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______________________________________________________________________________ 

 

The following derivation is based on Reference 1. 

 

Variables 

 

)t(x  is the displacement vector 

M is the mass matrix 

C is the damping matrix 

K is the stiffness matrix 

P(t) is the applied load vector 

iF  is the modal force 

 i  is the eigenvector matrix 

i  is the natural frequency 

i  is the damping ratio 

)t(  is the modal displacement 

 

 

Structural dynamic problems can be solved by modal superposition methods.  Two particular 

methods are the mode displacement method and the mode acceleration method. 

 

Furthermore, reduction techniques such as mass condensation are often used to reduce the size of 

a dynamics problem, thereby eliminated higher modes. 

 

The mode acceleration method uses a pseudo-static solution to account for the flexibility of 

modes which are eliminated in the mode displacement method. 

 

The equations of motion for an n-degree-of-freedom system are 
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The corresponding generalized eigenvalue problem for the undamped system is 
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ii ]M[]K[     ,  i=1, 2,…, n                                                                      (1b) 

 

 

 

Perform a transformation to modal coordinates. 
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By substitution, 
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Premultiply  Ti  
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Normalize the eigenvectors such that 
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Let 
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The transformation also yields a set of n uncoupled equation  
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The modal displacement can be represented as 
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Now assume that a reduction method has been performed such that there are m degrees-of-

freedom, where m < n.  The displacement for the reduced system is thus 
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Greater accuracy is achieved by replacing   
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  with the pseudo-static term 

 )t(P]K[ 1  , where the pseudo-static term contains all n degrees-of-freedom. 
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The summation in equation (12) represents a dynamic correction to the pseudo-static response. 

 

Note that the value m may be less than the total degrees-of-freedom n if a reduction technique 

such as mass condensation was used.  On the other hand, the pseudo-static term immediately to 

the right of the equal sign contains all of the degrees-of-freedom. 

 

Also note that 1]K[  does not exist for certain ungrounded structures such as a free-free beam.  

Pseudo-inverse methods are thus required.       
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APPENDIX A 

 

Example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure A-1. 

 

 

A three-degree-of-freedom system is shown in Figure A-1.  First, determine the displacement 

using the full mode set.  Then solve for two modes only.  Finally solve using mode acceleration 

with two modes via equation (12).  Compare the results at mass 3.   

     k4 

     k5 

     f 

  m1 

     k1 

     k2 

x1 

x2 

  m2 

  m3 

     k3 

x3 



 

6 

 

The parameters are 

 

m1 0.0895 lbf sec^2/in 

m2 0.0887 lbf sec^2/in 

m3 0.0770 lbf sec^2/in 

k1 1.8522e+04 lbf/in 

k2 0.2157e+04 lbf/in 

k3 0.2270e+04 lbf/in 

k4 1.9429e+04 lbf/in 

k5 1.7072e+04 lbf/in 

 

The damping is 0.05 for all modes. 

 

The force applied to mass 3  is:  1 lbf, 70 Hz sine function, 0.2 second duration. 

 

 

The mass matrix is 
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The stiffness matrix is 
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The natural frequencies are 

 

                 86.47678.27773.639    Hz                                                                           (A-3) 

 

The mode shapes are 
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Figure A-2. 

 

The displacements are calculated using:  mdof_modal_arbit_force_newmark_MA.m 

 

The Mode Acceleration method improves the “Two Modes” results.  Further test cases are 

needed to evaluate the method.  
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