LONGITUDINAL NATURAL FREQUENCIES OF RODS AND RESPONSE TO INITIAL CONDITIONS

Revision B
By Tom Irvine
Email: tomirvine@aol.com
March 24, 2009

Consider a thin rod.

E is the modulus of elasticity.
A is the cross-section area.
m is the mass per unit length.
The longitudinal displacement $u(x, t)$ is governed by the equation

$$
\begin{equation*}
\frac{\partial}{\partial \mathrm{x}}\left[\mathrm{EA}(\mathrm{x}) \frac{\partial \mathrm{u}}{\partial \mathrm{x}}\right]=\mathrm{m}(\mathrm{x}) \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}} \tag{1}
\end{equation*}
$$

This equation is taken from Reference 1.
For a uniform cross-section, the governing equation simplifies to

$$
\begin{equation*}
\operatorname{EA}(x) \frac{\partial^{2} u}{\partial x^{2}}=m(x) \frac{\partial^{2} u}{\partial t^{2}} \tag{2}
\end{equation*}
$$

Consider a beam with uniform mass density. The governing equation simplifies to

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}=\left(\frac{\rho}{E}\right) \frac{\partial^{2} u}{\partial t^{2}} \tag{3}
\end{equation*}
$$

where
ρ is the mass per unit volume.

Let

$$
\begin{equation*}
c=\sqrt{\frac{E}{\rho}} \tag{4}
\end{equation*}
$$

Note that c is the longitudinal wave velocity. Substitute equation (4) into (3).

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}=\left(\frac{1}{\mathrm{c}^{2}}\right) \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}} \tag{5}
\end{equation*}
$$

Separate the variables. Let

$$
\begin{equation*}
\mathrm{u}(\mathrm{x}, \mathrm{t})=\mathrm{U}(\mathrm{x}) \mathrm{T}(\mathrm{t}) \tag{6}
\end{equation*}
$$

Substitute equation (6) into (5).

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}}[\mathrm{U}(\mathrm{x}) \mathrm{T}(\mathrm{t})]=\left(\frac{1}{\mathrm{c}^{2}}\right) \frac{\partial^{2}}{\partial \mathrm{t}^{2}}[\mathrm{U}(\mathrm{x}) \mathrm{T}(\mathrm{t})] \tag{7}
\end{equation*}
$$

Perform the partial differentiation.

$$
\begin{equation*}
\mathrm{U}^{\prime \prime}(\mathrm{x}) \mathrm{T}(\mathrm{t})=\left(\frac{1}{\mathrm{c}^{2}}\right) \mathrm{U}(\mathrm{x}) \mathrm{T}^{\prime \prime}(\mathrm{t}) \tag{8}
\end{equation*}
$$

Divide through by $\mathrm{U}(\mathrm{x}) \mathrm{T}(\mathrm{t})$.

$$
\begin{align*}
& \frac{\mathrm{U}^{\prime \prime}(\mathrm{x})}{\mathrm{U}(\mathrm{x})}=\left(\frac{1}{\mathrm{c}^{2}}\right) \frac{\mathrm{T}^{\prime \prime}(\mathrm{t})}{\mathrm{T}(\mathrm{t})} \tag{9}\\
& \mathrm{c}^{2} \frac{\mathrm{U}^{\prime \prime}(\mathrm{x})}{\mathrm{U}(\mathrm{x})}=\frac{\mathrm{T}^{\prime \prime}(\mathrm{t})}{\mathrm{T}(\mathrm{t})} \tag{10}
\end{align*}
$$

Each side of equation (10) must equal a constant. Let ω be a constant.

$$
\begin{equation*}
c^{2} \frac{U^{\prime \prime}(x)}{U(x)}=\frac{T^{\prime \prime}(t)}{T(t)}=-\omega^{2} \tag{11}
\end{equation*}
$$

The time equation is

$$
\begin{align*}
& \frac{T^{\prime \prime}(t)}{T(t)}=-\omega^{2} \tag{12}\\
& T^{\prime \prime}(t)=-\omega^{2} T(t) \tag{13}\\
& T^{\prime \prime}(t)+\omega^{2} T(t)=0 \tag{14}
\end{align*}
$$

