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TECHNICAL MEMORANDUM

AN ALTerNATIVe MeTHOd OF SPeCIFYING SHOCk TeST CrITerIA

1.  INTrOdUCTION

 The Space Shuttle �s boosted �nto orb�t by two large 3.3-m�ll�on-lb thrust sol�d rocket boost-
ers (SRBs) and three Space Shuttle ma�n eng�nes (ME). Each of these propuls�on elements �s reusable; 
the SRBs are qualified for 20 missions. During some of the early Space Shuttle flights, it was discovered 
that water impact shock levels on the SRBs had been underpredicted. Later flights added extensive flight 
instrumentation to characterize and map the environments on the SRBs. Since the hardware had flown 
several t�mes before the d�scovery of the exceedances and surv�ved, �t was dec�ded that the compo-
nents would not be qualification tested to the new environments; however, any changes to the hardware 
would have to be qualified depending on the significance of the changes. The SRB integrated electronics 
assembly (IEA) was selected for qualification due to such a hardware change.

 The IEA �s rather large for an electron�cs box: about 4 ft long and 200 lb. There are two per 
SRB—one �n the forward sk�rt and the other on the external tank (ET) attach r�ng. The water �mpact 
shock response spectrum (SRS) was as specified below:

Table 1.  Water �mpact SRS test cr�ter�a.

Water Impact SRS Test Criteria
(All axes, one shock per axis per mission, Q=10)

20 Hz @ 50 g’s peak
20 – 70 Hz @ +8 dB/oct

70 – 5,000 Hz @ 250 g’s peak

 Per Marshall Space Fl�ght Center (MSFC) pol�cy, the cr�ter�a were supposed to envelope the 
actual max�mum pred�cted env�ronment w�th no add�t�onal marg�n. When a mass s�mulator us�ng an 
actual housing was tested to these levels, the cast aluminum housing broke at the box-to-fixture inter-
face. There had been similar flight failures on the aft IEA, but they were due to water pressure from 
cavity collapse rather than deceleration. The flight data were reviewed further, and the test criteria were 
reduced to 140 g peak. A subsequent test on another hous�ng to the new levels also resulted �n a s�m�lar 
failure. Other SRB hardware, such as batteries with nylon housings, was also very difficult to qualify  
by test using the SRS. Clearly, the test criteria were not representing the actual flight conditions.
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 The SRS has served the shock and v�brat�on commun�ty for years, allow�ng pract�t�oners the 
ab�l�ty to qual�fy sens�t�ve hardware to harsh aerospace and other shock env�ronments. Prev�ously, the 
commun�ty assumed that �f the sever�ty of the SRS synthes�zed by the shaker �s equal to the sever�ty 
of the SRS measured, then the hardware would have equ�valent effects.  Th�s was assumed even �f the 
s�ngle-degree-of-freedom systems selected as reference �n the construct�on of the SRS do not represent 
the actual hardware to be tested. Often, �f the SRS of measured trans�ents at mult�ple locat�ons or events 
character�zes the env�ronment, averag�ng or envelop�ng �s employed to produce a global SRS. As well 
served as the commun�ty has been by these assumpt�ons over the years, the need �s great for SRS test�ng 
to evolve �n a d�rect�on toward reproduc�ng as closely as poss�ble the actual complex trans�ent s�gnatures 
of the measured exc�tat�on. The reasons for do�ng so �nclude the follow�ng:

	 (1)		Lack	of	repeatability/reproducibility	of	SRS	between	laboratories	and/or	shakers	brought	
about by inadequate instrumentation, anti-aliasing filter characteristics, or alternating current (ac)-cou‑
pling	strategies.1

	 (2)		Neglect	of	the	compliance	of	the	mounting	structure,	often	referred	to	as	spectrum	dip,	
frequently	leads	to	overtesting.	This	is	especially	true	for	global	SRS—created	by	enveloping	or	averag‑
ing‑assigned	to	represent	an	entire	mounting	zone	for	a	variety	of	equipment	of	different	weights,	geom‑
etries	and	dynamic	characterizations.2

	 (3)		SRS	construction	eliminates	phasing	information.	If	the	structure	being	tested	is	not	charac‑
terized	by	a	dominant	mode	in	the	frequency	band	of	interest,	differences	between	the	motion	created		
by the shaker to represent the SRS and the actual transient motion measured can neglect significant cou‑
pling	between	modes.

	 (4)		SRS	construction	is	done	using	linear	idealistic	single‑degree‑of‑freedom	systems.	Nonlin‑
earities	in	the	actual	hardware	resulting	from	friction	or	nonlinear	springs	created	by	gapping	or	other	
sources	often	preclude	even	the	dominant	modes	from	responding	in	a	manner	capable	of	being	pre‑
dicted	by	an	idealistic	single‑degree‑of‑freedom‑system.

