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LONGITUDINAL NATURAL FREQUENCIES OF RODS 
AND RESPONSE TO INITIAL CONDITIONS 

 

Revision B 
 
By Tom Irvine 
Email:  tomirvine@aol.com 
 
March 24, 2009 
____________________________________________________________________ 
 
Consider a thin rod. 
 
 
 
 
 
 
 
 

 
 E   is the modulus of elasticity. 
 A   is the cross-section area. 
 m   is the mass per unit length. 
 
The longitudinal displacement u(x, t) is governed by the equation  
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This equation is taken from Reference 1. 
 
For a uniform cross-section, the governing equation simplifies to 
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Consider a beam with uniform mass density.  The governing equation simplifies to 
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where 
 

   is the mass per unit volume. 
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Note that c is the longitudinal wave velocity.  Substitute equation (4) into (3). 
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Separate the variables.  Let 
 

u x t U x T(t( , ) ( ) )                                                                           (6) 
 

Substitute equation (6) into (5). 
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Perform the partial differentiation. 
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Divide through by U(x)T(t). 
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Each side of equation (10) must equal a constant.  Let  be a constant. 
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The time equation is 
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  T t T(t( ) )2                                                                           (13) 
 

  T t T(t( ) )2 0                                                                        (14) 
 

Propose a solution 
 

   T(t a t b t) sin cos                                                                    (15) 
 

     T t a t b t( ) cos sin                                                             (16) 
 

      T t a t b t( ) sin cos   2 2                                                 (17) 
 
Verify the proposed solution.  Substitute into equation (14). 

 

            a t b t t t       2 2 2 2 0sin cos sin cos                       (18) 

                              
                 0 = 0                                                              (19) 

                              
Equation (15) is thus verified as a solution. 
 
There is not a unique  , however, in equation (11).  This is demonstrated later in the 
derivation.  Thus a subscript n must be added as follows. 

 

   T t a t b tn n n n n( ) sin cos                                                       (20) 

 
The spatial equation is 
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Equation (24) is similar to equation (14).  Thus, a solution can be found by inspection. 
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The slope equation is 
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Now consider three boundary condition cases as shown in the following appendices. 
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APPENDIX A 

 
Case I.  Fixed-Fixed 
 

The left boundary condition is 
 

u t( , )0 0         (zero displacement)                                                             (A-1)         
 

U T t( ) ( )0 0                                                                                                (A-2) 
 

U( )0 = 0                                                                                                      (A-3) 
 

The right boundary condition is 
 

u L t( , )  0         (zero displacement)                                                             (A-4)         
 

U L T(t( ) )  0                                                                                                (A-5) 
 

U L( )  0                                                                                                      (A-6)                               
 

Substitute equation (A-3) into (25). 
  

e = 0                                                                                                    (A-7) 
 
Thus, the displacement equation becomes 
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Substitute equation (A-6) into (A-8).                                                                                                                    
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The constant d must be non-zero for a non-trivial solution.  Thus, 
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The   term is given a subscript n because there are multiple roots. 
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The displacement function the fixed-fixed rod is  
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Substitute the natural frequency term into the time equation. 
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The displacement function is thus 
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The coefficients can be simplified as follows 
 

A d an n n                                                                (A-16) 
 

B d bn n n                                                                (A-17) 
 
 

By substitution, the displacement equation is 
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APPENDIX B 
 

Case II.  Fixed-Free 
 

The left boundary conditions is 
 
 

u t( , )0 0         (zero displacement)                                                             (B-1)         
 

U T t( ) ( )0 0                                                                                                (B-2) 
 

U( )0 = 0                                                                                                      (B-3) 
 

The right boundary condition is 
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 0           (zero stress)                                                        (B-4) 

 
 

 U L T(t( ) ) 0                                                                                             (B-5) 
 

 U L( ) 0                                                                                                   (B-6) 
 
 

Substitute equation (B-3) into (25). 
  

e = 0                                                                                                    (B-7) 
 
Thus, the displacement equation becomes 
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Substitute equation (B-6) into equation (B-9). 
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The constant d must be non-zero for a non-trivial solution.  Thus, 
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The   term is given a subscript n because there are multiple roots. 
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The displacement function for the fixed-free rod is 
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Substitute the natural frequency term into the time equation. 
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The displacement function is thus 
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Simplify the coefficients. 
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Now determine the effective mass of the rod for the fundamental mode.  The stiffness k 
at free end of the fixed-free longitudinal rod is 
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The formula for the fundamental frequency of a single-degree-of-freedom system is 
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Solve for the mass m. 
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Substitute the stiffness term from equation (B-18). 
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Add a subscript e to denote that the mass is the effective mass. 
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Calculate the fundamental frequency from equation (B-12). 
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Substitute the frequency term from equation (B-25) into (B-22). 
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Let M be the mass of the rod.  The effective mass is 
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APPENDIX C 

 
Case III.  Free-Free 
 

The left boundary conditions is 
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0           (zero stress)                                                        (C-1) 

 
 

 U T(t( ) )0 0                                                                                             (C-2) 
 

 U ( )0 0                                                                                                   (C-3) 
 
The right boundary condition is 
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 0           (zero stress)                                                        (C-4) 

 
 

 U L T(t( ) ) 0                                                                                             (C-5) 
 

 U L( ) 0                                                                                                   (C-6) 
 
Apply equation (C-3) to (25). 
 

d  0                                                                                                  (C-7) 
 

Thus 

U x
x

c
( ) cos








                                                                                   (C-8) 

 
The slope equation is 
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Substitute equation (C-6) into (C-9). 
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The constant e must be non-zero for a non-trivial solution.  Thus, 
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The   term is given a subscript n because there are multiple roots. 
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The displacement function for the free-free rod is 
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Substitute the natural frequency term into the time equation. 
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The displacement function is thus 
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Simplify the coefficients. 
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APPENDIX D 

 
 
Fixed-Free Rod Subjected to Initial Displacement and Initial Velocity 
 
Recall 
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Premultiply by  
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For m  n, 
 

The integral on the right hand side of (D-5) goes to zero.  The steps are omitted 
for brevity. 

 
For m = n, 
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Equation (D-16) is similar to (D-5).        
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