Propose a solution

$$
\begin{align*}
& T(t)=a \sin (\omega t)+b \cos (\omega t) \tag{15}\\
& T^{\prime}(t)=a \omega \cos (\omega t)-b \omega \sin (\omega t) \tag{16}\\
& T^{\prime \prime}(t)=-a \omega^{2} \sin (\omega t)-b \omega^{2} \cos (\omega t) \tag{17}
\end{align*}
$$

Verify the proposed solution. Substitute into equation (14).

$$
\begin{gather*}
-a \omega^{2} \sin (\omega t)-b \omega^{2} \cos (\omega t)+\omega^{2}\left[\sin (\omega t)+\omega^{2} \cos (\omega t)\right]=0 \tag{18}\\
0=0 \tag{19}
\end{gather*}
$$

Equation (15) is thus verified as a solution.
There is not a unique ω, however, in equation (11). This is demonstrated later in the derivation. Thus a subscript n must be added as follows.

$$
\begin{equation*}
T_{n}(t)=a_{n} \sin \left(\omega_{n} t\right)+b_{n} \cos \left(\omega_{n} t\right) \tag{20}
\end{equation*}
$$

The spatial equation is

$$
\begin{align*}
& c^{2} \frac{U^{\prime \prime}(x)}{U(x)}=-\omega^{2} \tag{21}\\
& c^{2} U^{\prime \prime}(x)=-\omega^{2} U(x) \tag{22}\\
& c^{2} U^{\prime \prime}(x)+\omega^{2} U(x)=0 \tag{23}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{U}^{\prime \prime}(\mathrm{x})+\frac{\omega^{2}}{\mathrm{c}^{2}} \mathrm{U}(\mathrm{x})=0 \tag{24}
\end{equation*}
$$

Equation (24) is similar to equation (14). Thus, a solution can be found by inspection.

$$
\begin{equation*}
\mathrm{U}(\mathrm{x})=\mathrm{d} \sin \left(\frac{\omega \mathrm{x}}{\mathrm{c}}\right)+\mathrm{e} \cos \left(\frac{\omega \mathrm{x}}{\mathrm{c}}\right) \tag{25}
\end{equation*}
$$

The slope equation is

$$
\begin{equation*}
U^{\prime}(x)=\left[\frac{\omega}{c}\right]\left[d \cos \left(\frac{\omega x}{c}\right)-e \sin \left(\frac{\omega x}{c}\right)\right] \tag{26}
\end{equation*}
$$

Now consider three boundary condition cases as shown in the following appendices.

REFERENCE

1. L. Meirovitch, Analytical Methods in Vibrations, Macmillan, New York, 1967.

APPENDIX A

Case I. Fixed-Fixed

The left boundary condition is

$$
\begin{align*}
& \mathrm{u}(0, \mathrm{t})=0 \quad \text { (zero displacement) } \tag{A-1}\\
& \mathrm{U}(0) \mathrm{T}(\mathrm{t})=0 \tag{A-2}\\
& \mathrm{U}(0)=0 \tag{A-3}
\end{align*}
$$

The right boundary condition is

$$
\begin{align*}
& \mathrm{u}(\mathrm{~L}, \mathrm{t})=0 \quad \text { (zero displacement) } \tag{A-4}\\
& \mathrm{U}(\mathrm{~L}) \mathrm{T}(\mathrm{t})=0 \tag{A-5}\\
& \mathrm{U}(\mathrm{~L})=0 \tag{A-6}
\end{align*}
$$

Substitute equation (A-3) into (25).

$$
\begin{equation*}
e=0 \tag{A-7}
\end{equation*}
$$

Thus, the displacement equation becomes

$$
\begin{equation*}
\mathrm{U}(\mathrm{x})=\mathrm{d} \sin \left(\frac{\omega \mathrm{x}}{\mathrm{c}}\right) \tag{A-8}
\end{equation*}
$$

Substitute equation (A-6) into (A-8).

$$
\begin{equation*}
\mathrm{d} \sin \left(\frac{\omega \mathrm{~L}}{\mathrm{c}}\right)=0 \tag{A-9}
\end{equation*}
$$

The constant d must be non-zero for a non-trivial solution. Thus,

$$
\begin{equation*}
\frac{\omega_{\mathrm{n}} \mathrm{~L}}{\mathrm{c}}=\mathrm{n} \pi, \quad \mathrm{n}=1,2,3, \ldots \tag{A-10}
\end{equation*}
$$

The ω term is given a subscript n because there are multiple roots.

