

-8W,_,-}-W__2) (5.24)

i
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A six subdivision solution for the problem

described above was obtained using this ap-

proach. The resulting frequency parameter and

mode shape is shown in figure 5.11, and can be

ws2 .v/2-p(l + v)/E : 2.05

w

__ _;,,-.,,.
6

FIGURE 5.11.--Lowest frequency parameter and mode

shape from a second approximation difference method.

(After ref. 5.7)

u w (_szJp(l+_)/E =2.16

51/ ,z i

8 S 8

SHELLS 341

compared with figure 5.9. Some results obtained

by this improved method for shells having other

s2/h ratios and semivertex angles a are displayed
in figure 5.12. As pointed out in reference 5.7

the free vibration mode shapes differ sharply from

the deflection curves of the same shells loaded by

uniform static pressure, and that the frequency
parameters approach the true values from either

above or below as more subdivisions are used,
depending upon s2/h and a.

Miller and Hart (ref. 5.15) obtained results for

a particular conical shell having a=15°40 ',

h=0.0983 in., and s2=36.4 in. as a limiting case
of their studies of eigenvalue densities for SD-SD

truncated conical shells. Constant values of the

frequency parameter £4=_s2V/p-_ are plotted

in figure 5.13, where m_'s_/(s2-sl) and n/sin
are the nondimensional meridional and circum-

ferential wave numbers used as coordinates. For

further discussion of the basis for this figure see

section 5.3.3. In particular note that the displace-

4O

l

7"

<

co

u w wsz V/_(l + v)/E :0.66

a= 60 °

$2_

- 400

, 8 8

5o

2o

Z

(usz .V'/_(I + v)/E :O.B4

a = 60 °

S_h"- = 30

I

I 2 3 4 5 6 7 I s
s 8 8 8 8 s

FIGURE 5.12.--Lowest axisymmetric frequency parame-

ters and mode shapes for complete conical shells having

fixed vertices and u=w=M,=O at the base. (After
ref. 5.7)

io

o
o

a = 15°40 '

h = 00983"

s z = 56.4"

S I = 0.0 II

I0
m/rs 2

=__
kl $2-si

2O

FIGURE 5.13.--Frequency parameter curves in k-space

for a complete conical shell supported at its base by a

shear diaphragm. (After ref. 5.15)
J,,
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ment functions used in reference 5.15 satisfy SD

conditions at the vertex and only approximate
the free vertex conditions (5.12).

5.2.3 Free Base

The boundary conditions for a complete conical

shell having a free base are (see figs. 5.1 and 5.2)

N_ =Sso= V_ =Ma=O at s=s2 (5.25)

where V, is the Kelvin-Kirchhoff shear defined by

V. =Q.-_ 1 OM.o (5.26)
ssina 08

and S. is the shear resultant given by

S_0=N,q M_o
s tan a (5.27)

(see sec. 1.8).

Dreher and Leissa (refs. 5.11 and 5.12) used

the exact solution procedure described in section

5.2 involving expansion of the displacements in

TABLE 5.5.--Frequency Parameters _2 = _r22p/E ,for the Axisymmetric

(n=O) Modes of a Completely Free Conical Shell; v =0.3

t

0.1 813.785

.2 408.501

.4 205.859

.6 138.310

.8 104.535

1 84.269

2 43.733

4 23.453

6 16.682

8 13.290

10 11.248

20 7.125

40 4.977

60 4.200

80 3.777

100 3.501

200 2.845
400 " 2.392

600 2.191

800 2.071

1000 1.989

2000 1.779

4000 1.623

6000 1.550

8000 1.505

i0000 1.472

20000 1.387

40000 1.320

60000 1.287

80000 1.266

100000

Mode number

1.251

14787.194

7397.796

3703.096

2471.529

1855.744

1486.273

747.328

377.846

254.677

193.087

156f127

82.170

45.092

32.642

26.351

22.526

14.548

10.012

8.232

7.230

6.571

5.022

3.988

3.541

3.276

3_094

2.637

2.300

2.143

2.046

1.977

77014.656

38514.141

19263.882

12847.129

9638.752

7713.725

3863.671

1938.639

1298.957

976.113

783.604

398.565

205.989

141.742

109.574

90.235

51.256

31.053

23.824

19.953

13.487

11.965

8.570

7.193

6.407

5.883

4.623

3.752

3.366

3.134

2.973 I

245938.408

122978.496

61498.539

41O05.220

30758.560

24610.564

12314.571

6166.572

4117.236

2093.566

2477.763

1248.144

633.302

428.323

325.807

264.274

141.008

78.799

57.542

46.573

39.769

25.113

16.603

13.319

11.500

10.316

7.569

5.776

5.013

4.565

4.260

603381.938

301702.750

150863.156

100583.293

75443.360

60359.400

30i91.481

15107.519

10079.530

7565 534

6056._36

3040.331

1531.908

1029.080

777.649

626.776

324.899

173.552

122.677

96.908

81.197

48.362

30.100

23.292

19.607

17.250

11.941

8.631

627287.719

313658.117

209114.918

156843.316

125480.355

62754.434

31391.471

20937.150

15709.988

12573.690

6301.089

3164.774

2119.322

1596.585

1282.932

655.539

341.557

236.576

183.812

151.925

86.607

51.501

38.741

31.950

27.663

18.229

12.567

582028.453

388030.082

291030.922

232831.467

116432.463

58232.963

38833.127

29133.212

23313.259

11673.353

5853.390

3913.392

2943.385

2361.374

1197.288

615.042

420.724

323.351

264.738

146.044

83.863

61.718

50.073

42.795

27.062

17.907

993962.414

662656.211

497000.527

397608.574

198823.529

99430.900

68300.108

49734.642

39795.429

19916.909

9977.646

6664.550

5007.999

4014.063

2026.134

1032.024

700.479

534.541

434.827

234.113

130.802

94.626

75.781

64.090

39.161
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terms of power series to study the axisymmeiric

(n=O) free vibrations. The Donnell-Mushtari

shell theory was used. Frequency parameters

_=_2r2_p/E were obtained for the first eight

axisymmetric modes for v =0.3 and over a wide

range of the stiffness parameter

K = 12(1 -- ,,2) (r2/h) Vtan 4 a

Numerical results are given in table 5.5 and

figure 5.14 in the case where the vertex is free.
Bordoni (ref. 5.16) made experimental meas-

urement of vibration frequencies on conical shells

made of paper, as in the case of loudspeaker

diaphragms. The shells were made with various

types of seams, as shown in figure 5.15, in order
to consider the asymmetry of the vibration modes

due to the lap joint seams. One set of experiments
was conducted to determine the effect of apex

angle a upon the frequencies, keeping the shell
thickness h and base radius R2 constant. The

results are summarized by figure 5.16; i.e., it was

found that the frequencies did not vary with the

I FREE EDGE

104

w

I03

I I I

i0 -I i0 0 I01 I0 2 I0 3 I0 4

K=_ 2

Ion 4 a

apex angle. The implication of this statement is

that the complete conical shell having a fixed

vertex and a free base undergoes purely inexten-
siGnal motion and behaves essentially like a free

circular plate. This is contrary to the experience

of McLaehlan (ref. 5.17) who found thefrequeney

of a certain cone to be 5.1 times greater than that

of a corresponding disk. Bordoni also found that

the shell frequencies were proportional to the

thickness h and the ratio (E/p) u2, and were

C C

FmvaE 5.15.--Different types of seams. (After ref.

Q

Q
5.16)
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FXGUR_. 5.14.--Frequency parameter _ versus stiffness

parameter K for the axisymmetric (n =0) modes of a

completely free conical shell. (After ref. 5.12)

FIGURE 5.16.--Eigenfrequencies of paper cones of same

radius and thickness, for different apex angles; n--

number of nodal diameters. (After ref. 5.16)
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inversely proportional to the square of the base
radius.

The free vibration of a complete conical shell

having a free base was also investigated in refer-
ences 5.3 and 5.18.

5.3 FRUSTUM OF A CONE

Consider next the case where the conical shell

has two boundaries located at s = Sl and s = s2, the

associated radii of the bounding circles being R1

and R2, respectively (see fig. 5.1). In the case of

circular cylindrical shells (see sec. 2.4), 136 com-

bi.nations of "simple" boundary conditions yield-

ing distinct problems exist. However, because for

conical shells there is symmetry with respect to
the axial mid-plane (s=(sl+s2)/2), there exist

(16) 3= 256 distinct types of problems. As in the

case of circular cylindrical shells, most of the

results have been obtained for the nine types

arising when each edge is either clamped, sup-
ported by a shear diaphragm, or free.

5.3.1 Both Ends Clamped

The boundary conditions for the both ends

clamped problem are given by (see fig. 5.1)

Ow

u=v=w Os 0 at S=Sl, S2 (5.28)

z

Garnet, Goldberg, and Salerno (ref. 5.19) con-

sidered the axisymmetric motions of a clamped-
clamped conical shell and showed that, as in the

case of a circular cylindrical shell (see sec. 2.2)

the torsional modes uncouple from the bending
modes. The Novozhilov (see chapter 1) shell
equations were used and the torsional oscillations

were examined in detail. It was shown that the

frequency parameters are the roots of the char-

acteristic equation

Jl(_l) Yl(n_l) = Jl(n_l) YI(e_) (5.29)

where _21= coslp/G = 2oJsl (1 _- _,)p/E

= s,/sl = R2/R1

J1 = Bessel function of the first kind

Y1 = Bessel function of the second kind

Note that _ does not depend upon the semivertex

angle a. The first five roots of equation (5.29) are

reproduced in table 5.6 for values of n from 1 to

50. The mode shapes associated with the first

three frequencies for the case n = 10 are shown in

figure 5.17, where v/sin a is plotted to show the

variation of the displacement with s/s_. The

torsional modes of a clamped-clamped conical
shell were also studied in reference 5.20 where the

effects of shear deformation and rotary inertia

were included (see sec. 5.9.2).

The meridional axisymmetric modes of

clamped-clamped conical shells were investigated
by Keefe (ref. 5.21). It was assumed that dur-

ing meridional motion the cross sections of

the cone remain plane and that motion occurs

only in the meridional direction s; i.e., w=O.

This, of course, is an approximation. The actual

motion would require coupling between u and

w displacements. The following characteristic
equation was derived:

J0(v_2) Y0(f_2) = J0(_2) Y0(,_) (5.30)

where _ = s2/sl = R2/R1

as before, and

>._,

O'

-2
MODE ..... _ --;_\ _,//3rd

\ i
/

\./"
I I I I I I

Fmua_. 5.17.--Torsional mode shapes of a clamped-

clamped conical shell. (Mter ref. 5.19)
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1.5
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TABLE 5.6.--First Five Roots of Equation (5.29) for the Axisymmetric

Torsional Vibrations of a Clamped-Clamped Conical Shell

6

8

10

12

14

16

18

2o

25

3o

35

4o

45

5o

First root

3.1416

3.1427

3.1455

3. 1498

3. 1550

3. 1609

3. 1675

Second root

6.2832

6.2837

6.2852

6.2873

6.2900

6.2931

6.2965

1.8 3.182 6.304

3.197

3.235

3.271

3.305

3.336

3.389

3.432

3.498

3.547

3.583

3.611

3.634

3.652

3.667

2.0

2.5

3.0

3.5

4.0

3.696
3.717

3.732

3.743

3.752
3.760

6.312

6.335

6.357

6.381

6.403

6.445

6.482

6.546

6.598

6.639

6.674

6.704

6.728

6.749

t

6.790

6.820

6.844

6.861

6.875

6.887

Third root

9.4248

9.4251

9.4261

9.4275

9.4293
9.4314

9.4337

9.439

9.444

9.460

9.476

9.493

9.509

9. 541

9.572

9.626

9.673
9.714

9.749

9.780

9.806

9.830

9.88

9.91

9.94

9.96

9.98
9.99

Fourth root

12.5664

12.5666

12.5674

12.5684

12.5698

12.5713

12.5731

12.577

12.581

12.593

12.605

12.619

12.631

12.657

12.682

12.728

12.770

12.807

12.840

12.870

12.896

12.920

12.97

13.01

13.04

13.06

13.09

13.10

• Fifth root

15.708(

15.7082

15.7088

15.7096

15.7107

15.7119

15.7133

15.716

15.720

15.729

15.739

15.750

15.760

15.782

15.802

15.842

15.879

15.913

15.943

15.971

15.997

16.020

16.07

16.11

16.14

16.17

16.19

16.21

345

l

r

(see fig. 5.1). The first four roots of equation

(5.30) are plotted versus the ratio RI/R2 in

figure 5.18.

Wheeler and Shulman (ref. 5.22) used the

Donnell-Mushtari theory along with the Galer-

kin procedure to obtain approximate solutions

for the clamped-clamped conical shell. Vibrating

beam functions (see sec. 2.4) were used as trial_

functions for the displacements. Numerical

results were produced for a shell having the fol-

lowing parameters: _ = 10 ° and R/h= 30, where

/_ is the average radius (i.e., _= (Rl+R2)/2).

These are shown in figure 5.19 for n = 6. In this

figure the frequency parameter _/_V'p(1--_)/E

is plotted versus the length ratio 1/R.

The free vibrations of a clamped-clamped con-

ical shell were also discussed in references 5.18,
5.23, 5.24, and 5.25.

5.3.2 Clamped-Shear Diaphragm

The boundary conditions for this problem are:

at the clamped edge (s=sl),

Ow

u=v=w=--=O (5.31)
Os

L,.
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FIGURE 5.18.--Frequency parameters for the axisym-

metric meridional motion of a clamped-clamped conical

shell. (After ref. 5.21)
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FIGUR_ 5.19.--Frequency Parameters for clamped-

clamped conical shells; a=10 °, R/h=30. (After ref.

5.22)

and at the edge supported by a shear diaphragm
(s=82),

N, =v=w=Ms=O (5.32)

This assumes that the smaller radius is clamped

and the larger one is supported by shear dia-

phragms. The opposite set of boundary conditions

(i.e., SD-clamped) is a distinct class of problems.

The only known work dealing with this prob-

lem is that of Saunders, Wisniewski, and Paslay

(ref. 5.26) which used Love's equations and the

Ritz method to study the case when the smaller

radius R1 is clamped and the larger one R2 is

supported by a shear diaphragm. A solution
function for w was chosen as

w = CI[X3- (2Xl+X2)x2
+Xl(Xl+ 2X_)X-Xl2X_] cos nO

-[- C2[x 4- (3x12-_2xix2_-x22)x 2

+2x_(xiWx2) 2x

--XlX22(2xl+x2)] cos ne (5.33)

where x is the axial coordinate, as shown in

figure 5.2, and Xl and x2 are the boundary values

of x at the radii R= R_ and R2, respectively.

