
| Prepared By | Date |
|-------------|------|
| 0           | Date |
| Revised By  | Date |

Page \_\_\_\_\_\_ Job No. \_\_\_\_\_ T. D. No. \_\_\_\_

# Single DOF:

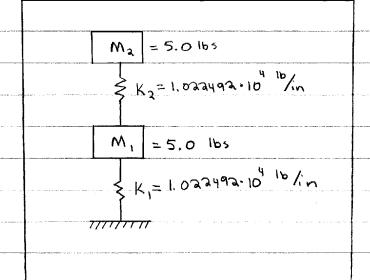
NASTRAN Random Response: Flot Spectrum PSD=0.1092/Hz 20-2000Hz Q=10



Calculate frequencies from Formula in Appendix 1.1 of the Shock and Vibration Handbook 3rd Edition, for 2 opring-mass systems

$$w_{N_2} = \frac{1}{2\pi} \cdot \sqrt{\frac{A+\sqrt{B}}{2}}$$

$$B = \left[ \frac{w'}{K^{1}} + \frac{w^{2}}{K^{2}} \left( 1 + \frac{w'}{w^{3}} \right) \right]_{S} - \frac{w' \cdot w^{2}}{A K^{1} \cdot K^{3}} = V_{S} - \frac{w' \cdot w^{5}}{A \cdot K^{1} \cdot K^{5}}$$
where  $V = \frac{w'}{K^{1}} + \frac{w^{5}}{K^{5}} \left( 1 + \frac{w'}{w^{5}} \right)$ 


$$K_1 = K_2 = 1.022492.10^4 lb/in$$
  
 $M_1 = M_2 = 5 lb. (1/386.1 in 52) = 0.01295 lb-52 in$ 

$$A = \frac{\left(\frac{1.022492 \cdot 10^{4} \frac{1b}{10}}{0.01295 \frac{1b-5^{2}}{10}}\right) + \left(\frac{1.022492 \cdot 10^{4} \frac{1b}{10}}{0.01295 \frac{1b-5^{2}}{10}}\right) \left(1 + \frac{0.01295 \frac{1b-5^{2}}{10}}{0.01295 \frac{1b-5^{2}}{10}}\right)}{1 + \frac{0.01295 \frac{1b-5^{2}}{10}}{0.01295 \frac{1b-5^{2}}{10}}}$$

$$A = 2.3687673 \cdot 10^{6} \frac{1}{5^{2}}$$

$$B = (2.3687673 \cdot 10^{6} \frac{1}{5^{2}})^{2} - \frac{4 \cdot (1.022492 \cdot 10^{4} \frac{10}{10})^{2}}{(0.01295 \cdot 10^{-5^{2}})^{2}} = 3.1176969 \cdot 10^{2}$$

## SAMPLE CASE: 2-DOF



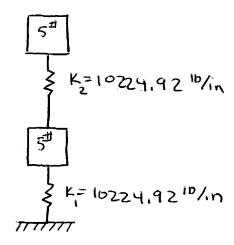
For 2-mass/spring system, calculate the modal effective mass contribution and compare with the NASTRAN results: - From A. Chopra/E. Cruz "Evaluation of Building Code Formulas for Earthquake Forces" from the Journal of Structural Engineering, Vol. 112, No. 8, August 1986  $([w][a])_s$ Weff = [M] [Ø2]  $[M] = \begin{bmatrix} 5.0 & 0.0 \\ 0.0 & 5.0 \end{bmatrix}$   $[Q] = \begin{bmatrix} 4.61986 & -7.475.09 \\ 7.475.09 & 4.61986 \end{bmatrix}$  $\frac{\left[(5.0^{\circ})(4.61986) + (5^{\circ})(7.47509)\right]^{2}}{(4.61986)^{2}(5) + (7.47509)^{2}(5)} = 9.4721165$  $Eff W_{2} = \frac{\left[ (5.0^{+})(-7.47509) + (5^{+})(4.61986) \right]^{2}}{(5^{+})(-7.47509)^{2} + (5^{+})(4.61986)^{2}} = 0.5379 \text{ lbs}$ 

MSC NASTRAN V69 - Checko. Y69 results

Fn = 87.40324 HZ - (9.4721 bs-x, 0.0 1b-y, 0.0 lbs-Z) } Effwuf'
Fn = 328.8247 HZ - (-052786 lbs-x, 0.0 lb-y, 0.0 lbs-Z)