 Other reasons can be l�sted w�th d�fferent consequences, but the po�nt would be the same: shock 
test�ng needs to dupl�cate as closely as poss�ble the actual exc�tat�on s�gnal. Often, the actual exc�ta-
t�on s�gnal �s measured by accelerometers mounted d�rectly on the mount�ng structure. However, these 
s�gnals cannot be used as d�rect �nput �nto a shaker because �ntegrat�on of the s�gnal would far exceed 
the stroke length of the shaker. F�gure 1 �llustrates th�s by show�ng the needed stroke length of a shaker 
requ�red to handle the measured �nput to the IEA as a result of water �mpact on STS–6. One common 
method to reconstruct a measured s�gnal employs a ser�es of damped s�nuso�ds. Th�s method �n �tself 
does not preclude significant integrated motion from occurring; however, post-processing algorithms 
have been developed to remove the accumulation of significant displacement in the integration. These 
algor�thms are cumbersome and a b�t unnatural. The use of wavelets allows a more comprehens�ve and 
eas�er-to-�mplement strategy. Most laborator�es today ut�l�ze wavelets to construct the SRS, wh�ch have 
�nherent net zero d�splacements, as d�scussed later. However, these algor�thms ut�l�ze wavelets to pro-
duce an equivalent SRS typically specified by an environment definition determined from the SRS of  
the measured exc�tat�on. 
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F�gure 1.  Long�tud�nal water �mpact shock data.

 It w�ll be the goal of th�s Techn�cal Memorandum (TM) to prove a need for el�m�nat�ng where 
poss�ble the use of the SRS and replace �t w�th a wavelet-generated reconstruct�on of the measured 
exc�tat�on s�gnal. Th�s TM w�ll also present the reconstruct�on process and deta�led outl�ne of the wave-
let algor�thm. In cases where the actual exc�tat�on �s unknown, the SRS �s recommended w�th the caveat 
that SRS test�ng �s an art, and �tems (1) through (4) l�sted above should be cons�dered dur�ng �ts use.
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2.  OUTLINING THe Need

 The following discussion amplifies the concerns associated with SRS testing pointed out in the 
introduction. Because analytical examples of data acquisitioning, filtering, etc. do not lend themselves 
read�ly to s�mulat�ons, �llustrat�ons of the problems w�th SRS test�ng w�ll be l�m�ted to spectrum d�p, 
coupling of modes, and structural nonlinearities. The following will also present clarification of how 
each of these can create problems w�th trad�t�onal SRS test�ng.

2.1  Spectrum dip

 If the �mpedance of the mount�ng structure �s large relat�ve to the equ�pment mounted on �t, such 
as a bu�ld�ng mounted to the Earth dur�ng an earthquake, the react�on forces to the mount�ng structure do 
not have sufficient magnitude to alter the input motion. However, if the equipment mass is large rela-
t�ve to the effect�ve mass of the mount�ng structure, the �nert�al forces of the equ�pment alter the �nput 
motion. Consider the two dynamical systems shown in figure 2. The first system is a representation of 
a chass�s (M1) mounted on some mount�ng structure (M0) and a substructure (M2) mounted �ns�de the 
chass�s. Such a substructure/chass�s system could be the mult�plexer-demult�plexer mounted �ns�de the 
IEA. For purposes of clarification, the system depicted in figure 2 will arbitrarily be given the following 
values:

•	M0	(mass) = 4.33	lbf‑s2/in	
•	M1 = 1.51855	lbf‑s2/in	
•	M2 = 0.51855	lbf‑s2/in
•	K	(stiffness) = 1,500,000	lbf/in	
•	K1 = 50,000	lbf/in	
•	K2 = 25,000	lbf/in	
•	C	(damping) = C1 = C2 = 0

 If M0 �s g�ven an �n�t�al veloc�ty of V0 = 10 �n/s, an SRS of the s�gnal recorded by an accelerom-
eter mounted on M0 will exhibit peaks to the left and right of the fixed base (infinite impedance) sys-
tem resonances (fig. 2a). The resonant frequencies of the infinite impedance fixed base system are 22.9 
and 44.2 Hz. Figure 3 clearly shows this: fixing mass M0 results �n resonances at 22.9 Hz and 44.2 Hz. 
D�ps can be seen near these two frequenc�es on the SRS of M0. Convent�onal test�ng w�ll envelop 
the 18.95 Hz, 34.44 Hz, and 45.78 Hz peaks from an SRS of M0 and then apply as �nput to the hard-
mounted, two-mass system.