This choice of w satisfies the geometric boundary

conditions involving w in equations (5.31) and

(5.32). The remaining displacements u and v are
chosen so that the meridional and circumferential

strains are zero. The resulting frequency equa-

tion is quite complicated (although reproduced

in ref. 5.26). Numerical results were given
for a shell having a=14°33 ', x1=16.57 in.,

x2=25.63 in., h=0.50 in., and the material

properties of annealed copper. Frequencies (cps)

2200

2O00

_800

1600

1400

a_ 1200

1(300

--//
I I I I I

2 5 4 5 6
n

FIGURE 5.20.--Cyclic frequencies for a clamped-SD

shell; dimensions in text. (After ref. 5.26)
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are shown in figure 5.20 for various numbers of
circumferential waves n.

Unlike the case of a clamped-SD circular

cylindrical shell (see sec. 2.4.2), no information

can be gleaned from the higher modes of a

clamped-clamped shell. Nodal circles (i.e., cir-

cles having the conditions of equation (5.32)) do
not exist for the conical shell because of the lack

of symmetry with respect to the plane

Xl_--X 2

2

5.3.3 Both Ends Supported by Shear Diaphragms

The boundary conditions for this problem are

N, = v = w = M, = 0 at s = sl, s_ (5.34)

Assuming solutions for the displacements in the

form of equations (5.14), the boundary condi-

tions can be satisfied by various choices of us,
v_, and w,, while the equations of motion can be

approximated by, for example, the Ritz or Galer-

kin procedures (both procedures are equivalent

in this problem if the un, vn, w, satisfy all the

boundary conditions). Numerous authors follow

procedures of this type to obtain approximate

solutions. In such ca_es, the frequency param-

eters obtained are Uiper bounds on the true
frequency parameters.

Lindholm and Hu (refs. 5.27 ancL 5.28) did an

extensive study of the problem. A set of shell

equations derived by Hu (ref. 5.29) was used

along with the Gaierkin procedure. The shell
equations included the effects of shear deforma-

tion and rotary inertia in the meridionai direction,
but neglected these effects in the circumferential

direction. The resulting theory is supposed to be

particularly applicable to short shells and small

circumferential wave numbers (ref. 5.29) and has

the interesting feature of requiring only an eighth

order set of equations of motion, rather than a
tenth order set as in conventional shear deforma-

tion theory. Although shear deformation and

rotary inertia are partially accounted for, the
numerical results obtained in references 5.27 and

5.28 will be discussed because: (1) the theory is Of

the eighth order, (2) the shells used as numerical

examples are not particularly short, nor is the

study limited to small n, and (3) this study serves

as a basis for comparison with other authors later.

In references 5.27 and 5.28 the displacement
components are assumed to take the form

MI

u, = _ Am sin m___2_L (5.35a)
m=l

M2

v_ = _ Bm sin m_____L (5.35b)
m=l

Ms

w_ = _ C_ sin mTr___L (5.35c)
m=l

for use in equations (5.14), where _ and L are

dimensionless lengths defined by

i
L = log (82//81))

In addition the rotation of the normal to the

middle surface in the direction of s can be pre-
scribed independently as

n=l
M4

+ Dm cos _ cos nO cos _t (5.37)

m_l

in the shell theory used.

Theoretical and experimental results were
obtained in references 5.27 and 5.28 for four

models made of steel shimstock and having
the geometric parameters shown in table 5.7.

Poisson's ratio was taken as 0.3. The upper limits

of the summations used in equations (5.35) and

TABLE 5.7.--Geometric Parameters for Four
Conical Shells

Model
number degrees

14.2

30.2

45.1

60.5

82

81

2.23

2.27

2.25

2.25

h R2,
R2 in.

0.00166 6.07
.00127 7.95
.00112 8.96
.00101 10.00

Am

- v

'\

"%
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(5.36) depend upon the accuracy required, but

typically M1=4, M2=4, M3=5, M4=6, which
yields a characteristic determinant of order 21.

For large values of n (24 to 28), a determinant of

order 28 was required.
Numerical results for the four shell models

described in table 5.7 are depicted in figures 5.21

through 5.24. The divergence between experiment
and theory is ascribed in references 5.27 and 5.28

to the difficulty in duplicating the theoretical

boundary conditions and due to the finite trunca-

tions of the displacement function series. In

figure 5.23 (a=45.1 °) two theoretical curves are

shown. The dashed curve is for a shell having

added meridional constraint (u = 0) at the bound-

aries. These figures show that for each axial wave

number m the minimum frequency occurs for

some relatively large value of n (> 5). This was

also seen previously in chapter 2 for circular
cylindrical shells.

Mode shapes (w displacements) for the four

shell models are depicted in figures 5.25 through

Am
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FIGURE 5.22.--Frequencies
Of an SD-SD conical
shell; model 2. (After ref.
5.27)
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5.28. The most striking feature of the axial mode

shape is its strong dependence on the circum-

ferential wave number n. This is seen in figures

5.26, 5.27(a), 5.27(b), and 5.28 for re=l, and

figure 5.27(c) for m = 2. In each case the position

of maximum displacement (antinode) shifts to-

wards the large end of the shell (R=R2) ash

increases. The suppression of normal displace-
ment near the small end of the conical shell at

large values of n is due to the short distance

between nodal meridians in this region. The

curvatures and stresses in this region, however,
are not necessarily small.

Observe that for a given mode (n=8, m= 1)
the maximum theoretical displacement moves in

the direction of one end as a changes (as shown in

figures 5.25, 5.26, 5.27(a), and 5.28). The negative
deflections indicated for some of the theoretical

curves of figures 5.25 through 5.28 are an indica-

tion of numerical inaccuracy due to a lack of

terms in the series for w (eq. (5.35c)). Finally,

note that the experimental mode shapes found in
T"
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y.,

the investigations of references 5.27 and 5.28

always consisted of parallel circles and equispaced

meridians as predicted by the theory.

The influence of apex angle a upon the fre-

quency parameter was also investigated theoreti-

cally in references 5.27 and 5.28. The full range
of a from 0 ° (circular cylindrical shell) to 90 °

(circular fiat plate) was considered, as shown in

figure 5.29. At the extreme angles of 0 ° and 90 °,
_* increases monotonically with n, while at

intermediate angles the r61ationship is more

complicated.
Herrman and Mirsky (ref. 5.30) also used the

Ritz method to analyze the free vibrations of

SD-SD conical shells. Displacement functions of

the form

u_=A_sin( _c°s_)l

v.=B. cos (_s cTs _ ) (5.38)

(,_ cos _)wn=C, cos - l

were assumed (see fig. 5.2), where 5 is the meridi-

ona] coordinate having its origin at s = (sl+s_)/2

FIGURE 5.29.--Theoretical frequency
parameter _* versus _ for an SD-SD
conical shell. (After ref. 5.27)
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(i.e., beginning at the midpoint of the generator).

The resulting characteristic determinant for the

frequency parameters is given in detail in

reference 5.30, but it is too lengthy to bear

repetition here.
Numerical results were obtained in reference

5.30 for three semivertex angles -a=5 °, 10 °,
and 15 ° . Two thickness to mean radius ratios

(2h/(RI+R2)) were considered: 1/30 and 1/100.

Other parameters were varied over the intervals

0<n<6 and I<_2I/(RI+R2)<_IO. Frequency

data were presented as the ratio of the frequency

of a conical shell _ to that of the circular cylin-

drical shell _0 having the same length l, thickness

h, and mean radius [_= (R1+R2)/2. Frequency

ratios for the three axisymmetrie (n=0) modes

are depicted in figures 5.30 through 5.32. The

frequencies are independent of h/R. For short

shells the frequency ratio is decreased to values

less than unity as a increases, whereas unity is

exceeded for long shells and is strongly dependent

upon a. The same type of dependence is seen in

the curves of figure 5.33, which is for the lowest

frequency of the n= 1 ("beam-like") modes4

For the lowest frequencies of the n = 2 modes,

_/o_0 becomes dependent upon the h/R ratio,

as seen in figure 5.34. A thinner shell is influ-

enced more strongly by a than a thicker shell.

Figure 3.35 illustrates the influence of n on _/_0

as a function of a for the lowest mode. Here,

1/[_=7 and h/R=l/lO0. Finally, figure 5.36

shows the influence of a upon the three modes
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FIGURE 5.30.--Ratio of frequency of conical to cylindrical

shell; clamped-clamped BC; n = 0, lowest non-torsional

frequency. (After ref. 5.30)

FIGURE 5.32.--Ratio of frequency of conical to cylindrical

shell; clamped-clamped BC; n = 0, higher non-torsional

frequency. (After ref. 5.30)
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for representative values of n=3 and a= 10 °.

The influence is much stronger for the lowest

mode and weakest for the highest mode.

Weingarten (ref. 5.31) also used the Galerkin

method with the Donnell-Mushtari shell equa-
tions and assumed displacement functions in

the form of power series. Numerical results were

evaluated and compared with experiment for two

shells made of 1020 steel and having thicknesses

of 0.020 in. and 0.040 in. The remaining dimen-
sions were: a=20 °, Rl=2 in., s_-sl=8-3/8 in.

Theoretical and experimental frequencies for the
two shell thicknesses and for 1, 2, and 3 axial

half-waves m are exhibited in figures 5.37 and
5.38, respectively. In these figures theoretical

results are also given for an "equivalent" circular
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FIGURE 5.37.--Theoretical and experimental frequencies

for an SD-SD conical shell; h=0.020 in. (After ref.

5.31)
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FIGURE 5.39.--Mode shapes of an SD-SD conical
shell; h=0.040 in. (After ref. 5.31)

cylindrical shell; these frequencies are consider-

ably in error as n becomes large. Typical mode

shapes for the normalized deflection w are shown

in figure 5.39 for the thicker shell (h = 0.020 in.),

where the shift of maximum amplitude towards

the large end of the shell as n increases is clearly
seen.

Grigolyuk (ref. 5.32) also used the Ritz

method with displacement functions of the form

u_ : AnR 2 cos
82--81

v_ = B,R _ sin mlr( s -- sl) (5.39)
82 --81

"w_ = CnR 2 sin mTr(s-- sl)
82 --81

(see figs. 5.1 and 5.2). The resulting frequency

equation is given in detail in reference 5.32 but,
because of its length it will not be repeated here.
Frequency parameters

_3 = _o(s2-- sl)_P(l_ v_

for the fundamental (lowest) modes of vibration
are listed in table 5.8 for various values of a and

h/R2. Table 5.9 lists the circumferential wave

numbers n at which the minimum frequencies of
table 5.8 occur. All results are for m=l and

v= 0.3. Grigolyuk (ref. 5.32) also suggested that

SD-SD shells having small conicity (a_< 15 °) can

be adequately represented for purposes of calcu-

lation by circular cylindrical shells having radii

equal to the average radius (i.e., R = (R1+R2)/2)
of the conical shells. However, as was seen earlier

(figs. 5.30 through 5.36), this is not necessarily
the case.

Godzevich (ref. 5.33) used the Donnell-Mush-

tari shell equations with the Galerkin method

and displacement functions of the type given by

equations (5.39) with R 2 replaced by unity. An
explicit equation for frequency parameters of
SD-SD conical shells was derived:

oo2822p CI

E C2 (5.40)

where

h2 { 1C, = 12822( 1 _ v22) T_am4(1 --_15)

/ 2n 2 \r 1

+ a-,_l +si--_J[_a.,(l -- f_13)

---_-1 (1--_')]2am

( n4 4n2 _/2+_(1--#,) si_7,x si_-_x/j

am4 El

3 i( 1 _#12 ) (5.41a)
8a.,

1 4 5 2n2
C2 = {_-_a., (1-#1) +a,,,(i+_)

1 3

+I- 1 / n 4 4n 2
5 ( -#_)_sin7_ si_-_/}

-HI )-

+8-ama(1--_l) ] (5.41b)

and where BI = Sl/S_ and a,, =m*rs2/(s2-sl).

Miller and Hart (ief. 5.15) studied the density

of eigenvalues of the SD-SD conical shell. Eigen-

value density is essentially the density of the

frequencies with respect to frequency and is

therefore an indication of the spacing of the fre-

quencies in the frequency spectrum. Equations

r

iAk a_
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t 1
I

t 1

* t TABLE 5.8.--Lowest Frequency Parameters to(s2-- sl) %/p(1 -- _2) /E for SD-SD Conical Shells; m = 1, _ = 0.3

/_= 90 -a, h/R2
degrees

O. 03 O. 02 O. 015 " O. O1 O. 009 O. 008 O. 007 O. 006 O. 005 O. 004 O. 003 O. 002 O. 001 O. 0008

t_ 3 ................. ... O. 102

5 ............ 0.141 0.133 .126

10 .... 0.281 0.242 .193 .184 .175
r 1 15 0.419 .335 .288 .236 .223 .212

20 .479 .381 .355 .287 .267 .249

t 25 •519 .432 •369 .311 .293 .275
F°'I 30 .562 .467 .404 .337 .319 .302

35 .607 .499 .438 .362 .344 .328

40 .652 .529 .469 .386 .368 .351
r _ 45 .693 .559 .498 .408 .390 .372

50 .729 .586 .522 .430 .409 .390

r•_ 55 .757 .614 .541 .452 .429 .406
60 .776 .644 .582 .479 .451 .424

65 .789 .688 .582 .493 .478 .450

_ _ 70 .809 .695 •627 .504 .482 .462
75 .877 .701 .628 .548 .515 .483

80 .891 .810 .672 .553 .533 .514

1 85 •963 •779 .703 •643 .634 .625

87 ..... 988 .818 .671 .645 .622

0.0931

.116

.162

.201

.231

.258

.286

.312

.335

.355

.372

.386

.399

.418

.444

.453

.434

.589

.600

0.0897

.106

.149

.186

.214

.244

.271

.288

.307

.326

.345

.366

.376

.388

.414

.425

.480

.537

.580

0.0769

.0967

.138

.169

.199

.223

.244

.264

•282

.299

.315

.331

.350

.361

.376

.400

.432

.488

.564

0•0677

.0877

.124

.154

.178

.200

.222

.242

.259

.274

.288

.299

.312

.331

.341

.367

.387

•445
.550

0.0580
•0748

.108

.134

.157

.177

•193

.209

•224

•238

.251

.264

.279

.288

.307

.319

.349

.408

.472

O. 0474

•0623

•0895

.112

• 130

• 148

• 161

.174

.187

•198

.210

.223

.231

•243

.256

.276

•298

•358

.4 O0

0•0340

.0448

.0656

.0814

.0950

.107

.119

.128

.138

.147

.156

.165

.172

.182

.194

.207

.229

.283

.322

0.0311

.0408

.0590

.0736

.0862

.0968

.107

.116

.125

.133
.141

.149

.157

.166

.176

.190

.211

.256

.297
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(5.40) and (5.41) developed by Godzevich and

discussed above served as one equation deter-

mining a "/_-space" for the eigenvalues. The two

coordinates chosen for the k-space were ki and ks,
defined as

_DT82 /

ki=an= -
82 --81

(5.42)

ks =___n /sin _

That is, ki and ks are dimensionless wave num-

bers in the s and 0 directions. By using the
nondimensional frequency parameter

w2pS2 2

a4'=--_ (5.43)

equation (5.40) can be written in terms of the

parameters ki, ks, and £4. Curves for constant

values of £4 in terms of the kl, ks coordinate

=20

system for a=16 °, h=0.0983 in., s2=36.4 in.,

and si = 7.8 in. are shown in figure 5.40.