CSA NASTRAN Results

Fn = 87.403 Hz - (9.4795 lbs-x, 0.0 lb-y, 0.0 lbs-Z) Fnz = 228,825 Hz - (0.5293 lbs-x, 0.0 lb-y, 0.0 lbs-Z) 
 Prepared By \_\_\_\_\_\_\_ Date \_\_\_\_\_


 Checked By \_\_\_\_\_\_ Date \_\_\_\_\_

 Revised By \_\_\_\_\_\_ Date \_\_\_\_\_

Page \_\_\_\_\_\_ Job No. \_\_\_\_\_ T. D. No. \_\_\_\_

# CDA NASTRAN Random Example

# 2-DOF:



Fn = 87.403 Hz - Eff Wt= 9.4795 165

Fn2 = 228,825 HZ - Eff W+ = 0.5283 lbs

RLF<sub>1</sub> =  $3\sqrt{(7/2)(10)(89.403 Hz)(0.1009^{2}/Hz)}$  = 35.1515 g's RLF<sub>2</sub> =  $3\sqrt{(7/2)(10)(228.825 Hz)(0.1009^{2}/Hz)}$  = 56.8765g's

USB Eff wt /RSS to get interface force

F<sub>145</sub> = \((35, 1515 g's)(9,4795 lbs)) + ((56,8765 g's)(0,5283 lbs))<sup>2</sup> = 334,57 lbs

From NASTRAN random responses

Spring Force = 3, (386.1) (0,2864468) = 331.79

33.900 NASTRAN RMS
Spring Force

... NASTRAN = 331,79 lbs Miles = (016)(35,15159's) = 351,515 lbs Eff W+ = 334.57 lbs Prepared By \_\_\_\_\_ Date \_\_\_\_ Checked By \_\_\_\_ Date \_\_\_\_ Revised By \_\_\_\_ Date \_\_\_\_

Page \_\_\_\_\_\_ Job No. \_\_\_\_\_ T. D. No. \_\_\_\_\_

3-DOF:  $K_3 = 10224.42 \, lb/in$   $K_4 = 10224.42 \, lb/in$  $K_5 = 10224.42 \, lb/in$ 

 $F_{n_1} = 77.0828 \text{ Hz}$  Eff wt = 9.1481 lb  $F_{n_2} = 215.9811 \text{ Hz}$  Eff wt = 0.7494 lb  $F_{n_3} = 312.618 \text{ Hz}$  Eff wt = 0.1105 lb

RLF\_=  $3\sqrt{(\pi/2)(10)(77.0828 \text{ Hz})(0.1009^2/\text{Hz}} = 33.011 \text{ g}$ RLF\_2 =  $3\sqrt{(\pi/2)(10)(215.9811 \text{ Hz})(0.1009^2/\text{Hz})} = 55.257 \text{ g}$ RLF\_3 =  $3\sqrt{(\pi/2)(10)(312.1018 \text{ Hz})(0.1009^2/\text{Hz})} = 66.425 \text{ g}$ USC Eff W+ /RSS to get interface force:

Fres = \((9.1481 lbs)(33.011 g's))2+((0.7494 lb)(55.257 g's))2+((0.1105 lb)(66.425 g's))2

F155= 304,902 165

From NASTRAN Random Response Analysiss RLF

Spring Force = 3. (386.1). (0.2607073) = 301. 977 lbs

3 sigma NASTRAN Rms
spring Force

in NASTRAN= 301977165 Miles Eqn=(1016s)(33.011)=330.11165 Eff W+ = 304,902 165

Page \_\_\_\_\_\_ Job No. \_\_\_\_\_ T. D. No. \_\_\_\_

4-DOF:

2.51b 2.51b 2.51b 2.51b

 $F_{n_1}$ = 69.459 Hz Eff w+= 8.9412 lbs  $F_{n_2}$ = 200.000 Hz Eff w+= 0.83398 lbs  $F_{n_3}$ = 306.418 Hz Eff w+= 0.1957 lbs  $F_{n_4}$ = 375.877 Hz Eff w+= 0.0368 lbs

K1 = K2 = K3 = K4 = 10554' d 5 ,p/!