 Overtesting is almost a certainty. The infinite impedance model is representative of what will be 
tested as a result of bolt�ng the test �tem to a shaker table, but �t �s an altered model from real�ty where 
a compl�ant mass really ex�sts. Nature reduced the �nput to the real model at the natural frequenc�es of 
the altered model (fixed M0). However, s�nce test�ng w�ll be carr�ed out on the altered model, envelop�ng 
will add significant energy right where it is most undesirable: at the resonant frequencies of the system 
be�ng tested (altered model). Overtest�ng by an order of magn�tude would not be uncommon.
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 Typ�cal shock response spectra represent systems w�th many degrees of freedom where many 
d�ps are enveloped, or better yet, collect�ons of spectra obta�ned at the same locat�on, each w�th mult�ple 
d�ps, and enveloped for conven�ence and necess�ty. Th�s �s also true w�th v�brat�on env�ronments where 
the �mpedance of the mount�ng structure creates d�ps �n the random v�brat�on power spectral dens�t�es 
(PSD) measured at the base and enveloping creates overtesting concerns with fixed base tests. Force 
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l�m�ted v�brat�on test�ng has been employed to address th�s problem.3 No matter the env�ronment, shock 
or v�brat�on, these d�ps are nature’s way of naturally reduc�ng the �nput, and any envelop�ng results �n 
des�gn SRS and PSDs that are overly conservat�ve. What �s needed �s a reconstructed s�gnal of the mea-
sured base accelerat�on that �nherently possesses the same accelerat�on waveform, yet y�elds no appre-
ciable displacement that is capable of being generated by a shaker. Such a shock specification would 
necessar�ly �nclude the spectrum d�ps and preclude over des�gn. 

 Before leaving this section, it should be mentioned that if the actual motion being specified 
by the shaker and �nput �nto the ‘altered model’ �s close to the exact mot�on measured at M0, then the 
altered �s the correct model. Th�s �s because spec�fy�ng the mot�on at M0 removes the M0 degree-of-free-
dom and fixes the base mass M0.

2.2  Phasing

 The second problem with SRS testing is phasing. Since the definition of SRS removes  
any phase �nformat�on by select�ng max�mums w�thout regard to when they occur �n the response,  
mult�ple-degree-of-freedom systems w�th mult�ple modes w�ll react d�fferently to two d�fferent s�gnals 
that produce s�m�lar SRS. The SRS models the responses of �nd�v�dual s�ngle-degree-of-freedom sys-
tems to a common base �nput. The natural frequency of each system �s an �ndependent var�able. The 
damping value is usually fixed at 5% or equivalently at Q	= 10. The SRS calculat�on reta�ns the peak 
response of each system as a funct�on of natural frequency. No care �s taken to account for the t�me �n 
wh�ch the max�mum was recorded. The result�ng SRS �s plotted �n terms of peak accelerat�on (g) versus 
natural frequency (Hz). Therefore, frequency content �s captured, but �t should not be cons�dered �n any 
way equ�valent to a Four�er solut�on. For �nstance, a t�me h�story of a pure s�ne wave pushed through an 
SRS analyzer would yield significant response values at and near the frequency of the sine wave. A bell 
shape would result. On the other hand, a Four�er solut�on would y�eld a d�screte l�ne at the prec�se fre-
quency of the s�ne wave. As mult�ple s�ne waves were super�mposed on one another, the result�ng SRS 
would cause the ‘sk�rts’ of these responses to blend �nto one another and thereby lose prec�se frequency 
content �nformat�on.

 A given time history has a unique SRS. On the other hand, a given SRS may be satisfied by a 
var�ety of base �nputs w�th�n prescr�bed tolerance bands. F�gures 4 and 5 dep�ct th�s. F�gure 4 shows three 
d�fferent accelerat�on t�me h�stor�es, all y�eld�ng equ�valent SRS. The SRS correspond�ng to the t�me h�s-
tories in figure 4 are shown in figure 5. Therefore, multiple time histories can satisfy a given SRS.

 Figure 2 (b) can be used to illustrate the coupling effects the different signals in figure 4 can 
create as they are input to the base. Using the system as shown in figure 2 and setting the masses and 
spr�ngs to the values outl�ned �n the spectrum d�p sect�on results �n frequenc�es of 30 Hz and 80 Hz. If 
the acceleration time histories, shown in figure 4, are then input, the results are maximum force values 
that stay within 12%. These force values between the masses are shown in figure 6. However, when the 
mass and st�ffness values are altered to br�ng the frequenc�es closer together (26 Hz and 35 Hz) the same 
signals generate forces that are separated by almost 50%, as shown in figure 7. This result is intuitive 
�n that frequency spac�ng can e�ther tend to couple results or uncouple them. It should be noted that 
methods ut�l�z�ng modal parameters, such as part�c�pat�on factors, are w�dely used to calculate response 
values for mult�ple-degree-of-freedom systems. In such cases, techn�ques, such as the shock response 
spectra, attempt to account for the unknown phas�ng. 
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2.3  Nonlinearities

 It is well understood that all systems in the real world possess some degree of nonlinearity. How 
much and the source are always the question. It is also understood that analysts, as well as structural test 
practitioners, circumvent dealing with nonlinear phenomena by making linear assumptions. One such 
assumption can be found in the very definition of shock spectra where linear single-degree-of-freedom 
systems are responding to a specified input. Shock spectra treatment can be off by a large amount if the 
real structure is mounted on nonlinear shock mounts or possesses significant frictional damping.