In reference 5.15 comparisons were also made

between the theoretical frequencies arising from

equations (5.40) and (5.41) and experimental
frequencies given earlier in this section. Com-

parisons with Weingarten's (ref. 5.31) data are

seen in figures 5.41 and 5.42. Comparisons with

the results of Lindholm and Hu (refs. 5.27 and
5.28) are seen in figures 5.43 and 5.44. Note that

s2-sl was taken as 8.00 in.-for figures 5.41 and

5.42 in reference 5.15, whereas s2-sl was given

as 8.375 in. in reference 5.31, as noted previously
in this section.

Experimental results for SD-SD conical shells

were also given in references 5.34 and 5.35.

-- THFJ3f_ETI_L (GODZEVICH FORMULA)

----0---- EXPERIMENTAL(WEINGARTEN) _

m:3

m_ . o "_/

\_, _ _c _!

m:l \\ _ ....c_'_°_ _ _

2 6 I I 14 16 18 20

2O

:1.0

O0 I0 20

rn_s 2

kl= s2-51

FIGURE 5.40.--Frequency parameter curves in k-space

for an SD-SD conical shell. (After ref. 5.15)

FIGURE 5.41.--Comparmon of theoretical and experi-

mental frequencies for an SD-SD conical shell; a = 20 °,

s_=14.14 in., s_=6.14 in., h=0.040 in., 1020 steel.

(After ref. 5.15)

-- THEORETICAL (GOOZEVICH FORMULA)

--O---- EXPERIMENTAL (WEINGARTEN)

m:3

f [ I I I I q I I [ I I I I I t f I I I

2 4 6 8 I0 12 14 16 18 20

FIGURE 5.42.--Comparison of theoretical and experi-

mental frequencies for an SD-SD conical shell; a = 20 °,

s==14.14 in., s1=6.14 in., h=0.020 in., 1020 steel.

(After ref. 5.15)
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FIGURE 5.43.--Comparison of theoretical and experi-

mentaF frequencies for an SD-SD conical shell; a=

30.2 °, s_--- 15.7 in., s1=6.94 in., h=0.01 in., steel shim

stock. (After ref. 5.15)
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FmURE 5.44.--Comparison of theoretical and experi-

mental frequencies for an SD-SD conical shell; _=

45.1 °, s2--12.7 in., s1=5.61 in., h--0.01 in., steel shim

stock. (After ref. 5.15)

Axisymmetric modes were investigated by

Hartung and Loden (ref. 5.24) using a finite

element representation. Extensive numerical

values of frequency parameters were plotted for

a =5 °, 45 °, 60 °, and 84 ° with [_/h=20 and 500

(it = (Rl+ R2) /2).

Axisymmetric modes were also examined in
references 5.6 and 5.36. Finite differences were

used in reference 5.25. Considerable information

on the free vibrations of SD-SD conical shells is

available in reference 5.37. Other works dealing

with this problem include references 5.3, 5.23,
and 5.38 through 5.52.

5.3.4 Clamped-Free

The case of a conical shell clamped at one end

and free at the other has received much treat-

ment in the literature because of its widespread

use in such practical designs as loudspeaker cones

(cf., ref. 5.17, 5.53, and 5.54). This practical

application also accounts for the fact that the

majority of the references deal with the instance

where the small end is the clamped one and the

large end is free. Assuming this case, the boundary
conditions are

(_w

u = v = w =-- = 0 at s = sl (5.44a)
Os

N, =Sso= V, = Ma =O at s=s2 (5.44b)

(see sec. 5.2.3 for elaboration on free edge bound-

ary conditions).

Dreher (ref. 5.11) used the exact solution

procedure described in section 5.2 involving

expansion of the displacements in terms of power

series to study the axisymmetric (n=O) free

vibrations. The Donnell-Mushtari shell theory

was used. Frequency parameters O2=_2r22p/E

were obtained for the first four axisymmetric

modes for v = 0.3 and over a wide range of the

stiffness parameter K = 12(1 - _2) (r2/h) 2/tan2 a.

Numerical results for s_/s2 =0.1, 0.2, 0.3, 0.4, and

0.5 are given in figure 5.45 (s =s_ is clamped, and

s = s_ is free). The lowest axisymmetric frequency

is given in figure 5.46 for O.lgs_/s2gO.8. Note

that for the choice of stiffness parameter K,

does not depend explicitly upon a. For compari-

son, results were also obtained in reference 5.11

using Kalnins' (ref. 5.14) numerical integration
scheme for shells of revolution. Differences

between the values of fi computed by the two

methods were all found to be less than 1 percent.

The power series method was also used by

Goldberg (ref. 5.55)for axisymmetric problems.

Numerical results were found for a particular

clamped-free shell having a=60 °, h=0.025 in.,
E = 150,000 psi, _ = 0.25, p = 3 X 10-5 in. see2/in. 4,

R1=2 in. (clamped), and R2=5 in. (free). The

first three frequencies and mode shapes obtained

are exhibited in figure 5.47 where the amplitudes

are normalized with respect to the free end merid-
ional displacement of the shell. These data were

also subsequently checked by a numerical integra-

tion method in references 5.56 and 5.57, yielding

frequencies of 1072, 1315, and 1611 cps, com-

pared with the frequencies of 1071, 1315, and
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1610 eps given in figure 5.47. Kalnins (ref. 5.14)

subsequently used his numerical integration

method to duplicate these frequencies within

0.1 percent accuracy. He also duplicated the

mode shapes for all practical purposes.

The meridional axisymmetric modes of

clamped-free shells having either the small or

large end clamped were investigated by Keefe

(ref. 5.21), resulting in the following character-

istic equation when the small end is fixed

J0(y_2) Yi(ft_) = Ji(122) Yo(_ft2) (5.45a)

and when the small end is free

Ji(_92) Y0(f_2) =50(92) YI(vft2) (5.455)

(see discussion in sec. 5.3.1). The first four roots

of equations (5.45a) and (5.45b) are plotted

versus the ratio R1/R2 in figures 5.48 and 5.49,

respectively.

The axisymmetric free vibrations of clamped-

free conical shells were also analyzed in references

5.24, 5.54, 5.58, 5.59, and 5.60.

The general modes of clamped-free shells were

investigated by Platus (refs.5.61, 5.62, and 5.63).

The procedure followed was similar to that of

Saunders, Wisniewski, and Paslay (ref. 5.26),

whereby the extensional (membrane) and inex-

tensional frequency parameters are determined

separately and are simply added to obtain an

approximation for the true frequency parameters;

i.e.,

_52 = (_5_)sq - (9_)x (5.46)

where _5 is defined by

o,
and (9_)_ and (95)r are the corresponding exten-

sional and inextensional frequency parameters,

respectively. This approximation is based upon

the postulate that the kinetic energy is approxi-

mately the same for the extensional and inex-

tensional cases (i.e., the mode shapes are

approximately the same). Hence, because the

total strain energy is the sum of the exten-

siGnal and inextensional components, Rayleigh's

Quotient yields equation (5.46).
The inextensional vibrations are characterized

by the condition that the middle surface strains

are zero; i.e.,

e, = ee= e,0 = ee, - 0 (5.48)

By choosing displacement functions u,, v,, and

w, for equations (5.14) in the form

al

#
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FIGURE 5.48.--Frequency parameters for the axisymmet-

ric meridional motion of a clamped-free (small end

clamped) conical shell. (After ref. 5.21)

13

12

ii

I0

9

8

L_ 7
6

I 5

3 4

3

2

I I I I I I I I I I
0.2 0.4 0.6 0.8 1.0

R,/R z

FIGURE 5.49.--Frequency parameters for the axisymmet-

ric meridional motion of a clamped-free (large end

clamped) conical shell. (After ref. 5.21)

7



364 VIBRATION OF SHELLS

R1 cos o_

Un=n( 1 sin 2 a_
\ ---#-/

R1 sin a cos a

---V-/

(5.49)

where xl is measured from the smaller end of the

shell as shown in figure 5.2, equations (5.48) are

satisfied, in addition to the clamped edge condi-

tion, w=0 at xl=0 (ref. 5.61). However, the

other three boundary conditions of the clamped
edge given in equations (5.44a) are not satisfied.

Using equations (5.49), and equating the maxi-

mum potential and kinetic energies gives for the

inextensional frequency (ref. 5.61)

where

n(n2-1)h F E Kll'12
¢°'-- 2-_ c_os_L 3p(i- .2) K2J (5.50)

sin _ a 2 2 sin 2 a

+ (K3 _- 1) -_ (1 -- _)K3 _- 1) sin 2 _
2K32 n2K32 (5.51a)

1 ( n_ tanSa )K2=_(K32--1) l+co--_a-_ n2 2 tan s a

2 3 sin s a n s _.
--_(K3-1)(1---7)(l+co---_a--tan a)

1 K 4 1 /1 sins °t\s/ n2'- --7)
(5.51b)

l

K3 = 1%_-_ tan a (5.51c)

As shown in equation (5.50) the inextensional

frequencies are directly proportional to the shell

thickness and approximately inversely propor-
tional to the square of the radius.

Equation (5.50) was evaluated in reference

5.61 for a=0 ° (cylinder), 15 °, and 30 ° and for

l/Rl=2, 4, and 6. The results are presented in
figure 5.50 in terms of the nondimensional fre-

quency parameter _82, where

(5.52)

The extensional (membrane) vibrations were

analyzed in reference 5.61 by assuming poly-
nomial forms for the displacements in terms of

the coordinate xl,

N+I

i=1

N

v. = _Bix i (5.53)

i=1

N

= n>_ Cix iWn

i=2

to use in equations (5.14), where the A_, B_, and

C_ are undetermined coefficients to be selected by

the Ritz procedure. As shown in figure 5.51 all
inertia terms were retained and results were

obtained to complement the previously given

inextensional results. The dependence of fre-
quency upon the number of terms N retained in

each of the polynomials (5.53) is exhibited in
table 5.10. The value of N was taken at six for

the results shown in figures 5.51. The coefficients

of the characteristic determinant resulting from
taking N = 6 are given in detail in reference 5.63.

In reference 5.61 vibration frequencies were

also obtained experimentally for three clamped-

free conical shells and compared with results
derived from the superposition of extensional and

inextensional theoretical frequencies, as in equa-

tion (5.46). These comparisons are made in figure
5.52. Figure 5.52(a) and (b) illustrate the effect

of shell thickness on the location of the minimum

frequency. Because only the shell thickness is

different between the two figures, the extensional
frequencies are the same, whereas the inexten-

sional frequencies are 60 percent lower for

h = 0.006 in. This shifts the minimum frequency
to a higher circumferential wave number n for
the thinner shell.

An earlier paper using a procedure similar to
that of references 5.61, 5.62, and 5.63 was written

by Saunders, Wisniewski, and Paslay (ref. 5.26).
However, in the latter reference the assumed
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TABLE 5.10.--Dependence of Frequency Parameter _214p(1-- _) /R12E Upon

Number of Terms (N) Retained in Displacement Polynomials (5.53)

1

RI

[0

12

12

12

N

0.31007

.30740

.30632

.30576

5.2357X10 -a

5.1130X10 -4

5.0854X10 -t

5.0587X10 -a

3.2163

3.1004

3.0518

3.0245

5.4981X10 -4

5.4271 ×10 -4

5.4093X10 -4

5.4001X10-4

5.2343

5.1006

5.0611

5.0275

5.5106X10 -4

5.4483X10 -4

5.4261X10 -4

5.4162X10 -4

_, degrees

2O

0.16353

.16202

.16138

.16105

3.4466X10 -4

3.2524X10 -4

3.2150X10 -4

3.1909X10 -4

1.2158

1.1118

1.0721

1.0533

4.2593X10 -4

3.2717X10 -4

3.1385X10 -4

3.1129×10 -4

2.9482

2.1900

1.9279

1.8105

7.4946X10 -4

3.9215X10-4

3.1483X10 -4

2.9396X10 -4

4O

0.054484

.053756

.053439

.053361

1.0327X10-

.31436

.27314

.25627

.24824

1.9230×10-

1.0826X10-

.92050

.61O74

.48824

.43014

5.6632X10-

2.1094X10-

1.2701X10-

?

-T

x,

mode shapes were chosen with less sophistication

and few numerical results were presented for

clamped-free shells.

The theoretical methods of references 5.61,

5.62_ and 5.63 were also compared with experi-

ment by Watkins and Ctary (refs. 5.64 and 5.65)

for clamped-free shells (small end clamped) hav-

ing a=3.2 °, 7.4 °, 14.0 °, and 24.0°; l/R_=3.0 (see

fig. 5.2); h=0.007 in.; and RI= 14 in. This com-

parison is seen in figure 5.53. Comparison with

theoretical results for an "equivalent" cir-

cular cylindrical shell (i.e., having a radius

[_=(Rl+R2)/2) is available in figure 5.54.

Observe here that the equivalent cylindrical shell

model is highly inaccurate except for very small

apex half-angles (i.e., a=3.2°).