$$
\begin{equation*}
\omega_{\mathrm{n}}=\mathrm{n} \pi \frac{\mathrm{c}}{\mathrm{~L}}, \quad \mathrm{n}=1,2,3, \ldots \tag{A-11}
\end{equation*}
$$

The displacement function the fixed-fixed rod is

$$
\begin{align*}
& U_{n}(x)=d_{n} \sin \left(\frac{\omega_{n} x}{c}\right) \tag{A-12}\\
& U_{n}(x)=d_{n} \sin \left(\frac{n \pi x}{L}\right) \tag{A-13}
\end{align*}
$$

Substitute the natural frequency term into the time equation.

$$
\begin{equation*}
\mathrm{T}_{\mathrm{n}}(\mathrm{t})=\mathrm{a}_{\mathrm{n}} \sin \left(\frac{\mathrm{n} \pi \mathrm{ct}}{\mathrm{~L}}\right)+\mathrm{b}_{\mathrm{n}} \cos \left(\frac{\mathrm{n} \pi \mathrm{ct}}{\mathrm{~L}}\right) \tag{A-14}
\end{equation*}
$$

The displacement function is thus

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left\{\left[d_{n} \sin \left(\frac{n \pi x}{L}\right)\right]\left[a_{n} \sin \left(\frac{n \pi c t}{L}\right)+b_{n} \cos \left(\frac{n \pi c t}{L}\right)\right]\right\} \tag{A-15}
\end{equation*}
$$

The coefficients can be simplified as follows

$$
\begin{align*}
& \mathrm{A}_{\mathrm{n}}=\mathrm{d}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}} \tag{A-16}\\
& \mathrm{~B}_{\mathrm{n}}=\mathrm{d}_{\mathrm{n}} \mathrm{~b}_{\mathrm{n}} \tag{A-17}
\end{align*}
$$

By substitution, the displacement equation is

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left\{\left\{\sin \left(\frac{n \pi x}{L}\right)\right]\left[A_{n} \sin \left(\frac{n \pi c t}{L}\right)+B_{n} \cos \left(\frac{n \pi c t}{L}\right)\right]\right\} \tag{A-18}
\end{equation*}
$$

APPENDIX B

Case II. Fixed-Free

The left boundary conditions is

$$
\begin{align*}
& \mathrm{u}(0, \mathrm{t})=0 \quad \text { (zero displacement) } \tag{B-1}\\
& \mathrm{U}(0) \mathrm{T}(\mathrm{t})=0 \tag{B-2}\\
& \mathrm{U}(0)=0 \tag{B-3}
\end{align*}
$$

The right boundary condition is

$$
\begin{align*}
& \left.\frac{\partial}{\partial \mathrm{x}} \mathrm{u}(\mathrm{x}, \mathrm{t})\right|_{\mathrm{x}=\mathrm{L}}=0 \quad \text { (zero stress) } \tag{B-4}\\
& \mathrm{U}^{\prime}(\mathrm{L}) \mathrm{T}(\mathrm{t})=0 \tag{B-5}\\
& \mathrm{U}^{\prime}(\mathrm{L})=0 \tag{B-6}
\end{align*}
$$

Substitute equation (B-3) into (25).

$$
\begin{equation*}
e=0 \tag{B-7}
\end{equation*}
$$

Thus, the displacement equation becomes

$$
\begin{align*}
U(x) & =d \sin \left(\frac{\omega x}{c}\right) \tag{B-8}\\
U^{\prime}(x) & =\left[\frac{\omega}{c}\right]\left[d \cos \left(\frac{\omega x}{c}\right)\right] \tag{B-9}
\end{align*}
$$

Substitute equation (B-6) into equation (B-9).

$$
\begin{equation*}
\mathrm{d} \cos \left(\frac{\omega \mathrm{~L}}{\mathrm{c}}\right)=0 \tag{B-10}
\end{equation*}
$$

The constant d must be non-zero for a non-trivial solution. Thus,

$$
\begin{equation*}
\frac{\omega_{\mathrm{n}} \mathrm{~L}}{\mathrm{c}}=\left(\frac{2 \mathrm{n}-1}{2}\right) \pi, \quad \mathrm{n}=1,2,3, \ldots \tag{B-11}
\end{equation*}
$$

The ω term is given a subscript n because there are multiple roots.