 The above discussions serve to point out that multiple reasons exist to bypass SRS methodolo-
gies if possible. The most accurate and realistic alternative is to reconstruct the actual time history wave-
form. As has already been mentioned, several ways exist to do this, with the most notable involving the 
use of damped sinusoids and wavelets. Wavelets offer the better and more elegant of the two in that they 
possess the inherent quality of yielding zero net displacements and velocities. While this conclusion can 
be reached using postprocessing algorithms with damped sinusoids, it is unnatural. This TM will present 
a methodology for synthesizing a time history using a wavelet series. The synthesized time history will 
represent a measured shock time history. The synthesized time history could then be applied as a base 
input on a shaker table to a test item. 

 Recall that zero-net displacement and zero-net velocity are necessary characteristics for shaker 
shock tests. Furthermore, this condition is satisfied by each individual wavelet, as well as by the com-
plete series. This wavelet reconstruction method is an alternative to traditional SRS methods, in terms 
of test specification and fulfillment. The wavelet approach may also be used as an extension of the SRS 
method, satisfying criteria both in the time and natural frequency domains.
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3.  A reCONSTrUCTION ALGOrITHM USING WAVeLeTS

 Most shock specifications in the aerospace industry are given in terms of an SRS. In some cases, 
specifications are also given in terms of classical base inputs. A third format is drop shock onto a hard 
surface from a prescr�bed he�ght.

 The SRS models the responses of �nd�v�dual s�ngle-degree-of-freedom systems to a common 
base �nput. The natural frequency of each system �s an �ndependent var�able. The damp�ng value �s usu-
ally fixed at 5%, or Q	= 10. The SRS calculat�on reta�ns the peak response of each system as a funct�on 
of natural frequency, and the result�ng SRS �s plotted �n terms of peak accelerat�on (g) versus natural 
frequency (Hz). A given time history has a unique SRS, but a given SRS may be satisfied by a variety  
of base �nputs w�th�n prescr�bed tolerance bands. 

 For example, cons�der that an av�on�cs component mounted on a veh�cle must w�thstand a com-
plex oscillating pulse that has been measured during a field test. The data might also come from a flight 
�n the case of a m�ss�le or a�rcraft. The av�on�cs component must be tested �n a lab to w�thstand th�s base 
�nput t�me h�story. The measured t�me h�story, however, may or may not be reproduc�ble �n a test lab. 

 The measured time history can be converted into an SRS specification. The SRS method pro-
vides an indirect method for satisfying the specification by allowing for the substitution of a base input 
time history that is different than the one measured in the field test. The important point is that the test 
lab time history must have an SRS that matches the SRS of the field data within prescribed tolerance 
bands.

 There �s some concern �n the aerospace �ndustry, however, regard�ng the l�m�tat�ons of the SRS 
method. In part�cular, a g�ven av�on�cs component most l�kely responds as a mult�ple-degree-of-freedom 
system. Cumulat�ve fat�gue and nonl�near responses are add�t�onal concerns. Reproduc�ng an actual 
measured t�me h�story �n the lab, when poss�ble, can largely solve these problems. Th�s reconstruct�on 
approach is discussed briefly in reference 1 and an excerpt is given in appendix A.1 Aga�n, th�s recon-
struct�on can be ach�eved v�a wavelets.4

3.1  Wavelet Method

 For s�mpl�c�ty, assume that the measured t�me h�story �s w�th�n the shaker’s l�m�ts �n terms of 
frequency and accelerat�on. Furthermore, assume that the control computer can accept a t�me h�story 
�nput �n ASCII text format. Ideally, the exact measured t�me h�story could then be �nput d�rectly �nto the 
control computer. A measured t�me h�story, however, almost always has a non-zero net d�splacement 
that l�kely exceeds the shaker’s l�m�t. The result�ng d�splacement may be real, but �s usually spur�ous. 
The wavelet method overcomes th�s obstacle. Furthermore, the wavelet method y�elds a mathemat�cally 
closed-form approx�mat�on of the measured s�gnal.
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 The equat�on for an �nd�v�dual wavelet �s
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where

	 Wm(t) = accelerat�on of wavelet m at t�me t

	 Am = wavelet accelerat�on ampl�tude

	 fm = wavelet frequency

	 Nm = number of half-s�nes

	 tdm = wavelet t�me delay

Note that Nm must be an odd integer ≥3. The wavelet formula is well established in the vibration test 
�ndustry, as shown �n reference 2. The correspond�ng veloc�ty and d�splacement are der�ved �n append�-
ces B and C, respect�vely. These append�ces also g�ve proof that each metr�c has a net value of zero. The 
�n�t�al veloc�ty and �n�t�al d�splacement are each zero for each wavelet.