Weingarten (ref. 5.31) made experimental

investigations of clamped-free conical shells hav-

ing either the large end or the small end clamped.

Frequencies for a steel shell having a=20 °,

s2-sl = 8.25 in., and h = 0.40 in. can be compared

between the two cases in table 5.11 for longitudi-

nal half-wave numbers m of i and 2, although the

radius at the small end B_ was apparently dif-

ferent in the two cases, according to reference

5.31. Comparing the two cases when either the

large end or the small end is clamped, the follow-
ing observations can be made from table 5.11:

(1) Clamping the large radius provides more

constraint (higher frequencies) than clamping the
small end.

(2) This difference becomes less important as
m increases.

An extensive numerical study of the clamped-

free (small end clamped) conical shell having an

JL£
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TABLE 5.11.--Experimental Frequencies for a

Clamped-free Conical Shell (dimensions given

in text)

m=l m=2

n

2

3

4

5

6

7

8

9

10

11

Large Small
radius radius

clamped a clamped b

421 ........

c459-623 272

Large Small
radius radius

clamped _ clamped b

2078 ........

878

1096

1287

1530

1829

2172

2551

342

487

667

873

1106

c 1376-1379

1681

1658

1814

2133

2415

2695

3005

3775

1328

1171

1533

1841

219_

FIGURE 5.53.--Comparison of theoretical and experi-

mental frequency parameters for a clamped-free

conical shell. (After ref. 5.64)

R1 =2.0 in.

b R1 =2.13 in.
Two values listed in reference 5.31.
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NUMBER OF CIRCUMFERENTIAL WAVES, n
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3£ !

74

I40
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FIGURE 5.54.--Comparison of calculated "equivalent

circular cylindrical shell" frequency parameters with

experiment for a clamped-free conical shell. (After ref.

5.64)

apex half-angle of _=60 °, sg.--sl=24.3 in.,

h=0.025 in., E=10X106 psi., _=0.315, and

p = 2.54 X 10-4 lb'sec2/in 4 was made by Adelman,

Catherines, and Walton (ref. 5.66) using the

finite element method. The meridional length
was divided into 10 finite shell elements. Mode

shapes for each of the three frequencies arising

for n=2 and m=2, 3, 4, 5, 6 are depicted in

figures 5.55, 5.56, and 5.57, respectively, where

the abscissa is normalized to (S-Sl)//(s2-81) and

the normalized amplitudes U/Umax, V/V .... and

w/wma,: are plotted.

The free vibrations of clamped-free conical

shells were also analyzed by the finite element
method in reference 5.67. The finite difference

method was used in references 5.25 and 5.68.

Various types of boundary conditions repre-

senting clamped-free edges, but differing slightly

from those of equations (5.44) are used in the

free vibration problem in reference 5.69. This

analysis will be discussed in section 5.3.7.

Other works dealing with the free vibrations

of clamped-free conical shells include references

5.22, 5.23, 5.53, 5.70, 5.71, and 5.72.

5.3.5 Shear Diaphragm-Free

The boundary conditions for a conical shell

supported by a shear diaphragm at the small end

(for example) and free at the large end are

N, = v = w = Ms = 0 at s = sl (5.54a)

N, = S_0 = V, = M_ = 0 at s = s2 (5.54b)

Little data exist in the literature dealing with

the free vibrations of SD-free conical shells.

This problem has received historical attention

in the development and the application of the

inextensional theory. Strutt (ref. 5.72) applied

Am
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Rayleigh's (ref. 5.73) inextensional theory to ob- ,o,o<

rain theoretical results. At the same time (1933),

Van Urk and Hut (ref. 5.74) conducted experi- sooc
ments in a conical shell having the same bound-

ary conditions. Federhofer (ref. 5.10) also 2_
analyzed the problem using the inextensional
theory. ,ooo

One of the principal difficulties with the inex-

tensional theory is that of the two restraint con- soo

ditions at the SD end, only w=0 is satisfied,
whereas v=O is not satisfied. This can cause

2O0

considerable error in results, particularly for
small circumferential wave numbers.

,oo
• The use of inextensional theory for part of the

analysis was demonstrated in section 5.3.4. Thus, so

equation (5.50) can be used directly for the
SD-free shell, particularly for large values of n.

Van Urk and Hut (ref. 5.74) conducted two 2o

sets of experiments. For both sets the outer

radius (R1=8.80 cm.) and the apex half-angle ,o
(a=57.5 °) were kept constant. In the first, set
the inner radius was fixed at R2 = 2.45 cm. and

frequencies were measured for shell thicknesses

of h--0.020, 0.0114, 0.0078, 0.0064, and 0.0042

cm. as shown by the dashed lines in figure 5.58.

Rj= 5.9 cm

R,:2 45cm.

//: // /

/ -- R_: 5 3cm.

--" CALCULATED

.... MEASURED

' ' _ ' ,' ,_ ,' ,' ,_ 'o _ _
n

FIGURE 5.59.--Frequencies for SD-free conical

shells (dimensions in text). (After ref. 5.74)

10.0G0

5O0O

20O0

KXX

5C_

v

20o

100

50

20

I0

h=O 020cm.

Ol_cm. O.O_f78cm.

_-- O.O064crn.

/ _" ,_._ _ O.O042crn.

I I I I I I I I I I I I
2 3 4 5 6 7 8 9 I0 II 12

CIRCUMFERENTIAL WAVE NUMBER.n

FIGURE 5.58.--Frequencies for SD-free conical

shells (dimensions in text). (After ref. 5.74)

The solid lines in figure 5.58 show the calculated

values of the frequency according to the inex-

tensional theory. In the second set of experi-
ments, h was kept at 0.0114 cm. and results were

obtained for shells having R_=O, 2.45, 3.9, and
5.3 cm. These are depicted in figure 5.59.

Weingarten and Gelman (ref. 5.69) used the
Sanders shell equations in finite difference form

and showed the variation in the longitudinal
mode shapes with n for the SD-free shell. The

change in normalized displacements u, v, and w

as n increases from 2 to 4 is seen in figure 5.60
for the case when the small end is free and the

large end is supported by a shear diaphragm.

The mode shapes for n= 2 essentially duplicate
the inextensional theory. The change in mode

shape for w for 1<n<10 is depicted in figure
5.61. Unfortunately, the dimensions of the shells

upon which figures 5.60 and 5.61 are based are
not given in reference 5.69. Note that a mode

shape is shown in figure 5.61 for n = 1, and that
it corresponds to m--2.

Free vibrations of SD-free conical shells are
also discussed in reference 5.31.

ml
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FIGURE 5.60.--Comparison of mode shapes for an

SD-free conical shell. (After ref. 5.69)
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FIGURE 5.61.--Normal displacement _node shapes

for an SD-free conical shell. (After ref. 5.69)

5.3.6 Free-Free

The boundary conditions for this case are

N, = S,0 = Ve = Me = 0 at s = Sl, s2 (5.55)

This problem has received long and care-
ful attention in the literature of shell vibra-

tions. Rayleigh (refs. 5.73 and 5.75) in 1881

demonstrated his inextensional shell theory on

this example. Strutt (ref. 5.72) in 1933 and

Federhofer (ref. 5.10) in 1938 also analyzed

this case with the inextensional theory. Sub-

sequent writers have used inextensional, mem-

brane, and bending theories to analyze this

problem, as will be seen below. The inextensional

theory of shells is particularly applicable for

this case because, as in the case of the cylindrical

shell, the middle surface of a conical shell having

both ends free is mathematically capable of

deforming inextensionally.

Hu, Gormley, and Lindholm (ref. 5.76) used

the inextensional displacement functions

un = A sin a cos a /
!

si. /
to define the longitudinal variation in equations

(5.14). The Ritz method was used to arrive at the

characteristic equation

(CllC22-- C122)a74- (Clld22--_-c22dll--2c12d12)_72

-t-(dlld22--d122)=O (5.57)

where _72 is the nondimensional frequency

parameter defined by

_2R22ph (n2+cos 2 a)
_72 = (5.58)

D n2(n 2-1) 2

D is the flexural rigidity (D =Eha/12(1 -- _2)), and

olrn (n2+cos2 a) JL \s /Jl

c12= 1 n2___C----_S-_a 1 k_2/ 3

=1[ 1_(_'_' ]

C22 4L ks2/ J (5.59)

dll='_ "Jr" _2 ..IL \S2/

82
d12 =-- -- 1

8i

d22 -- log s2
Sl

(see figs. 5.1 and 5.2 for the dimensions used

above).

Extensive tabular results were given in refer-

ence 5.76 for the two roots _2 (which are both

positive) arising from solving equation (5.57).

The parameters _v are repeated in table 5.12.

The frequency parameter _2_depends mainly upon

si/s2 and becomes independent of a and n for

large values of n. However, the inextensional

lain
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theory becomes highly inaccurate for large n.

The location of the nodal circle (i.e., where
w = 0) for a particular frequency parameter £7 is

given by (ref. 5.76)

/sin2 _ 1_(_2_2c12-d12_
(5.60)

Calculations for flee-free shells were also made

by Hu (ref. 5.29) by means of the membrane

theory. The Gaierkin procedure was used with

solution functions in terms of trigonometric

functions of s leading to an infinite determinant,

the elements of which are given in detail in
reference 5.29. Extensive results were obtained

with truncated determinants retaining 11 terms.

Figure 5.62 shows the dependency of the fre-

quency parameter £* =o_R_/p(1-- _2)/E upon

the_semivertex angle a for axisymmetric modes

(n = 0) and for s2/sl = 2.0. It was found that, for

> 15 ° the frequencies appear as two groups, cor-

7/
5

MODES:

L-LONGITUDINAL

,_ 4 T-TRANSVERSE

3 R-RING

3

_o

_ R
bA

5

T

L

0 I I
0 o ZOo 6O ° 90 °

SEMI-VERTEX ANGLE a

Fmu_ 5.62.--Membrane frequency parameters for axi-
symmetric (n=O) modes of free-free conical shells;
s2/sl =2.0. (After ref. 5.29)

responding to longitudinal and transverse modes,
with the frequencies of the longitudinal modes

always being greater than those of the transverse

modes. However, for a < 15° the modes are cou-

pled. Figure 5.63 describes similar results for

82//81=4.0, for which strong coupling of modes
occurs for 0 < a < 45 °.

Note in figures 5.62 and 5.63 that, while the

frequency parameters of longitudinal modes
extend to infinity, those of transverse modes are

spaced in a finite interval shown by the shaded

region. This result is the limiting case when the

shell thickness tends to zero, as required for
membrane theory. For real shells with finite

bending rigidity, the frequencies of higher trans-

verse modes are expected to be significantly
increased. The curves labeled "R" in figures 5.62

and 5.63 are the so-called "ring modes." For
this type of mode the entire shell vibrates with-

out a nodal circle and uniform circumferential

0
0 o

L

/ MODES:

L- LONGITUDINAL

T-TRANSVERSE--

R-RING

I I T__ -

30 ° 60 ° 90 °
SEMI-VERTEX ANGLE a

FIGURE 5.63.--Membrane frequency parameters for axi-
symmetric (n=0) modes of free-free conical shells;
s_/sl =4.0. (After ref. 5.29)
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(or "hoop") stress is the predominant type of
membrane stress present.

Dependence of the frequency parameter upon

the length ratio s2/sl is shown in figure 5.64 for
a = 15 °. Extensive results are also available in

reference 5.29 showing the variation of the mem-

brane force resultants with s while executing free
vibration modes.

Hu, Gormley, and Lindholm (refs. 5.76 and

5.77) also made experimental measurements of

frequencies of free-free conical shells made of
0.010 in. steel shimstock. Data were taken on

four experimental models as described by table

5.13. V_riation of the frequency with the circum-

TABLE 5.13.--Dimensions of Four Shell Models

Model
number degrees

14.2

30.2

45.1

60.5

81

82

2.23

2.27

2.25

2.25

h
R2

0.00166

.00127

.00112

.00101

R2_
in.

6.07

7.95

8.96

10.00

6

5

4

5

2 -

T MODES :

L- LONGITUDINAL
T- TRANSVERSE
R- RING

0 I I I I

2 5 4. 5

S2 /S I

FIGURE 5.64.--Membrane frequency parameters for axi-
symmetric (n=O) modes of free-free conical shells;
a -- 15 °. (After ref. 5.29)
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ferential wave number n is shown by the data

points of figures 5.65 for the four models. For

m = 1 the experimental data points form a smooth

curve which is essentially parabolic in shape.
However, the curves for m = 2 and m = 3 are more

complicated in shape.

In addition, the following semiempirical for-
mula for frequency parameters was derived

in reference 5.76 based upon inextensional
deformation :

£*=_v/kn!n-1)(n-F1-4sin _)%/n_-_l\ (5.61)

where k=M/12R12. Frequencies obtained from

equation (5.61) are also plotted in figures 5.65 as

solid curves, yielding excellent agreement with
the experiment.

Experimental mode shapes for the four models

of table 5.13 were also measured in references 5.76

and 5.77. Because the mode shapes for the four
shells were similar, only the results for model

2 (a=45.1 °) were presented. Circumferential

mode shapes were found to vary sinusoidally, as
predicted by theory. Figure 5.66 and 5.67 show

the normalized transverse mode shapes along a

generator for m = 1 and 2, respectively. In figure

5.66 the transverse displacement is essentially

linear for n = 2 to 10, as assumed by Rayleigh's
mextensional theory. The nodal circle is near the

small end of the conical shell for small values of n,
but gradually shifts towards the middle as n in-

creases. However, as n increases from 10 to 12, a

drastic change in the mode shape occurs. The
generator changes to a curved form with de-

creased motion near the smaller end of the shell.

In figure 5.67 a similar mapping of mode
shapes is shown for m = 2. Note that the number

of nodal circles does not increase from one to two,

as might be expected. Rather, the mode shapes

resemble those of figure 5.66, except that the

nodal circles now occur nearer the large end of
the shell. Again, in the vicinity of n= 10 to 12

the generator begins to deviate from a nearly
straight line into a reverse curve. This transition

is reflected on the frequency plots of figure
5.65(c) where the slope of the £*-n curve

abruptly changes. This indicates that the new

mode shape formed during this transition has a

slightly lower energy level than the corresponding
inextensional modes.

mare
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In 1964 Watkins and Clary (r3fs. 5.64 and 12

5.65) presented the results of an experimental

investigation on free-free conical shells which .Io
were the subject of considerable subsequent dis-

cussion by other writers• Tests were conducted

on four stainless steel models, described in table _ o8
5. 14, made with 5/32 in. overlapped, spotwelded, ,_

longitudinal seams. They found that at higher
c_

frequencies there were a greater number of cir- _-.o6

cumferential waves at the larger end than at the "_
smaller end. The difference in the number of _ o4

waves increases as the frequencies increased and

also as the apex angle _ increased• The difference o2

ranged from one to five waves for the frequency
range covered in the investigation, as shown in

figure 5.68.