$$
\begin{equation*}
\omega_{\mathrm{n}}=\left(\frac{2 \mathrm{n}-1}{2}\right) \pi \frac{\mathrm{c}}{\mathrm{~L}}, \quad \mathrm{n}=1,2,3, \ldots \tag{B-12}
\end{equation*}
$$

The displacement function for the fixed-free rod is

$$
\begin{gather*}
U_{n}(x)=d_{n} \sin \left(\frac{\omega_{n} x}{c}\right) \tag{B-13}\\
U_{n}(x)=d_{n} \sin \left(\frac{(2 n-1) \pi x}{2 L}\right) \tag{B-14}
\end{gather*}
$$

Substitute the natural frequency term into the time equation.

$$
\begin{equation*}
\mathrm{T}_{\mathrm{n}}(\mathrm{t})=\mathrm{a}_{\mathrm{n}} \sin \left(\frac{(2 \mathrm{n}-1) \pi \mathrm{ct}}{2 \mathrm{~L}}\right)+\mathrm{b}_{\mathrm{n}} \cos \left(\frac{(2 \mathrm{n}-1) \pi \mathrm{ct}}{2 \mathrm{~L}}\right) \tag{B-15}
\end{equation*}
$$

The displacement function is thus

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left\{\left[d_{n} \sin \left(\frac{(2 n-1) \pi x}{2 L}\right)\right]\left[a_{n} \sin \left(\frac{(2 n-1) \pi c t}{2 L}\right)+b_{n} \cos \left(\frac{(2 n-1) \pi c t}{2 L}\right)\right]\right\} \tag{B-16}
\end{equation*}
$$

Simplify the coefficients.

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left\{\left[\sin \left(\frac{(2 n-1) \pi x}{2 L}\right)\right]\left[A_{n} \sin \left(\frac{(2 n-1) \pi c t}{2 L}\right)+B_{n} \cos \left(\frac{(2 n-1) \pi c t}{2 L}\right)\right]\right\} \tag{B-17}
\end{equation*}
$$

Now determine the effective mass of the rod for the fundamental mode. The stiffness k at free end of the fixed-free longitudinal rod is

$$
\begin{equation*}
\mathrm{k}=\frac{\mathrm{EA}}{\mathrm{~L}} \tag{B-18}
\end{equation*}
$$

The formula for the fundamental frequency of a single-degree-of-freedom system is

$$
\begin{equation*}
\omega_{1}=\sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \tag{B-19}
\end{equation*}
$$

Solve for the mass m.

$$
\begin{equation*}
\mathrm{m}=\frac{\mathrm{k}}{\omega_{1}^{2}} \tag{B-20}
\end{equation*}
$$

Substitute the stiffness term from equation (B-18).

$$
\begin{equation*}
m=\frac{E A}{\omega_{1}^{2} L} \tag{B-21}
\end{equation*}
$$

Add a subscript e to denote that the mass is the effective mass.

$$
\begin{equation*}
\mathrm{m}_{\mathrm{e}}=\frac{\mathrm{EA}}{\omega_{1}^{2} \mathrm{~L}} \tag{B-22}
\end{equation*}
$$

Calculate the fundamental frequency from equation (B-12).

$$
\begin{align*}
& \omega_{1}=\left(\frac{1}{2}\right) \pi \frac{c}{L} \tag{B-23}\\
& \omega_{1}=\left(\frac{1}{2}\right) \pi \frac{1}{L} \sqrt{\frac{E}{\rho}} \tag{B-24}
\end{align*}
$$

$$
\begin{equation*}
\omega_{1}^{2}=\left(\frac{\pi^{2}}{4 L^{2}}\right) \frac{E}{\rho} \tag{B-25}
\end{equation*}
$$

Substitute the frequency term from equation (B-25) into (B-22).

$$
\begin{align*}
m_{e} & =\frac{4 L^{2} \rho E A}{E \pi^{2} L} \tag{B-26}\\
m_{e} & =\frac{4 L \rho A}{\pi^{2}} \tag{B-27}
\end{align*}
$$

Let M be the mass of the rod. The effective mass is

$$
\begin{equation*}
\mathrm{m}_{\mathrm{e}}=\frac{4}{\pi^{2}} \mathrm{M} \tag{B-28}
\end{equation*}
$$

APPENDIX C

Case III. Free-Free

The left boundary conditions is

$$
\begin{equation*}
\left.\frac{\partial}{\partial \mathrm{x}} \mathrm{u}(\mathrm{x}, \mathrm{t})\right|_{\mathrm{x}=0}=0 \quad \text { (zero stress) } \tag{C-1}
\end{equation*}
$$