 The total accelerat�on ( x ) at t�me t for a set of n wavelets �s

	 x t W tm
m

n
( ) ( ) .=

=
∑

1
	 	(2)

 The coefficients required to match a given time history can be determined via brute force trial-
and-error us�ng random number generat�on. The approach �s to select the wavelet that y�elds the lowest 
error when subtracted from the measured data. Over 100,000 �terat�ons may be used for each wavelet. 
The opt�m�zed wavelet �s then subtracted from the measured s�gnal for the next run. Th�s process �s then 
repeated for each add�t�onal wavelet.
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3.2  reconstructing a Single Time History

 A sample time history from a Space Shuttle SRB ocean impact is shown in figure 8. An avionics 
component mounted on the booster must w�thstand the water �mpact event because �t must be reused �n 
future flights. A series of 60 wavelets was synthesized to model the measured time history. The resulting 
parameters are shown �n append�x D. A further explanat�on of wavelets �s also g�ven �n th�s append�x. 
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F�gure 8.  Synthes�zed t�me h�story.

 The synthesized time history is also shown in figure 8, and the agreement is close. The measured 
t�me h�story, however, has some h�gh frequency no�se that was not modeled.

 The synthesized time history in figure 8 could be used as a basis for deriving a maximum 
expected env�ronment (MEE). An appropr�ate stat�st�cal uncerta�nty marg�n should be added as a step 
in this process. The synthesized waveform is shown in figure 9 along with three of its components. The 
�nd�v�dual wavelet frequenc�es could be useful for �dent�fy�ng modal frequenc�es, complement�ng other 
tools, such as the Fourier transform. As demonstrated by figure 10, the shock response spectra compari-
son �s l�kew�se very good.
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F�gure 9.  Synthes�zed waveform w�th three components.
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F�gure 10.  Shock response compar�son.

 The velocity time history integrated from the acceleration time history is shown in figure 11. The 
net veloc�ty �s zero.
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F�gure 11.  Veloc�ty t�me h�story.

 The d�splacement t�me h�story double-�ntegrated from the accelerat�on t�me h�story �s shown �n  
figure 12. The net displacement is zero.
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F�gure 12.  D�splacement t�me h�story.

3.3  Constructing a Single Time History representing Multiple Time Histories 

 Reconstruct�ng a s�ngle t�me h�story v�a wavelets �s relat�vely stra�ghtforward. Cons�der a com-
plex case where up to three accelerometers were mounted adjacent to a large av�on�cs component on the 
rocket booster. Aga�n, the purpose was to record the shock for the water �mpact event. The accelerom-
eters were mounted �n d�fferent locat�ons, but each �n the long�tud�nal ax�s. The goal was to account for 
spatial variation. Furthermore, data were measured on each of two flights to account for flight-to-flight 
variation. This is important since the wind conditions, sea state, and other parameters may vary signifi-
cantly from one flight to the next. 

 The four measured time histories are shown in figure 13. Note that signal 2 is the same as that 
shown in figure 1. The raw data corresponding to the fourth signal appeared to be clipped. A cubic spline 
method was used to est�mate the true s�gnal. 

 The four shock response spectra are shown in figure 14. A P95/50 envelope is also shown. The 
P95/50 method �s taken from references 3 and 4 and a br�ef summary �s g�ven �n append�x E. The P95/50 
method �s one of several poss�ble envelop�ng techn�ques for establ�sh�ng an MEE level. The wavelet 
reconstruct�on method may be used w�th other envelope types.

 The next step is to derive a time history pulse that satisfies two goals: the SRS of the synthesized 
pulse must match the P95/50 SRS w�th�n ±3dB tolerance bands, and the synthes�zed pulse must resem-
ble the composite of the measured time histories in figure 15.
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F�gure 13.  Measured accelerat�on t�me h�stor�es.
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F�gure 15.  Compos�te shock pulse.

The approach �s as follows:
 (1)  Add the measured t�me h�stor�es to form a s�ngle compos�te pulse, as seen �n append�x E. 
 (2)  Synthes�ze a wavelet t�me h�story to match the compos�te s�gnal.
 (3)  Calculate the SRS of the synthes�zed wavelet ser�es. 
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 (4)  Compare the wavelet SRS to the measured P95/50 SRS.
 (5)  Scale the wavelet components so that the two SRS curves agree w�th�n tolerance bands.
 (6)  Ver�fy that the rescaled synthes�zed t�me h�story resembles each of the measured s�gnals.

 Note that steps (3) through (5) are repeated over hundreds of �terat�ons. The result�ng unscaled 
composite pulse for step (1) is shown in figure 15. The scaled synthesized wavelet acceleration pulse is 
given in figure 16. The corresponding velocity and displacement time histories are given in figures 17 
and 18, respectively. The SRS comparison is given in figure 19. 