TABLE 5.14.--Dimensions of Four Different Shell

Models (see figs. 5.1 and 5.2)

Model
number degrees

3.2

7.4

14.0

24.0

h_

in.

0. 007

• 007

• 007

• 007

in.

36

30

24

18

RI_

in.

12

10

8

6

R2_

in.

A

Z_

Z_ []

O

0

I I

.12

,10
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0
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FI(]URE 5.68.--Experimental frequencies for free-free conical shells. (After ref. 5.64) (a) Model 1, _ =3.2 °.

(b) Model 2, a--7.4 °. (c) Model 3, a =14.0 °. (d) Model 4, a =24.0 °.
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Figure 5.69 shows typical nodal patterns ob-

served for model 3 with six and eight circum-

ferential waves at the smaller and larger ends,

respectively. Two shakers tended to excite asym-

metrical nodal patterns, while a nodal pattern

from a single shaker tended to be symmetric, as
shown.

The behavior observed by Watkins and Clary

was discussed by Hu (ref. 5.78) and by Koval

(ref. 5.79). Hu thought that the difference in
circumferential wave number at the two ends

was due to the location of the shakers. Koval

50O

Shaker--S-- 400

t

(a) Asymmetrical nodal pattern.

3OO

L
,o,

Shoker

ioo

(b) S3mmetrlcal nodal pattern.

FIGURE 5.69.--Typical nodal patterns as viewed along

the longitudinal axis for model 3. (After ref. 5.64)

suggested the anamoly might be the result of

dynamic asymmetries due to the lap joint method

of model fabrication. This problem received fur-

ther study by Mixson (refs. 5.80, 5.81, and 5.82)

who tested five additional shell models, three

having butt-welded seams and two having lapped
seams. He found that the location of the shaker

did indeed cause mixed modes in some cases, but

that the effect of seams was even more important.

The method of suspension was also found to be

significant in determining coupling between the

modes having different circumferential wave
numbers.

Naumann (ref. 5.83) analyzed the free-free

case using the Ritz method with power series in

the meridional direction to approximate the

mode shapes. Results were obtained for shells

made of aluminum 0.0635 cm thick and having
a = 60 ° and R1/R2 = 1/8. These are depicted in

figure 5.70, where the inextensional frequency is
also shown. Corresponding mode shapes for the

//

I
/

/
/ PRESENT ANALYSIS

/ INEXTENSIONAL ANALYSIS ....
I
I

/

1/1//

2 4 6 8 I0 12 14

CIRCUMFERENTIAL WAVES, n

FIGURE 5.70.--Frequencies for free-free conical

shells; a =60 °, R1/R2 = 1/8. (After ref. 5.83)
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transverse deflection are displayed in figure 5.71.

Frequencies for other R1/R2 ratios are shown in

figure 5.72. In reference 5.83 extensive numerical

results were obtained for the experimental mod-

els of references 5.64, 5.65, 5.76, 5.77, 5.80, 5.81,

and 5.82 and the agreement obtained with the

experimental results given in the above references

is remarkably good.

Another comprehensive study of the free vibra-

tions of free-free conical shells was made by

Krause (ref. 5.84). Analytical investigations were

made using the Galerkin procedure with meridi-

onal variations in the displacement functions

taken as algebraic polynomials. Extensive com-

parisons were made with references 5.64 and

5.77. Of particular interest is the study made of
the difference in circumferential wave number at

the two ends found experimentally by Watkins

and Clary (ref. 5.64) and discussed above. Ref-

erence 5.84 shows that two analytical curves

giving reasonably close agreement with the exper-

imental results of reference 5.64 were obtained;

however, one curve corresponded to modes hav-

ing m = 1 and the other to modes having m = 2.

This is seen, for example, in figure 5.73 which

corresponds to model 3 (a = 14.0 °) (compare with

fig. 5.68(c)). Thus, at a given frequency two

modes can be excited having different values of

m and n and it is hypothesized that the experi-

mental results of reference 5.64 represent the

coupling of two such modes.
Other numerical results for the free vibrations

of free-free conical shells were obtained by the

finite element method in reference 5.66, using

membrane theory in reference 5.58, and experi-

mentally in reference 5.15. Axisymmetric merid-

ional motion according to bar theory was

hypothesized in reference 5.21. Other relevant

investigations include references 5.3, 5.24, and
5.85.
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FIOUI_ 5.71.--Mode shapes for transverse displacements
of free-free conical shells; a =60 °, R_/R2=l/8. (After
ref. 5.83)
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FIGURE 5.73.--Comparison of analytical and experi-

mental data for free-free conical shells; a = 14.0 °. (After

ref. 5.84)

4. u=S,o=w=M,=O

5. u = v = w = Ow/Os = 0 (clamped)

Variation of frequencies with circumferential

wave number n is shown in figure 5.74 for shells

having the same boundary conditions at each end.

The numbers on the curves correspond to the

cases listed above. In figure 5.75 frequencies are
shown for shells having the large end free and the

other boundary supported according to one of the

five conditions listed. A similar plot is made in

figure 5.76 for those cases having the small e_d
free. The dimensions of the shell used for the

theoretical study were not given in reference 5.69;

however, comparison of the 1-1 (SD-SD) curve

with a corresponding curve in reference 5.31
indicates that the shell had a thickness of

h=0.040 in., the material was steel, and the

other dimensions were: a=20 °, R1=2 in.,

sE,sl = 8-3/8 in.
The effect of circumferential restraint v =0

upon the free vibrations of conical shells was

studied by Seide (ref. 5.49) and Cohen (ref. 5.51).

In reference 5.49 the Donnell equations were

used, neglecting the effects of tangential inertia.

Solution functions for the displacements were

taken as trigonometric terms in the meridional

direction, and the Galerkin procedure was used.

Results were obtained for two shells having
h = 0.020 in. and 0.040 in. The shells were made of

steel and the other dimensions were: a=20 °,

R1=2.13 in., and R2=4.86 in. Figure 5.77 shows

5.3.7 Other Edge Conditions

A study of the effect of various types of edge

constraints, upon the free vibration frequencies ....
of frustums of conical shells was made by

Weingarten and Gelman (ref. 5.69). The Sanders

shell theory was used and sinusoidal variation of
5000

the displacement functions was assumed in the
circumferential direction, as in equation (5.14).

The resulting set of ordinary differential equa-
tions in u,, v,, and w_ was then cast into a finite ....
difference format. Numerical studies were made

on shells having boundaries which are either

completely free or have various degrees of edge ....
constraint as indicated in the five cases below:

1. N_=v=w=M,=O (SD)

2. u=v=w=M,=O

3. N,=S,o=w=M,=O

5-5 _.- EXPERIMENTAL j

3-3

t I I I

E 4 6 8

ORCUMFERENTIAL WAVES

FIGURE 5.74.--Frequencies for conical shells having

various types of symmetric edge constraints. (After

ref. 5.69)
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FIGURE 5.75.--Frequencies for conical shells having the

large end free and various types of constraints on the

other edge. (After ref. 5.69)
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FIGURE 5.76.--Frequencies for conical shells having the

small end free and various types of constraints on the

other edge. (After ref. 5.69)

analytical and experimental frequencies for the

0.020 in. thick shell having two types of boundary
conditions--either S_0 = 0 or v = 0--on both ends

of the shell. The other boundary conditions are

,z
_(2

x

o

EXPERIMENTAL RESULTS
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FIGURE 5.77.--Effect of circumferential restraint (v=0

or S,0 =0) upon frequencies of conical shells having

N, =w =M, =0 at the boundaries; h--0.020 in. (After
ref. 5.49)
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FIGURE 5.78.--Effect of circumferential restraint (#=0
or S,e=0) upon frequencies of conical shells having

N, =w =M, =0 at the boundaries; h =0.040 in. (After
ref. 5.49)

N, =w=M,=O for both cases. Figure 5.78 is the

corresponding set of curves for h = 0.040 in. The

circumferential restraint is very important. When

n is equal to 2, for instance, the frequency for

S,_ =0 is about half of the frequency for v =0.

For n = 1, the ratio of the two is only about one-

to-four. The normal displacement mode shapes
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for small values of n are considerably different,

as can be seen from the curves of figure 5.79.

Cohen (ref. 5.51) also obtained numerical

results for Seide's shell model having h = 0.040 in.

(described in the preceding paragraph). Results

for frequencies and mode shapes of the first three

modes arising for n = 1 and 2 are shown in figures

5.80 and 5.81, respectively, for the case when

Ss0 =0 on the edges. In table 5.15 the frequencies

are compared for the cases when either Ss0=0
or v =0. The differences are attributed to two

factors:

(1) The Donnell-Mushtari shell equations,

which give poor results for n=l and 2 (cf.,

chapter 2), were used in reference 5.49.

(2) Tangential inertia, which is very important

for n= 1 (cf., chapter 2), was neglected in refer-
ence 5.49.

A comparison of the effects of various types of

boundary conditions was also made by Kolman

(ref. 5.25). The Novozhilov shell equations were

used and solved by the finite difference method.

Frequencies were obtained for three shells having

_=30 °, 45 °, and 60 ° and all having s2/sl=5,

R = (R1+R2)/2 =0.01h, _=0.3, and having the

following types of edge conditions:

SMALL END LARGE END

o

FIGURE 5.79.--Effects of circumferential restraint (v =0)

upon the normal displacement mode shapes of a conical
shell. (After ref. 5.49)

Boundary
condition n

TABLE 5.15.--Comparison of Frequencies for

Conical Shells With and Without Circumferen-

tial Restraint h = 0.040 in.

Frequency, cps

Difference, %

1

S,0 = 0

2

1

v=0

2

Ref. 5.51

1091

1364

6212

1279
2442

5259

4624

4934

6494

2433

5096

6178

Ref. 5.49

1555 42.5

3077 125.6

6781 9.2

1424 11.3

2830 15.9

5566 5.8

5495 18.8

6465 31.0

7032 8.3

2744 12.8

5344 4.9

6295 1.9

Ow
(1) u=v=w=--=O at S=Sl, s2

Os

(2) u=v=w=M,=O at s=sl
Ow

U-_V-_W=--=O at 8_--s2
Os

(3) u=v=w=M,=O at S=Sl, s2

(4) u=v=w=M.=O at s=sl
N, =v =w =M, =0 at s =s2

(5) u=v=w=M_=O at s=sx

N_=S,o=w=M,=O at s=s2

Minimum frequency parameters

ws2,_/p( 1 __ _2)

and the values of n at which they occur (in

parentheses) are displayed in table 5.16. The

effects of lessening constraint as one moves from

cases one to five is clearly seen in the table.

In reference 5.3 a general procedure is exhib-

ited which accommodates conical shells having

arbitrary boundary conditions. A characteristic

equation is obtained by the Ritz method and is

explicitly presented. However, the coefficients of
the characteristic determinant include 17 inte-

grals involving the products of displacement

Am
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FmURE 5.80.--Frequencies and mode shapes for conical
shells having N, =S,e =w =Ms =0 at both ends; n = 1.
(After ref. 5.51) (a) m=l. (b) m=2. (c) m=3.
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TABLE 5.16.--FrequenCy t)arameters _s = _s2%/p(1 --_2)/E and the Values at Which

They Occur (in Parentheses) for Conical Shells Having Various Boundary Conditions

60°
45°
30°

Type of boundary conditions

0. 2829 (5)

•3542 (5)

•4092 (5)

o. 2821 (5)
•3536 (5)
.4091 (5)

0. 2744 (5)

• 3494 (5)

.4071 (5)

4

0.2334 (5)

• 2790 (5)

.3347 (4)

0. 1850 (4)

• 2280 (4)

• 2613 (4)

387

Am

functions and their derivatives. No tabular

values of the integrals are available, thus the

results given are of limited usefulness.

The "method of parallel springs" (see sec.

5.2.1) was outlined in reference 5.5 for conical

shells having arbitrary boundary conditions. A

method based upon power series displacement
functions is discussed in reference 5.86.

Conical shells having elastic supports or rigid

attached masses at an end are investigated in

references 5.58, 5.71, 5.87, 5.88, and 5.89. Other

literature dealing with conical shells having edge
conditions not discussed in an earlier section

includes references 5.27, 5.90, and 5.91.

5.4 OPEN CONICAL SHELLS

An open conical shell is depicted in figure 5.82.

Strangely, no references have be_n found which

deal explicitly with the free vibrations of such
shells.

h

Fiovm_ 5.82.--Open conical shell.

However, useful information for open conical

shells having lateral edges supported by shear

diaphragms can be gleaned from the results of the

previous sections in the same manner as for open

circular cylindrical shells (see sees. 2.8.1 and

2.8.2 for details).

5.5 ANISOTROPY

As in the case of circular cylindrical shells, no
free vibration results are available for conical

shells composed of materials having properties

which possess general anisotropy. Rather, the

few results which are available are for the special

case of orthotropic materials.

The equations of motion for orthotropic circu-
lar conical shells are derived in the same manner

as those for orthotropic circular cylindrical shells

(see sec. 3.1.1). That is, the orthotropic force and

moment resultant equations (3.4) through (3.7)

are used with the equations of motion and gener-

alized strain-displacement equations from chap-

ter 1, where the shell coordinates a and _.are

replaced by s and _9for conical shells, respectively,

and where A, B, R,, and R_ are given by equa-

tions (5.1). The resulting sets of equations for the

various shell theories are quite lengthy and will

not be repeated here. The detailed equations of

motion of a Donnell-Mushtari type shell theory

can be found, for example, in references 5.92,

5.93, and 5.94. The orthotropic form of the

Novozhilov equations of motion in terms of

displacements is found in detail in reference 5.95.
Weingarten (ref. 5.93 and 5.96) used the

Donnell-Mushtari theory, displacement func-
tions in the form of power series, and the Galer-

kin method to investigate conical shells which
satisfy the boundary conditions

w=M_=O (5.62)

at s=sl, s2, but the usual shear diaphragm

boundary conditions of v=N,=O are replaced

by elastic support conditions. Numerical results

for frequency parameters were obtained for

shells having orthotropic elastic moduli ratios

of Eo/Es=O.02 and 50. Comparison was also

made with an "equivalent" cylindrical shell (i.e., r
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one having a radius R equal to the average

radius (R1+R2)/2 of the conical shell) as seen in
table 5.17. The parameters of the shell described

by table 5.17 are: a=20 °, RI= 2.13 in., s2-s_=8
in., h=0.02 in., and _0=0. Note that the fre-

quency parameter 12_02p(1 - v_0)�ME8 has dimen-
sions. Table 5.17 shows that the minimum

frequency predictions of the equivalent cylin-

drical shell for both values of Eo/E, are in good

agreement with those of the conical shell, but

that at either low or high values of n the cylin-

drical representation is inadequate. Extensive

results are also given in references 5.93 and 5.96

f(_r ring-stiffened conical shells and experimental

data are compared with those computed from

"equivalent orthotropic" analyses.