$\mathrm{U}^{\prime}(0) \mathrm{T}(\mathrm{t})=0$

$$
\begin{equation*}
\mathrm{U}^{\prime}(0)=0 \tag{C-2}
\end{equation*}
$$

The right boundary condition is

$$
\begin{align*}
& \left.\frac{\partial}{\partial \mathrm{x}} \mathrm{u}(\mathrm{x}, \mathrm{t})\right|_{\mathrm{x}=\mathrm{L}}=0 \quad \text { (zero stress) } \tag{C-4}\\
& \mathrm{U}^{\prime}(\mathrm{L}) \mathrm{T}(\mathrm{t})=0 \tag{C-5}\\
& \mathrm{U}^{\prime}(\mathrm{L})=0 \tag{C-6}
\end{align*}
$$

Apply equation (C-3) to (25).

$$
\begin{equation*}
\mathrm{d}=0 \tag{C-7}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mathrm{U}(\mathrm{x})=\cos \left(\frac{\omega \mathrm{x}}{\mathrm{c}}\right) \tag{C-8}
\end{equation*}
$$

The slope equation is

$$
\begin{equation*}
\mathrm{U}^{\prime}(\mathrm{x})=-\left[\frac{\omega}{\mathrm{c}}\right]\left[\mathrm{e} \sin \left(\frac{\omega \mathrm{x}}{\mathrm{c}}\right)\right] \tag{C-9}
\end{equation*}
$$

Substitute equation (C-6) into (C-9).

$$
\begin{equation*}
e \sin \left(\frac{\omega L}{c}\right)=0 \tag{C-10}
\end{equation*}
$$

The constant e must be non-zero for a non-trivial solution. Thus,

$$
\begin{equation*}
\frac{\omega_{\mathrm{n}} \mathrm{~L}}{\mathrm{c}}=\mathrm{n} \pi, \quad \mathrm{n}=1,2,3, \ldots \tag{C-11}
\end{equation*}
$$

The ω term is given a subscript n because there are multiple roots.

$$
\begin{equation*}
\omega_{\mathrm{n}}=\mathrm{n} \pi \frac{\mathrm{c}}{\mathrm{~L}}, \quad \mathrm{n}=1,2,3, \ldots \tag{C-12}
\end{equation*}
$$

The displacement function for the free-free rod is

$$
\begin{align*}
& U_{n}(x)=e_{n} \cos \left(\frac{\omega_{n} x}{c}\right) \tag{C-13}\\
& U_{n}(x)=e_{n} \cos \left(\frac{n \pi x}{L}\right) \tag{C-14}
\end{align*}
$$

Substitute the natural frequency term into the time equation.

$$
\begin{equation*}
T_{n}(t)=a_{n} \sin \left(\frac{n \pi c t}{L}\right)+b_{n} \cos \left(\frac{n \pi c t}{L}\right) \tag{C-15}
\end{equation*}
$$

The displacement function is thus

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left\{\left\{e_{n} \cos \left(\frac{n \pi x}{L}\right)\right]\left[a_{n} \sin \left(\frac{n \pi c t}{L}\right)+b_{n} \cos \left(\frac{n \pi c t}{L}\right)\right]\right\} \tag{C-16}
\end{equation*}
$$

Simplify the coefficients.

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left\{\left[\cos \left(\frac{n \pi x}{L}\right)\right]\left[A_{n} \sin \left(\frac{n \pi c t}{L}\right)+B_{n} \cos \left(\frac{n \pi c t}{L}\right)\right]\right\} \tag{C-17}
\end{equation*}
$$

APPENDIX D

Fixed-Free Rod Subjected to Initial Displacement and Initial Velocity

Recall

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left\{\sin \left(\frac{\omega_{n} x}{c}\right)\left[A_{n} \sin \left(\omega_{n} t\right)+B_{n} \cos \left(\omega_{n} t\right)\right]\right\} \tag{D-1}
\end{equation*}
$$

Let

$$
\begin{gather*}
u(x, 0)=f(x) \tag{D-2}\\
\dot{u}(x, 0)=g(x) \tag{D-3}\\
f(x)=\sum_{n=1}^{\infty}\left\{B_{n} \sin \left(\frac{\omega_{n} x}{c}\right)\right\} \tag{D-4}
\end{gather*}
$$