 Figure 15 shows the composite of the four measured signals from figure 13. The scale is arbi-
trary. The compos�te cons�sts of 120 �nd�v�dual wavelets.

 The scaled wavelet pulse in figure 16 qualitatively resembles the unscaled pulse in figure 15. 

 The velocity pulse is integrated from the acceleration pulse and is shown in figure 17. The net 
veloc�ty �s zero.

 The net displacement (fig. 18) is zero. The peak displacement may be too high for certain shaker 
tables. It is based on an SRS specification that has a starting frequency at 10 Hz and the peak displace-
ment could be reduced if the specification were to begin at 20 Hz, for example. Furthermore, optimiza-
t�on could be performed to reduce the peak d�splacement wh�le st�ll meet�ng the goals of ‘accelerat�on 
time history resemblance’ and SRS fulfillment. 

 The SRS of the scaled composite time history along with the tolerance bands (fig. 19) show that 
the spectra are very s�m�lar.
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4.  CONCLUSION

 Th�s TM presented a method for synthes�z�ng a t�me h�story to represent a measured t�me h�story 
us�ng wavelets. In add�t�on, the method was extended for the case of mult�ple measured t�me h�stor�es. 
A summary of the software programs used �n the examples �s g�ven �n append�x G. The wavelet t�me 
h�story may be appl�ed to a test �tem v�a a shaker table w�th su�table frequency and ampl�tude l�m�ts. Test 
cr�ter�a would cons�st of a table of wavelets s�m�lar to that shown �n append�x D, rather than an SRS. 
Any requ�red marg�n could be �mposed dur�ng the compos�te shock scal�ng process. Furthermore, the 
synthes�zed t�me h�story has a closed-form mathemat�cal formula and the correspond�ng wavelet table 
may also be useful for �dent�fy�ng structural modal frequenc�es.

 There will be a new series of impact qualification tests conducted in the near future as the Con-
stellation Program gathers momentum. Current plans call for the Ares I first stage and Orion spacecraft 
to be reused. The Or�on spacecraft �s expected to �mpact on land, and SRS levels w�ll be h�gh �n the low-
to-m�d frequenc�es, wh�ch would lend �tself to th�s new techn�que to reduce the structural loads �mposed 
by a trad�t�onal SRS approach.

 The follow�ng concerns w�ll be addressed �n future research:

 (1)  The brute force method can be made more efficient using convergence algorithms, perhaps 
drawing from the field of genetics.

 (2)  Opt�m�zat�on could be performed to reduce the peak d�splacement wh�le st�ll meet�ng the 
goals of ‘acceleration time history resemblance’ and SRS fulfillment. 

 (3)  The test fixture may have different mechanical impedance than the actual mounting surface 
�n the veh�cle.
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APPeNdIX A—reCONSTrUCTION OF WAVeFOrMS FOr TrANSIeNTS 

Excerpt from Reference 1.

6.6 Reconstruct�on of Waveforms for Trans�ents. The max�mum expected env�ronment 
(MEE) for trans�ents �s commonly computed �n the frequency doma�n us�ng the proce-
dures deta�led �n Sect�ons 6.1 through 6.4, where the MEE represents a conservat�ve  
limit for a collection of measured or predicted spectra defining the transient environment 
�n a structural zone of concern. E�ther Four�er spectra, energy spectra, or shock response 
spectra, as defined in Sections 2.2.8 through 2.2.10, might be used to compute the MEE. 
On the other hand, some of the test procedures d�scussed �n Sect�on 10, part�cularly those 
appl�cable to low frequency (below 100 Hz) trans�ent s�mulat�ons on electrodynam�c 
shakers require a time history (waveform) for the specified test signal. When the MEE is 
defined in terms of a shock response spectrum (SRS), there is no direct analytical way to 
reconstruct a representat�ve waveform because the SRS does not have a un�que relat�on-
sh�p to the waveform from wh�ch �t �s computed. For th�s case, test t�me h�story s�gnals 
w�th an appropr�ate waveform are usually constructed us�ng decay�ng s�ne waves [6.34 
- 6.36] or wavelets [6.35, 6.36] ([6.36] �ncludes Fortran programs). Also, energy spectra  
do not lend themselves to waveform reconstruct�on because they have no phase �nforma-
tion. It follows that Fourier spectra should be used to define the MEE for transients when 
the reconstruct�on of a waveform �s requ�red for test s�mulat�on purposes.
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APPENDIX B—WAVELET VELOCITY AND DISPLACEMENT 

B.1  Wavelet Velocity

	 The	equation	for	an	individual	acceleration	wavelet	over	time	t	is
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where

	 Wm(t)	=	acceleration	of	wavelet	m	at	time	t

	 Am	=	wavelet	acceleration	amplitude

	 fm	=	wavelet	frequency

	 Nm	=	number	of	half-sines

	 tdm	=	wavelet	time	delay

The	velocity	Vm(t)	at	time	t	is	as	follows:
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The wavelet velocity equation is as follows:
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The wavelet ends at  
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The	velocity	at	the	end	time	is
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The net velocity is as follows:
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B.2  Wavelet Displacement

The	wavelet	displacement	Dm(t)	for	wavelet	m	is	obtained	by	integrating	the	velocity.	 (17)
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The displacement equation is
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The final displacement is as follows:
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The	net	displacement	is	as	follows:
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APPENDIX C—WAVELET TABLE FOR FIRST EXAMPLE

 The wavelet synthesis in Figure 8b is composed of the individual wavelet components in Table 2.