Bacon and Bert (ref. 5.39) showed the effect

of changing the ratio of orthotropic constants

Eo/E, upon the minimum frequencies of SD-SD

shells. The Ritz method was used with trig-

onometric functions assumed for the displace-
ments. Values of the frequency parameter

2w2sl_p(1 -- v_o)/E, versus Eo/E, are shown in fig-

ure 5.83 for shells having: a = 20 °, s2/sl = 2.2840,
1/f_ = 2.1490 (/_ = (R_-{- R2)/2), h/f_ = 0.00466, and

,,/(1 -_,_0) = 0.3. The analysis included shear de-

formation and rotary inertia effects, but these are
negligible for the h/[_ ratio under consideration.

Other works giving some attention to ortho-

tropic SD-SD shells include references 5.38, 5.52,
and 5.97.

Conical shel]s having circumferential stiffeners

(rings) and longitudinal stiffeners (stringers) were

I0.0

8.0

60

4.0

J

"_¢b 2.0

I

_ i.o

_B 0.8
c_

0.6

0.4

0.2

0.I

J

F I I I I I I I I I

2 4 6 8 I0 20 40 60 I00

EO/E s

FIGURE 5.83.--Effect of changing Eo/E, upon the mini-

mum frequency parameters of an orthotropie, SD-SD,

conical shell (dimensions in text). (After ref. 5.39)

T--

TABLE 5.17.--Frequency Parameters 12_2p(1- _,_o) /h2E, for Orthotropic Conical

and Equivalent Cylindrical Shells (Dimensions Given in Text)

Number of meridional haft-waves, m

E0
E---_ n Conical shell Equivalent cylindrical shell

1 2 3 1 2 3

O. 02

5O

0

3

6

9

12

15

18

0

3

6

9

12

15

29.18

7.26

1.88

1.61

2.76

4.95

8.59

26,540.51

108.64

303.64

996.97

2,633.27

5,855.81

38.05

18.83

7.61

5.07

6.42

19.07

15.97

53,454.28

849:98

648.28

1,543.22

3,520.09

7,311.60

48.15

28.35

15.56

10.85

11.78

17.10

25.84

59,419.53

2,563.52

1,102.63

2,144.33

4,415.69

8,726.67

43.46

7.77

2.02

1.41

2.57

5.60

11.25

108,679.74

121.24

344.72

1,705.07

5,384.51

13,143.70

43.78

21.22

8.38

4.86

4.87

7.47

13.04

108,572.32

1,020.16

442.34

1,736.59

5,402.42

13,156.38

45.37

31.4(

17.01

11.0£

9.7

11.7_

17.21

108,564.04

3,087.65

746.65

1,833.8£

5,464.43

13,217.8_

v

L£ L_
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analyzed by Crenwelge and Muster (ref. 5.98)

using an "equivalent orthotropic" shell model. A

variant of simple support boundary conditions

given by

u=S_o=w=M,=O at S=Sl, S2 (5.63)

was used in the analysis. Numerical results were

obtained for three aluminum shells having a = 10 °,

R1=3.42 in., R2=5.25 in., s2-sx=lO.50 in.,

h =0.10 in., and various combinations of integral

rings and stringers. These results will not be

repeated here because of the detail required to

describe the determination of the equivalent

orthotropic constants from the dimensions of the

shell, rings, and stringers. Comparison of fre-

quencies with those obtained fi'om experiment

and those obtained by an analysis which treats
the stiffeners as discrete elements is also made in

reference 5.98.

The clamped-clamped orthotropic conical shell

is investigated in reference 5.97. The solution

of the problem having boundary conditions

u=v=w=M,=O is described in reference 5.99,
but no numerical results are obtained. Ortho-

tropic conical shells having elastic support con-
ditions are discussed in reference 5.100. Other

investigations dealing with the free vibrations of

orthotropic conical shells include references 5.3,

5.20, and 5.101.

5.6 LARGE DISPLACEMENTS

The effect of large displacements is to add non-

linear terms to the relationships between the

membrane strains and the displacements, as was

seen in equations (3.49) for circular cylindrical
shells. For circular conical shells, equations (3.49)
are generalized to (refs. 5.102 and 5.103)

Ou 1lOw\ _

10v u OB w l[ l Ow\ 2

(5.64)
10u O/v\ 10w Ow

where B and Ro are the middle surface parame-
ters given in equations (5.1).

However, in contrast with the special case of
cylindrical shells, very little consideration has

been given to the nonlinear, large amplitude

vibrations of conical shells. Sun and Lu (refs.

5.102 and 5.103) investigated postbuckling vibra-

tions and found that for the boundary conditions

used (u = v = w = M_ = 0 at s = s,, s2) the nonlinear

effect was always of the hardening type. Large
amplitude free vibrations are also discussed in
references 5.104 and 5.105.

5.7 INITIAL STRESS

For an understanding of how initial stresses

affect the free vibrations of conical shells, review

section 3.4 which deals with circular cylindrical
shells. Most of the discussion in that section is

also relevant to the more general case of conical
shells.

As in the case of cylindrical shells (see sec.

3.4.1), the equations of motion for conical shells

can be adjusted to account for initial stresses by

the addition of simple terms. For example, for a
Donnell-Mushtari type theory, equations (5.2a)

and (5.2b) remain unchanged, while equation
(5.2c) has the terms

_.!1["N,_O2w_s2+ 2N,o/I- 1 O_wsin. OsO0

1s _sin _

+N; s (5.65)

(cf., refs. 5.92, 5.96, 5.106, and 5.107) added to

its left-hand side in the case of uniform initial
force resultants N, _, No _, and N,o _. The term

(eq. (5.65)) simplifies to the same form as that

given by equation (3.103) in the case of a cylindri-

cal shell (i.e., s sin a=R, s--.¢o).

Weingarten (ref. 5.106) investigated the case

of the conical shell frustum subjected to internal
and external pressures. In the case of an internal

pressure p0 the static initial stress field was given

in reference 5.106 by (correcting an apparent
misprint)

• P0/_ s tana_

(5.66)
a°_=p°hR---StanaJsl

where R=(RI+R:)/2, the mean radius, and

imam

T
_._' ,/
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N, _= a_h, Nd = ¢0_h. However, it must be pointed

out that the stress distributions given by equa-

tions (5.66) are not those usually accepted as the
solution for uniform pressure from membrane

theory; namely (cf., ref. 5.108, p. 97)

• p0 s , cl]

a2= _- _ can at-_[
(5.67)[

pos Jq0_= _ tan a

where cl is an arbitrary constant determining
the distribution of the axial end thrust between

the boundaries at s = 51 and s = s2.

In reference 5.106 the Galerkin method was

used with displacement functions in the form of

algebraic polynomials to solve the free vibration

problem for conical shells having w = M, =0 at

x = s_, s2. The remaining two boundary conditions
involve elastic restraints. A Donnell-Mushtari

type of shell theory was used (i.e., eq. 5.65).
Numerical results were obtained for an alumi-

num conical shell having the following dimen-

sions: _=20 °, R_=2.144 in., /=8.00 in., and

h = 0.020 in. (see figs. 5.1 and 5.2). Experimental

data were also obtained. These are compared in

table 5.18 for values of po/p,r=O, -0.446, and

+0.446, where pc, is the critical pressure for

buckling. Because po, corresponds to external

pressure, it is a negative number, and occurs for
a circumferential wave number n of 6 for this

particular shell. Thus, negative values of po/pc,
correspond to internal pressures, and positive

values correspond to external pressures. In table

5.18 results are presented for mode shapes having
1, 2, and 3 meridional half-waves m. In some

places in the table, two experimental values listed

in reference 5.106 have been replaced by a single

average value. The lack of agreement between

theoretical and experimental frequencies in table
5.18 is attributed in reference 5.106 to

(1) The end conditions of the experiment are
more rigid than those used in the theoretical

analysis.

(2) The typically poor analytical results arise

from a Donnell-Mushtari type shell theory for
n_<3.

However, the second argument would seem spur-

ious for the l/R ratio being considered (see the

comparison of theories for cylindrical shells in

sec. 2.3.1).

The numerical results for m = 1 are also plotted

in figure 5.84. Experimental data are shown by

discrete points in the figure. As the internal pres-
sure increases, the circumferential wave number

n at which the minimum frequency occurs is

decreased, as was observed for cylindrical shells
(see see. 3.4.3).

A comparison of analytical mode shapes for

m = 1 and n = 3, 6, and 15 is shown in figure 5.85.

At large values of n, the shell hardly vibrates in

the vicinity of its small end. The effects of chang-

ing the pressure parameter po/pc_ are also

observed from figure 5.85. A comparison of

experimental and analytical mode shapes for

m = 1 and n = 3 and 14 is made in figure 5.86.

Goldberg, Bogdanoff, and Alspaugh (refs.

5.109 and 5.110) demonstrated their general

numerical integration computer program on the

problem of the clamped-clamped conical shell

subjected to pressure. Unfortunately, these ref-

n=0

6O0O

: 20 °

R, :2 144"

5000 ,g : 8000"

h :0 020"

4O0O

5OOO

2OOO

20

19

17

16

15

13 •

12

II 0

2 []
;0 0

9 •

8 •

7 •

3 •

1000

5OO

-I.0 -o.5 o 0 5 I0 20 3.0

%/%

l

40

FIGURE 5.84.--Variation of frequency (cps) with pressure

parameter Po/P¢, for a conical shell. (After ref. 5.106)

mat
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TABLE 5.18.--Theoretical and Experimental Frequencies (cps) for Conical

Shells Subjected to Internal or External Initial Pressure

p__._o

per

--0.446

+0.446

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

2

3

4

5

6

7

8

9

10

11

12

13

14

14

16

17

18

m=l

Theor. Exper.

2730 ......

1441 1501

862 1163

609 944

569 840

651 880

771 985

912 1130

1075 1301

1260 ......

1466 ......

1692 1949

1937 2204

2203 ......

2487 ......

2791 ......

3113 ......

2733 1551

1459 1486

924 1182

740 1001

759 964

868 1032

1004 1160

1157 1317

1330 ......

1523 1689

1735 ......

1966 .......

2216 ......

2486 ......

2773 ......

3080 ......

3405 .......

2745 ......

1488 1489

m=2

Theor.

6175

5289

4259

3394

2766

2377

2215

2245

2379

2556

2766

3008

3281

3584

3919

4284

4681

6175

5306

4277

3423

2818

2461

2336

2395

2548

2740

2963

3216

2497

3805

4138

4496

4878

6204

5314

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

988

851

904

1033

1183

1348

1531

1731

1950

2186

2441

2713

3003

3312

3628

1227

1082

1060

1148

1290

1461

1650

Theor. Expel

5323 3100

3807 ......

2685 2708

1973 2180

1575 1825

1430 1658

1470 1708

1594 1761

1749 1927

1931 2121

2140 2344

2375 ......

2634 ......

2918 ......

3226 ......

3558 ......

3913 ......

5335 ......

3816 3047

2705 2407

2020 2195

1661 1862

1561 1740

1629 1781

1776 1915

1946 2086

2142 2293

2462 2424

2607 ......

2875 ......

3166 ......

3479 ......

3813 ......

4169 ......

5335 ......

3830 .......

...... 4298

2233 3461

1932 2876

1822 2542

1863 2439

2009 2515

2198 2682

2423 2885

...... 3118

...... 3379

...... 3669

...... 3987

...... 4333

...... 4709

...... 5114

2736

2073

1745

1675

1767

1924

2106

2312

2540

2793

3067

3363

3680

4021

4383

m=3

Exper.

2996

2930

2584

2452

2438

2344

2601

2883

3197

398C

3472

296_

2635

2514

2543

2694

279C

307_

300(

269_

258(

279_

293(

321(
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n=3

°E

o0!/

o i/

n:6

I

/

i 2!o

sis,

n =15

---0058

--- +_7 _5

FmURE 5.85.--Effect of internal pressure and wave

number n upon mode shapes of a conical shell. (After

ref. 5.106)

n:3
I0

_ °_ t

_o6L

// /!C5

Z 02 _-

F
o I

_o 2 o

s/s i

EXPER.--

THEOR------

n=14

I

/,I

_0 20

FIGURE 5.86.--Comparison of theoretical and experi-

mental mode shapes for a pressurized conical shell;

Po/Pc, = --0.446. (After ref. 5.106)

erences do not state whether the pressure is inter-

nal or external. Nevertheless, mode shapes

corresponding to n = 2 are reproduced in figure
5.87 for a shell having

R1=5 in., R2= 10 in.,/=8.66 in.

= 30 °, p = 0.00762 slugs/in 3

h=0.2 in., E=30×100 psi, and _=0.3

The corresponding frequency is f= 718.4 cps.
The free vibration of conical shells subj ected to

initial pressure is also discussed in reference 5.23.

In the case of torsional loading the static pre-
stress varies according to

N,o _ T _ T _

r'°i =--h- = 27rhR _- 21rhs 2sin s _ (5.68)

where T _ is the initial torque; that is, the pre-

stress varies with inversely proportionality to the
meridional distance s measured from the vertex.