Premultiply by $\sin \left(\frac{\omega_{\mathrm{m}} \mathrm{x}}{\mathrm{c}}\right)$ and integrate.

$$
\begin{gather*}
\int_{0}^{L} f(x) \sin \left(\frac{\omega_{m} x}{c}\right) d x=\sum_{n=1}^{\infty}\left\{B_{n} \int_{0}^{L} \sin \left(\frac{\omega_{m} x}{c}\right) \sin \left(\frac{\omega_{n} x}{c}\right) d x\right\} \tag{D-5}\\
\omega_{m}=\left(\frac{2 m-1}{2}\right) \pi \frac{c}{L}, \quad m=1,2,3, \ldots \tag{D-6}
\end{gather*}
$$

For $\mathrm{m} \neq \mathrm{n}$,
The integral on the right hand side of (D-5) goes to zero. The steps are omitted for brevity.

For $\mathrm{m}=\mathrm{n}$,

$$
\begin{gather*}
\int_{0}^{L} f(x) \sin \left(\frac{\omega_{m} x}{c}\right) d x=B_{m} \int_{0}^{L} \sin ^{2}\left(\frac{\omega_{m} x}{c}\right) d x \tag{D-7}\\
\int_{0}^{L} f(x) \sin \left(\frac{\omega_{m} x}{c}\right) d x=\frac{1}{2} B_{m} \int_{0}^{L}\left[1-\cos \left(\frac{2 \omega_{m} x}{c}\right)\right] d x \tag{D-8}\\
\int_{0}^{L} f(x) \sin \left(\frac{\omega_{m} x}{c}\right) d x=\frac{1}{2} B_{m}\left[x-\left(\frac{c}{2 \omega_{m}}\right) \sin \left(\frac{2 \omega_{m} x}{c}\right)\right]_{0}^{L} \tag{D-9}\\
\int_{0}^{L} f(x) \sin \left(\frac{\omega_{m} x}{c}\right) d x=\frac{1}{2} B_{m}\left[L-\left(\frac{c}{2 \omega_{m}}\right) \sin \left(\frac{2 \omega_{m} L}{c}\right)\right] \tag{D-10}\\
\omega_{m}=\left(\frac{2 m-1}{2}\right) \pi \frac{c}{L}, \quad m=1,2,3, \ldots \tag{D-11}\\
B_{m} \tag{D-12}\\
\int_{0}^{L} f(x) \sin \left(\frac{\omega_{m} x}{c}\right) d x=\frac{1}{2} B_{m}^{L} \tag{D-13}\\
L
\end{gather*} \int_{0}^{L} f(x) \sin \left(\frac{\omega_{m} x}{c}\right) d x \quad 10
$$

$$
\begin{align*}
& \dot{u}(x, t)=\sum_{n=1}^{\infty}\left\{\omega_{n} \sin \left(\frac{\omega_{n} x}{c}\right)\left[A_{n} \cos \left(\omega_{n} t\right)-B_{n} \sin \left(\omega_{n} t\right)\right]\right\} \tag{D-14}\\
& g(x)=\sum_{n=1}^{\infty}\left\{\omega_{n} \sin \left(\frac{\omega_{n} x}{c}\right)\left[A_{n}\right]\right\} \tag{D-15}\\
& \int_{0}^{L} g(x) \sin \left(\frac{\omega_{m} x}{c}\right) d x=\omega_{m} \sum_{n=1}^{\infty}\left\{A_{n} \int_{0}^{L} \sin \left(\frac{\omega_{m} x}{c}\right) \sin \left(\frac{\omega_{n} x}{c}\right) d x\right\} \tag{D-16}
\end{align*}
$$

Equation (D-16) is similar to (D-5).

$$
\begin{equation*}
A_{m}=\frac{2}{\omega_{m} L} \int_{0}^{L} f(x) \sin \left(\frac{\omega_{m} x}{c}\right) d x \tag{D-17}
\end{equation*}
$$

Again,

$$
\begin{equation*}
\omega_{\mathrm{m}}=\left(\frac{2 \mathrm{~m}-1}{2}\right) \pi \frac{\mathrm{c}}{\mathrm{~L}}, \quad \mathrm{~m}=1,2,3, \ldots \tag{D-11}
\end{equation*}
$$