Table 2.  Wavelet synthesis components.

Acceleration 
(g)

Frequency 
(Hz) NHS

Delay 
(s)

Acceleration 
(g)

Frequency 
(Hz) NHS

Delay 
(s)

31.42 74.59 9 0.0119 4.64 593.45 27 0.0418

24.41 80.76 17 0.0232 –8.86 273.93 5 0.0826

–23.19 44.74 3 0.0128 –4.29 102.91 3 0.1354

20.38 149.91 7 0.0159 4.87 532.84 23 0.0563

–14.22 41.27 7 0.1072 –4.06 93.69 7 0.0560

–19.50 63.18 5 0.0285 –5.22 314.89 15 0.0263

–10.55 124.46 19 0.0242 6.51 146.43 3 0.0478

–5.60 83.75 19 0.0306 7.61 765.69 7 0.0688

9.76 55.67 3 0.0086 –3.78 135.14 7 0.0046

6.28 73.98 9 0.1353 –3.38 113.53 9 0.1584

–4.04 38.95 13 0.0125 –2.75 91.92 9 0.1496

6.99 153.87 11 0.0163 3.37 469.06 21 0.0430

4.24 55.43 13 0.0789 5.85 698.73 13 0.0862

–9.02 98.88 5 0.0902 –5.34 865.48 13 0.0306

10.44 168.46 7 0.0591 5.38 383.49 11 0.1214

–3.79 16.36 5 0.0048 –1.89 19.78 5 0.0010

12.22 325.26 9 0.0620 –6.43 1,034.55 9 0.0936

–12.66 426.15 3 0.0332 –6.26 312.02 3 0.1454

–9.35 360.30 19 0.0777 –2.20 133.06 21 0.0495

–10.63 609.62 13 0.0257 –4.42 290.23 7 0.1564

–3.96 97.17 9 0.1520 –4.39 1343.20 21 0.0406

–6.34 157.05 17 0.1399 5.74 992.92 11 0.0784

5.93 230.17 17 0.0250 2.83 282.84 11 0.0664

–4.00 57.68 5 0.0160 1.48 49.99 17 0.0166

–4.88 153.39 15 0.0776 2.29 263.19 13 0.0081

–1.58 26.43 9 0.0166 2.08 63.73 5 0.1576

7.24 434.76 13 0.0253 2.33 35.77 3 0.1567

8.64 627.99 9 0.0209 –5.70 379.76 5 0.0934

–7.81 335.76 7 0.1347 2.99 45.05 3 0.0003

8.85 345.89 7 0.1126 4.54 1,334.48 27 0.0827
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 The first wavelet is shown in figure 20.
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Figure 20.  Wavelet 1.

 An equivalent acceleration formula for equation (1) is as follows:
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 Obviously, a given wavelet has a beat frequency effect with two spectral lines over the defined 
interval. The corresponding spectral magnitude function of the waveform in equation (29) is shown in 
figure (21). 



29

0 50 66.3 82.9 100

20

15

10

5

0

Frequency (Hz)

Spectral Magnitude    Wavelet 1   Frequency = 74.6 Hz
Number of Half-Sines = 9    Delay = 0.012 s

A
cc

el
er

at
io

n 
(g

)

Figure 21.  Wavelet 1 Spectrum.

 The spectral magnitude function is somewhat analogous to a Fourier transform magnitude. An 
actual Fourier transform of the data would be of limited value since the energy would be smeared over 
several frequencies due to ‘leakage’ and other error sources. Note that the frequency increment of a Fou-
rier transform is equal to the reciprocal of the signal duration. A Fourier transform is thus more suitable 
for data sets with longer durations.



30

APPENDIX D—MAXIMUM PREDICTED LEVEL

 The P95/50 rule yields the maximum predicted level, which is equal to or greater than the value 
at the 95th percentile at least 50% of the time. The ‘95’ in the P95/50 rule is taken as the 95% probabil-
ity in the normal distribution. The ‘50’ is the 50% confidence value in the chi-square distribution. The 
tolerance value is applied to the sample standard deviation to yield an estimate of the upper limit at each 
frequency as follows:

	 Limit = +x ks 	 (30)

where x  is the mean and s is the sample standard deviation. K-factors for a 95% and 97.5% probability 
level (PL) are shown in table 3.