Weingartcn (ref. 5.107) obtained theoretical

and experimental frequencies for a conical shell

W

f\ ,-//

FIGURE 5.87.--Mode shapes for a clamped-clamped,

pressurized conical shell. (After refs. 5.109 and 5.110)

6J30

5140

1

3O00

25OO

2OO0

1,500

I000

t=O

5CO

0
1.0

19

17

o o o o o o o

3----0
v _ v v

II.... V'7

o _ _ _ o _ 9.... o

5 .... 0

I I I I I

0.8 0.6 0.4 0.2 0

VALUE OF r/rot

FIGURE 5.88.--Theoretical and experimental frequencies

for a conical shell subjected to torsional prestress.
(After ref. 5.107)
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subjected to torsional prestress. The Galerkin

procedure • and the same boundary conditions

described earlier in this section (ref. 5.106) were
used. Calculations were made for an aluminum

shell having the following dimensions: a = 20 °,

R1=2.14 in., s2--sl=8.76 in., and h=0.016 in.

Experimental data were also obtained. The

results are shown in figure 5.88. The node lines

(lines of w=O) lie in a helical pattern, as for

cylindrical shells loaded in torsion (see sec. 3.4.5).
Free vibrations of shallow conical shells sub-

jected to initial stress are examined in reference

5.105. Other works dealing with conical shells

under initial stress include references 5.4, 5.86,
and 5.111.

5.8 OTHER EFFECTS

5.8.1 Effects of Surrounding Media

Very little has been written about the effects

of surrounding media, such as air and water,

upon the free vibration frequencies and mode
shapes of conical shells. In reference 5.112 conical

shells having small apex angle a and partially

filled with a liquid are treated by thin-walled

beam theory. In reference 5.113 a method of

analysis based on the membrane theory of shells

is formulated for conical shells partially filled

with a fluid, but no numerical results are given.
t

5.8.2 Shear Deformation and Rotary Inertia

The effects of shear deformation and rotary
inertia on cylindrical shells were discussed in

section 3.5.2; most of the discussion applies to

conical shells as well. However, some additional
work on conical shells has been done.

Garnet and Kempner (refs. 5.36 and 5.114)

analyzed the axisymmetric response by means of

a Ritz procedure. Comparison was made between
two classical shell theories and two shear deforma-

tion theories. One type of formulation used was

that of Love and others whereby the change of

arc length through the thickness is ignored in

integrating the force and moment resultant equa-

tions (see sec. 1.5). Another type used was that

of Naghdi (ref. 5.115) (see also the derivation of

Fliigge, Byrne, Lur'ye in sec. 1.5) whereby the

arc length change is included. Displacement func-

tions were taken in the form of trigonometric

series, as in equations (3.127), to satisfy shear
diaphragm boundary conditions at both ends of
the shell.

Comparison of lowest axisymmetric frequency

parameters _29= _sl_c/p(1 - _2)/E according to the

four theory formulations described above is made

in table 5.19 for shells having various values of _,
h/[_, and l/[¢ (where /_ is the average radius,

(RlWR2)/2). The effects of shear deformation

TABLE 5.19.--Comparison of Axisymmetric Frequency Parameters _sl %/ p(1 -- _) /E

for Conical Shells Having Shear Diaphragm End Conditions

Ot

5 °

10 °

15 °

20 °

h

R

0.05

.15

.2O

.10

l

0.25

.375

.50

.30

.50

1.0

.375

1.O

• 375

.50

Shear deformation and rotary inertia

Included Neglected

Naghdi
formulation

26.188

15.261

12.282

19.792

9.393

5.286

10.572

3.450

5.012

3.453

Love

formulation

26.233

15.296

12.370

19. 862

9.454

5.314

10.630

3.478

5.031

3.469

Naghdi
formulation

27.736

15.548

12.363

26.224

10.405

5.329

14.171

3.509

5.429

3.563

Love

formulation

27.785

15.584

12.388

26.340

10.479

5.360

14.273

3.541

5.451

3.580

Am

v _ $_
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and rotary inertia are significant even for the

thinnest shell used (h/[_=O.05), although vir-

tually no difference occurs between the fre-

quencies arising from the Naghdi and Love type
formulations, whether shear deformation and

rotary are included or not. However, note that all
the shells described in table 5.19 are relatively

short (l//_<1). The effects of shear deformation

and rotary inertia were found in reference 5.36

to be significant only for the relatively short

shells. This factor is particularly evident in the
table for the shell having a = 10 °, h/[_ =0.15, and

l/[_ of only 0.30. As further found in reference

5.36 the effect of rotary inertia by itself is insigni-

ficant for axisymmetric motions.

The ratio of the frequency obtained when shear

deformation is neglected (o_0) to that when it is

included (¢o) as a function of the semivertex angle

a is depicted in figure 5.89 for a shell having

h/[_ = 0.20 and l/R = 0.50. The ratio decreases as

1.2

1.16

1.12

£
1.08

1.04

1.0

0
I I I I I I I I

5 o I0 o 15° 20 ° 25 o 30 ° 55 ° 40 °

FIGURE 5.89.--Ratio of frequencies without and with

shear deformation; h/R =0.20, l/R =0.50. (After ref.

5.86),

20

10

a=15 °

f

0 50
1.0

1.5

0 0./2 0./4 0,/6 I I
0.08 0.10

FIGURE 5.90.--Influence of thickness parameter h/[_ upon

the frequency parameter (shear deformation included).

(After ref. 5.36)

increases. The influence of the thickness

parameter h/R upon the frequency parameter _29
when shear deformation is included is shown in

figure 5.90.

Hu (ref. 5.29) developed a special type of

transverse shear theory for conical shells wherein
the transverse shear deformation in the circum-

ferential direction alone is neglected. This has the

significant effect of reducing the order of the

equations of motion from ten to eight. Numerical

results obtained by Lindholm and Hu (refs. 5.27

and 5.28) using this theory have already been

given in section 5.3.3 because the shells analyzed

were not short; that is, the effects of shear

deformation were small in the numerical examples
chosen.

Jain (ref. 5.20) derived a theory for conical
shells which included the effects of transverse

normal stress, as well as shear deformation and

rotary inertia. Only axisymmetric motions were
considered. Results were obtained for conical

shells supported by shear diaphragms at both

ends. A variational procedure was followed using

displacement functions which varied sinusoidally
in the meridional s direction. Numerical results

are listed in table 5.20 for a=10 ° and 15°;

l/f_ = 0.25, 0.50, and 1.00; h/[_ = 0.05 to 0.30; and

v =0.3. Frequency parameters

/p(l+_)(1--2_)

are given for shear deformation theories with and
without the added transverse normal stress

effects. The effects of transverse normal stress

are significant, especially for thick (h/[_ = 0.30),

short (l/[_ = 0.25) shells. Also, for short shells the

number of terms in the displacement functions

required for adequate numerical convergence is
small for small l/[¢, a single term being quite

adequate for parameter ranges used in the table.

In reference 5.20 the axisymmetric torsional

frequencies of clamped-clamped conical shells
were also investigated, with and without shear

deformation and rotary inertia effects being con-

sidered. The frequency differences obtained be-

tween the two cases were found to be negligible.

The effects of shear deformation and rotary

inertia considerations upon the free vibrations of
conical shells were also discussed in references

5.39 and 5.116.

L
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TABLE 5.20.--Comparison of Frequency Parameters ¢osl %/p(1+ _) (1 -- 2_) /E(1 -- v)

for Axisymmetric Vibrations Including Shear Deformation; Transverse Normal

Stress Either Neglected or Included

10 °

l

O. 25

.5O

1.00

h

0.05

.10

.15

.2O

.25

.3O

.O5

.10

.15

.2O

.25

.3O

Number
of terms

Transverse normal stress

Neglected

12.766

12.775

20.758

20.758

26.011

26.010

29.371

29.371

31.576

31.576

33.073

33.073

5.970

5.969

7.635

7.634

9.407

9.407

10.973

10.972

12.271

12.271

13.323
13.323

4.999

4.997

Included

6.064
6.063

12.449

12.444

20.049

20.046

24.765

24.763

27.640

27.638

29.453

29.452

30.646

3O.645

5.527

5.516

7.241

7.233

8.981

8.974

10.459

10.454

11.645

11.640

12.578

12.574

4.525

4.505
.O5

1 5.123 4.658
.10

2 5.122 4.639

1 5.312 4.856
.15

2 5.311 4.838

1 5.545 5.096
.20

2 5.543 5.097

.25 1 5.801 5:354
2 5.8OO 5.338

.30
5.613

5.598

395
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TABLE 5.20.--Comparison of Frequency Parameters wslV'p(1 + _) (1 --2_)/E(1 -- _)
for Axisymmetric Vibrations Including Shear Deformation; Transverse Normal

Stress Either Neglected or Included--Concluded

15 °

1

R

h
Number
of terms

Transverse normal stress

Neglected Included

0.05 1 8.203 7.991

.10 1 13.341 12.891

.15 1 16.761 15.97G
.25

.20 1 18.967 17.863

.25 1 20.422 19.064

.30 1 21.415 19.857

.05 1 3.844 3.556

• 10 1 4.878 4.622

.15 1 5.992 5.719
.50

.20 1 6.986 6.660

.25 1 7.816 7.420

• 30 1 8.493 8.021

• 05 1 3.161 2.861

.10 1 3.234 2.940

• 15 1 3.346 3.057
1.00

• 20 1 3.484 3.200

.25 1 3.638 3.355

• 30 1 3.797 3.512

5.8.3 NonhomogeneiW

For a discussion of the meaning of nonhomo-

geneity in shells and how it arises, refer to
section 3.5.3.

An excellent collection of papers dealing with
the free vibrations of sandwich conical shells has

been written by Bert, Bacon, Ray, Egle, Siu,
Soder, Azar, and Wilkins (refs. 5.39, and 5.117

through 5.123). Shells supported at both ends

by shear diaphragms were considered in refer-

ences 5.39, 5.118, and 5.120 through 5.123. Free-

free shells were treated in references 5.117, 5.119,

5.120, and 5.123, and clamped-clamped shells in
references 5.120 and 5.123. Because of the ex-

tremely large number of parameters which must

be used to define a sandwich shell, particularly

when the face sheets are not isotropic, the
numerous results in the above references will not

be reproduced here.

Reference 5.71 deals with conical shells having

orthotropic material properties which vary in the

meridional direction. Other investigations into

the free vibrations of nonhomogeneous conical

shells include references 5.104, 5.124, and 5.125.

_g
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Spherical and Other Shells

Chapter 6

?

The circular cylindrical and conical shells con-

sidered in chapters 2, 3, and 5 are special cases
of a ciass of shells called "shells of revolution."

A shell of revolution is characterized by a mid-
dle surface generated by the rotation of a line

segment about an axis. If the line segment is

straight a conical surface is generated. If, further,

the straight line segment is parallel to the axis,

the surface is circular cylindrical. As in chapters
2, 3, and 5 the term "closed" is used when the

generator rotates one full revolution about the

axis and if the proper continuity conditions are

satisfied along the junction line. When the gen-

erator rotates less than one full revolution, an
open shell results.

In addition to the circular cylindrical and

conical shells already discussed, many other

shells of revolution exist which .have practical

application; e.g., spherical, ellipsoidal (or spher-

oidal), paraboloidal, toroidal, hyperboloidal, and
ogival.

The literature of free vibrations of spherical
shells is vast, whereas for other shells of revolu-

tion, relatively few results are available in the

literature. ' However, a number of methods of

analysis have been developed for general, closed

shells of revolution and the necessary computer
programs have been written and are available.

These methods are largely of three types: (1)
finite difference, (2) finite element, or (3) numer-

ical integration. The methods can accommodate
thickness variation in the meridional direction

in a routine manner and are often generalized to

include complicating effects of the type discussed

in chapter 3. However, the methods are either

not applicable or involve a great deal more com-

putational time in the case of open shells of

revolution, or if the axisymmetric geometry of
the problem is otherwise disturbed.
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A surface of revolution is fllrther character-

ized by the fact that all cross sections perpen-

dicular to its axis are circles. One generalization,
therefore, is that class of surfaces for which an

axis exists so that all perpendicular planes have

curves of the same form (although not necessar-
ily circles) at their intersections with the surface.

The noncircular cylindrical shell described in

chapter 4 (for which there were few results) is a
special case for which the curves of the inter-

secting planes have the same size, as well as the

same form. Elliptical conical shells (for which

virtually no free vibration results exists) or gen-

eral ellipsoidal shells (having elliptical intersec-

tion curves with respect to two perpendicular

axes) are other examples. Finally, other shells of

practical value exist (e.g., hyperbolic paraboloid)

for which little or no investigation of free

vibrational behavior has been reported.

The literature dealing with free vibrations of

spherical shells is second in size only to that for

circular cylindrical shells. The large amount
written is probably because of two of the same

reasons which apply for circular cylindrical
shells:

(1) The relative mathematical simplicity of
the equations of motion because of constant radii

of curvature, RI=R2=R, and constant Lam_

parameters A = B = R.

(2) The widespread practical usage of this
type of shell.

In the remainder of this chapter bibliographies

are given for the free vibrations of spherical and

other shells. The amount of investigation that
has been carried out for the various curvatures is

quite clear from the length of the bibliographies.
No attempt has been made to summarize

numerical results as in the previous chapters.
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Solution of the Three Dimensional Equations

of Motion for Cylinders

Appendix

A.1 EQUATIONS OF MOTION

The three dimensional equations of motion in

terms of circular cylindrical coordinates are read-

ily available in standard textbooks on the theory
of elasticity (cf., ref. A.1, p. 306 and ref. A.2,

p. 184). Neglecting couple stresses, they are given

by

0_ tl_ Or_o . Or= , r= O_u

Or_o 10ao . 0r0, . 2r0, 02v

+r _+Tr +-7-=_ {A.1)

Or= tl_ Or,o . 0_, . _,--_o 02w
Ox r -_--P_r-ff---_-=P-_

where the stresses are defined as in figure A.1

and the displacements u, v, and'w are in the x, 0,
and r directions to be consistent with circular

cylindrical shell coordinates, except that the shell

coordinate z (see sec. 1.2) measured from the
middle surface is now replaced by the radial

coordinate r, measured from the axis of the

cylinder'(see fig. A.2). The strain displacement

equations (1.35) in cylindrical coordinates are

Ou 10v w Ow_

e_ = O--x!eo =r O--OWr' e,= O---rI
I

Ov 10u I

_o - _o_= _+r _ |
(A.2)t

Ow Ou I

_'=_==_+_ /
10w Ov v I

Using the three dimensional form of Hooke's law

for isotropic materials (eqs. (1.69), with a, _, and
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FIGUREA.l.--Positive stress convention in
circular cylindrical coordinates.