Table 3.  Tolerance factors for various probability levels.

95% PL 97.5% PL

n K-Factor K-Factor

2 2.193 2.613

3 1.880 2.240

4 1.794 2.138

5 1.755 2.091

6 1.731 2.063

7 1.716 2.045

8 1.706 2.033

9 1.698 2.023

10 1.692 2.016

11 1.687 2.010

12 1.683 2.006

13 1.680 2.002

14 1.677 1.998

15 1.675 1.996

20 1.667 1.986

25 1.662 1.981

30 1.659 1.977

40 1.655 1.973

50 1.653 1.970

60 1.652 1.968

70 1.651 1.967

100 1.649 1.965

 ∞ 1.645 1.960
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APPENDIX E—SUMMING ACCELEROMETER SIGNALS

Creating a Composite Pulse

 The composite pulse is the sum of several individual signals. The raw signals, however, cannot 
be simply added together. There are several concerns that must be addressed so that a reasonable sum is 
achieved. 

Accelerometer Mounting

 Consider a pair of accelerometers mounting in the same axis. The accelerometers may or may 
not be mounted with the same polarity. In other words, one accelerometer may be mounted in the posi-
tive axis and the other in the negative axis. If so, the signal from one accelerometer would be inverted 
with respect to the other signal, assuming that the waveform is simultaneous and in-phase at each loca-
tion. Note that in some cases, the accelerometer mounting diagram may not be readily available to the 
engineer who is reducing the measured data.

Field Types

 Another concern arises from the distance of the accelerometers with respect to the source loca-
tion, as well as the distance between the accelerometers themselves. Some shock events, such as pyro-
technic stage separation, may have a well-defined source location. Other events, such as water impact, 
may have a complex, distributed source. Regardless, the source shock has the potential of generating 
both traveling and standing waves. The standing waves represent modes. The ‘near-field’ response to  
a discrete shock source is dominated by waves. The ‘far-field’ response is largely due to structural 
modes. The ‘mid-field’ response is a combination of each type. 

Response to Traveling Waves

 Consider a wave-like response that is measured at two accelerometer locations. There may be a 
measurable time delay between the two responses if the accelerometers are mounted sufficiently apart 
from one another. Obviously, the speed of sound in the material enters into this calculation. Furthermore, 
the wave speed varies depending on the wave type. The wave speed may even vary with frequency, as is 
the case with traveling bending waves. Similarly, dispersion may occur. 

Modal Response

 There are three main scenarios for two accelerometers measuring a given vibration mode. 
 (1)  The accelerometers may be in-phase. 
 (2)  The accelerometers may be 180 degrees out-of-phase. 
 (3)  Either accelerometer may be on a nodal line. 
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Either destructive or constructive interference may result from adding the signals. Furthermore, the mag-
nitude of the response at each location may vary regardless of phase.

Filtering

 The telemetry data may have been filtered in some manner that introduces a phase delay.

Synchronization

 Accelerometer data from more than one flight may be available. The data may or may not be 
synchronized to a common starting time. The ‘true starting time’ may be a matter of engineering judg-
ment.

Summation

 As a result of these concerns, there is no exact method for summing accelerometer signals for the 
purpose of deriving a composite pulse. Again, brute force random number generation may be used. One 
method is to multiply each signal by +1 or –1, then shift each signal by some ‘small’ time delay. Each 
of these steps is performed in a random manner over hundreds of trials. The final composite pulse is the 
one that yields the greatest root mean square (RMS) value. 

 A possible concern is that this approach may emphasize certain modal frequency while attenu-
ating others. Again, the wavelet components are rescaled to meet the P95/50 SRS, as explained in the 
main text. Thus, all frequency components should be represented to the proper amplitude in the final 
wavelet series. 
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APPENDIX F—SOFTWARE PROGRAMS

 The program files are included in the initial submission of this TM to the customer and are listed 
in table 4 below. Other interested parties may contact the Tom Irvine at Vibration Data, LLC. (http://
vibrationdata.com/) for copies of the code. The programs are DOS or ‘console mode.’ Also, the programs 
are nearly straight C, rather than C++. The programs were written using Microsoft® Visual C++ 6.0; 
however, they do not use any Graphical User Interfaces or Visual features. Some minor changes may be 
required for other compilers.

Table 4.  Applicable software programs.

Program Description

wavelet_reconstruct.cpp Synthesizes a wavelet series to represent a measured time history

composite_shock.cpp Adds multiple waveforms using inversion and time delays to maximize the RMS

srs_9550.cpp Calculates the P95/50 level for two or more shock response spectra

wavelet_scale_SRS.cpp Scales the individual wavelets of a series so that the resulting time history satis-
fies an SRS specification

th_from_wavelet_table.cpp Generates a time history from a wavelet table

qsrs.cpp Calculates an SRS for an acceleration time history
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