FIGUREA.2.--Circular cylinder and
corresponding coordil#ates.
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z replaced by x, O, and r, respectively), and sub-

stituting equations (A.2) into equations (A.1)

yield the equations of motion in terms of dis-

placements (refs. A.3 and A.4):

LllU + L12v + Llaw = _2_

a2y

L21u + L22y + L23_)---- _2__

L31u + L32v+ L33w = _ 0_0_2

(A.3)

where u, v, w are the displacements in the x, 0, r

directions, respectively, 62= 2(1 + v) (1 -20 p/E,
and

/O 2 1 O 1 02\

L11= (1--2,)L_rr2-t- r _r-t-_ _ )
02

+2(1--_)_

1 0 2
L12 = L21 =

r 000x

02 1 0

L13 = _-{ r Ox

L_2 -- (1- 2v)(0_-_

1 0 1 02\

r Or -_+_x 2)

, 1 02
42(1 -- _)-:

r ,

L23------1 02 r1 0r Or O0 }-(3--40 00

02
L31 = --

Or Ox

r Or 0---0--(3--4v)

lOLu=2(1--_) -F r Or

a2 02
\r _

(A.4)

A.2 END CONDITIONS

Using the classical theory of shells solution for

a circular cylindrical shell supported by shear

diaphragms at both ends as a guide, and choosing

u = U(r,O cos Xx cos _t]
l

v V(r,O sin _r cos _ot _ (A.5)
/

w = W(r,O) sin _r cos o_t)

where _ = m_r/l, the boundary conditions

_=v=w=O at x=O, l (A.6)

are found to be exactly satisfied.

A.3 DISPLACEMENT POTENTIAL FUNCTIONS

Mirsky (ref. A.5) suggested the use of displace-
ment potentials _ and ¢_ in ordel to continue the

solution of the equations of motion. The functions

and _bare related to U(r,O), V(r,_) and W(r,0)
by the following expressions

U(r, O) = C_

10_ O_
V(r,O) .....

r O0 Or

• O_ 10_

W(r,O) =_r +r -_-

(A.7)

where C is an arbitrary constant to be determined

later in the analysis.

A.4 SOLUTION OF THE EQUATIONS
OF MOTION

Substituting equations (A.5) and (A.7) into
equations (A.3) one obtains

XV2_ + [(1 - 20V _- 2(1 - _) k 2

+_2_]co=o (h.8)
lO
r _[2(1 -- v)V 2- (1 --20 h2+ 62oa2-- ),C]@

0

-_r[(1 - 2v)V2- (1-2v) k2+ _2_02]_I'= 0 (A.9)

0

_r[2 (1 -- v)V 2- (1 --20k2+ _2w2_ },C]4_

+1 0
r _[(1--20V 2

-- (1--2_)h2+_2w2]'I' =0 (A.10)

where

V2 02 1 0 1 02
= grr r2oe2

Uncoupling these equations yields
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___ V",_X2

_20_2 1

-_(l_-Z_-v)J_=0 (A.II)

(1-_) Jg =0 (A.12)

_2,,,2 -I

X[ _X2__ 2(l--v)JC_

(A.13)

At this stage the shell will be assumed to be

closed; thus

@(r,O) =f(r) cos nO (A.14)

•I' (r, 0) = g (r) sin nO (A. 15)

Substitution of equations (A.14) and (A.15) into

equations (A.11) and (A.12), one obtains the

differential equations governing f(.r) and g(r):

_%2 ][_;2_X2 _ _2_2 q

(A.16)

V2 _2-X2-t (1-2_) g(r)--0 (A.17)

where _2 = (02/0r2_t_0/r Or_nVr2). The solution

of equation (A.16)

f(r) =fl(r) +f2(r) -kf3(r) (A. 18)

where f1(r), f2(r), fs(r) are solutions of the follow-

ing differential equations

" (_2--[-pl2)fl(r) = 0

(_2 + p 22)f=(r) = 0

V2f3(r) =0
and

pl 2= -- k2--I- _2_2/2(1 -- v)

p_2 = _ k"-{- 82_2/(1 -- 2_)

(A.19)

(A.20)

(A.21)

are always real. The solution of equation (A.17)
is

g(r) = gl(r) -I-g2(r) (A.22)

where gl(r) and g2(r) are solutions of

(V2q-p 22)g_ (r) = 0 (A. 23)

V2g2(r) = 0 (A.24)

Upon substitution of f3(r) cos nO and g2(r) sin nO

for _(r,O) and _(r,O), respectively, in equations

(A.9), (A.10), and (A.13) one finds that

U=V=w=O

Thus one can discardf3(r)in equation (A.18) and

g2(r) in equation (A.22), since these functions do
not contribute to the displacements. Hence,

equations (A.18) and (A.22) becomes

f(r) = f l (r) -t-f2 (r)" (A. 25)

g (r) = gl(r) (A.26)

Equations (A.19), (A.20), and (A.23)are stan-

dard forms of Bessel's equation, which can be
written as

0 n 2

[ 02 1 _r+PR___)V(r ) =0L_r2q-r (A.27)

Solution of equation (A.27) depends on the sign

of p2. If one adopts the notation of Gazis (ref.

A.6), the general solution may be written as

V(r) = A,Z_(qr) q-B_Zn(qr) (A.28)

where A_ and B_ are constants of integration,

q2=ip21

IJ,(qr) if p2>0/ (A.29)
Z,(qr) = (I,(qr) if p2<:0_

IY_(qr) if p2>0/ (A.30)
g,(qr) = (K,(qr) if p2<0_

J_ and Y. are the Bessel functions of the first

and second kinds, respectively, and I. and K_
are the modified Bessel functions of the first and

second kinds, respectively. Using equations

(A.29) and (A.30), one obtains the following

expressions for _, ¢ and C(b

¢ = [A,_,Z,(qlr) +B,_Z_(qlr) +C,,,Z_(q2r)

-t-Dm,g,(q=r)] cos nO (A.31)

= [E,,,Z,(q_r) +F,_,g,(q2r)] sin nO (A.32)

CO = { kA,_,Z,(q_r) -k ;_B,_,Z,(q_r) p22h

[C,_,,Z,(qzr) -k D,_Z,(q2r)] } cos
nO (A.33)

where Am, . . . , F,_. are undetermined coeffi-

cients, and where q_2= [p_21 and q22= [p221.

?
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The proper selection of Z_ and Z_ for different

intervals of the frequency to be used in equations

(A.31), (A.32), and (A.33) appear in table A.1

(ref. A.7).

Substituting equations (A.31), (A.32), and

(A.33) into equations (A.5) and (A.7), one

obtains for the displacements

_ p2 2u = XAmnZ,(qlr) WXBmng_(qlr)--_CmnZ_(q2r)

TABLE A.l.--Bessel Functions To Be Used With

Frequency Intervals

Interval

_>a

_>_>b

_<b

Function

Z,(q_r)

dn(qlr)

In(qlr)

I. (qlr)

Z.(qlr)

Y.(qlr)

K. (qir)

K.(qlr)

Z,(q_r)

J_(q2r)
J_ (q2r)
I_ (q2r)

_ ] a = h {E/[ph(1 +v) (1 --2v)]} u2D,,_Z_(q2r) cos kx cosn0 cos _t (A.34) b=X{E/[2ph(l+v)l}U2
.J

[ n A m,Z_ (_lr) n B -- n n dZ, (q2r )v = -- +- m_Z_ (qlr) +-Cm_Z_ (q_r) +-Dm_2_ (q2r) + Em_
Lr r r r dr

+_ dZ,,(q2r) _

_ drr J sin kx sin nO cos o_t

[A,_,dZ"(q_r)+Bm_dZ_(q_r) C dZ_(q2r) D d2,(q2r) nEw= + m_ + m_ +- m.Z_(q2r)
[ dr dr dr dr r

]+r ,_Z_(q2r) sin Xx cos nO cos o_t

2.(q2r)

Y.(qsr)

Y.(q2r)

K_(q_r)

(A.35)

(A.36)

A.5 EXPRESSIONS FOR STRESSES

The stresses are expressed in terms of the functions Z_(qlr), Z,(qlr), Z,(q2r), and Z_(q2r) by
substitution of equations (A.34), (A.35), and (A.36) into the displacement-strain and stress-strain

relationships, equations (A.2) and (1.69). The stresses are

(T_= _{ { _[2n(n-1) + (k.2-p_?)r2]Z_(qlr) +_qlrZ_+ l(qlr) } A,,_ + { _[2n(n-1)
I

+ (x_ p_?)r22.(qlr)] +qlrZn+ l(qlr) } B,_ + {[n(n " 1) -- p22r2]Z_(q_r) +_q2rZ_+l(q2r) }C,._

+ {[n (n - 1) - p 22r2]2_ (q _.r)+ q :r2_+ 1(q _r) }D m_+ [n (n - 1) Z_ (q _r) - _nq 2rZ.+ 1(q 2r) ]Era.
I

I

+[n(n-- 1)2_(q_.r)
--nq2rZ.+1(q_r)]F,._} sin _x cos ne cos _t (A.37)

"rro= [ -- n (n -- 1 )Zn (q lr) -_-f nq xrZ.+x (q lr)] A m_+ [ -- n (n -- 1) 2. (q lr) + nq lrZ_+ 1(q xr) ]B,._

+ [ -- n (n - 1) Z_ (q _r) + _nq 2rZn+ 1(q 2r)]Cm_+ [ - n (n -- 1) 2_ (q 2r) + nq _r2_+_ (q 2r)]Din

+[--(n2--n--_)Z,(q2r)--_q_rZ,+l(q_r) JEm,+[ [ _ P_zr2_n . ,•-V
-1t

-- q2rZ_-_ l (q2r)

v_ = _{ Xr[nZ.(qlr) --_q_rZ.+_(q_r)]A,_. + Xr[n2.(qlr) --q_r£.+_(qlr) ]B,..

r r _
+_-_( x_ -P_2)[nZ.(q_ r) --_q_rZ.+ _(q2r) ]Cm. +-_-£ (h _--p_:)[nZ.(q_r) -q2rZ.+ l(q2r) ]D,..

kr Z kr - I
+-_n _(q2r)E,._+-_nZ_(q2r)Fm_j cos kx cos nO cos _t (A.39)

.L_

,': . .
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+ (1---_v)pl2r2+_X2r _ Z.(qlr)B:.--p22r2Cm_--p22r2Dm_ sin kx cos nO cos _t (A.40)

E - 1 t- nXr)Z_ (q2r) Cm_(l_-v)r2[nkrZ.(qlr)Am.+nXrZ.(qlr)B,..+_( nP; 2r

1 2
+_( np_Srx t-nXr)Z.(q2r)Dm.-t--_(nXrZ.(q2r)-_q2Xr Z.+l(q2r))Em.

+l(n),rZ.¢q:r)-_q:_,r:Z.+_(q:r))F,.:] cos _ sin nOcos ,_t (A.41)

o'0 (l_)r2{ {I--n(n--1) (1--v-2v)(X2r2+pl2r2)JZ"(q_r)--_qirZ'+l(qff)}A,..

+{[-n(n-1) (i__2_)(X2r:+pl2r2)Z.(q_r)]-qirZ.+_(q_r)}B,_.+[-n(n-i)Z.(q2 r)

-- _q2rZ.+ 1(q 2r)]Cm_+ [ - n (n - 1) 2_ (q 2r) -- q2r2,_+_(q 2r) ]D mn+ [ - n (n - 1) Zn (q 2r)

+_nq2rZ.+l(q2r)]E,._W[--n(n- 1)2:(q2r) +nq2rZ_+l(q2r)]F,._} sin kx cos nO cos o_t (A.42)

In equations (A.37) through (A.42) the param-

eter _ was introduced to account for the differ-
ences in the differentiation formulas between the

different kinds of Bessel functions. The value of

_-is 1 when J and Y functions are used and --1
when I and K functions are used.

A.6 FREQUENCY EQUATION

For free vibration, the stresses must vanish

on the cylindrical boundaries r = R_, R0 (see fig.

A.2). That is

_,=r,o =r0==0 at r = R_, R0 (A.43)

Substituting equations (A.37), (A.38), and (A.39)

into equations (A.43) yields six homogeneous

equations in the unknown coefficients, Amn, ....
F,_,. For a nontrivial solution, the determinant of

the coefficient matrix is set equal to zero, yielding

(ref. A.8)

la_[ = 0 (i,j = 1, . . . , 6) (A.44)

where

ax_ = l[2n(n -- 1) + (X2-- p22) Ro_]Z.(q_Ro)

+_qlRoZ_+l(qlRo)

1 2 2 -
a12= _[2n(n-- 1) + (X2- p_ ) Ro ]Z,_(qlRo)

WqlRoZ,_+l(qlRo)

ala = [n(n- 1) -p22 Ro2]Z,,(q2Ro)

+_q_RoZ,+l(q2Ro)

a14 = [n(n- 1) - p22Ro2]Zn(q2Ro)
Wq_RoZ,_+ l (q2Ro)

a_ = n(n- 1)Zn(q_Ro) - _nq_RoZ,_+_(q:Ro)

a16 = n(n- 1)Z.(q_R0) -nq_RoZn+_(q_Ro)

a2_ = --n(n- 1)Z,,(qiRo) + _nqlRoZn+l(qlRo)

a2_ = --n(n-- 1)Z,_(q_Ro) +nq_RoZn+_(q_Ro)

a2a = --n(n-- 1)Z,_(q2Ro) +_nq_RoZ,,+l(q_Ro)

a2_ = --n(n-- 1)Z.(q_Ro) +nq2RoZn+l(q_Ro)

a_ = kRo[nZ,,(qlRo) --_q_RoZn+_(qlRo)]

a_2 = kRo[nZ,,(qlRo) - q_RoZ,,+l(qlRo)]

Ro 2
a_a = _-_ (k s-p_ )[nZ,,(q2Ro) - _q2RoZ,,+gq2Ro)]

Ro
a_ = _-_(k 2 -- p2 _)lug,, (q_Ro) - q_RoZ,+l (q2R0)]

¢

+
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hR°nz _ R _
a35 =_-- n_q2 o)

kR0 -

aa6 = _-nZn (q2R0)

The remaining three rows of the determinant are

obtained from the first three by substituting Ri

for R0. The free vibration frequencies _ are the
roots of equation (A.44).

Other investigations which are useful in study-
ing the three-dimensional vibrations of circular
cylinders include reference A.9.
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