RLF = 3 (1/2)(10)(69.459 HZ)(D.100 1/HZ) = 31.336 g's

RLF2=37(17/2×10)(200,0HZ)(0,100 92/HZ) = 53,174 9'S

R(F3=3 (17/2)(10) (306,418 HZ)(0,10097/HZ) = 65,817 y's

RLFy=37(17/2)(10)(375.877 HZ)(0,100 92/HZ) = 72.8 96 g's

usc Eff. wt /RSS to calculate interface force:

Frs= = ((8.9412 lbs)(31.336 gs))+((0.8341bs)(53.174 gs))2+ ((0.1957 lbs)(65,817gs))+

((0.0368 lbs)(72.896 gs))2 = 283.97 lbs

From NASTRAN random response:

Spring Force = 3. (386.1). (0.24251) = 280.899 lbs

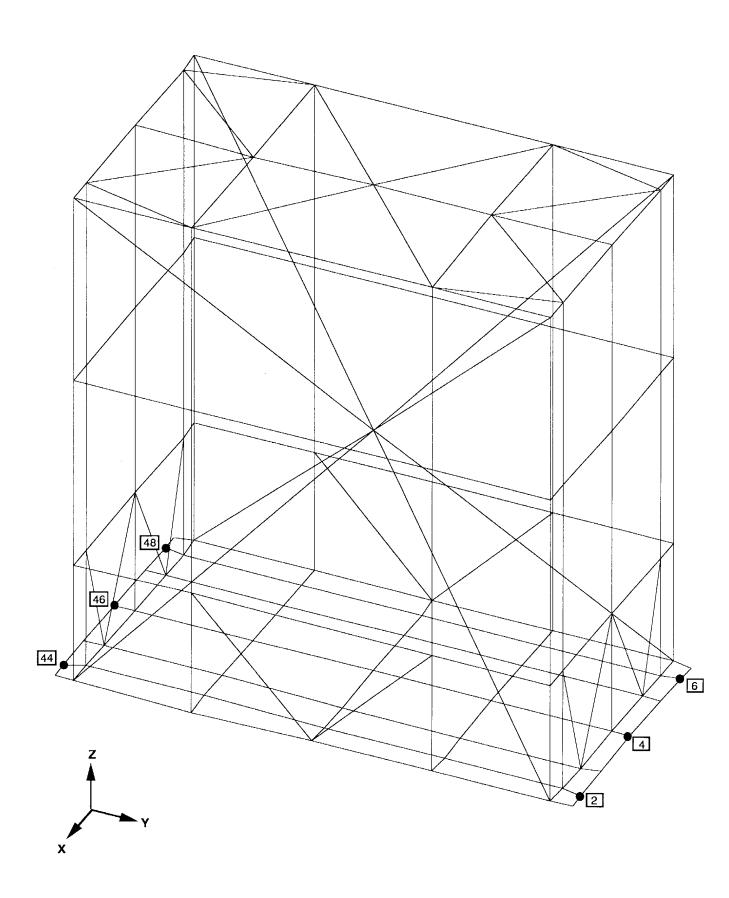
NASTRAN RMS

Spring Force

Miles Eqn = (1010)(31.336 g's) = 313.36 lbs Eff W+ = 283.97 lbs

RSS/EFF WF. R=RZ= (31.93 g's)(110)/2 = 15.965 lbs

From Random Response Analysis: RI= R= 15.836 lbs


| Prepared By R. Towner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date <u>5/30/95</u>  |                  | Page                                    |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|-----------------------------------------|-----------------------------|
| Checked By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date<br>Date         |                  | Job No<br>T. D. No                      |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cantillever          | Beam Examp       | le                                      |                             |
| $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$ | 1.000 lps            |                  | w+x = 0.61311                           |                             |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                  | w+x = 0.18883                           |                             |
| 1 -×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fn3 = 1741.          | 010 HZ EFF       | w+x = 0.06527                           | 1 lbs                       |
| Random Spectru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                  |                                         | pactrum)                    |
| RLF, = 3 (17/2)(10)(0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                  | -                                       |                             |
| RLF2=37(11/2)(10)(0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1092/HZ) (623.76     | 4 HZ) = 93,0     | 106 93                                  |                             |
| RLF3=3 (11/2)(10)(0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1092/HZ)(1741.0    | 10 Hz)= 156.8    | 885g's                                  | . ·                         |
| RLFeff wi/Res (37.57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 195)(0.61311165)2+(9 | 3,906gs)(0,188   | 383 lbs))+((156.885g.                   | 2)(o.065ZIB))               |
| RLFect w+/Rss = 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , 920 gis            |                  |                                         |                             |
| For Static load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ds Analysis 8        |                  |                                         |                             |
| w/miles Equat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rion! Boundary       | Forces: Fx = My= | (1#)(37,571 gs)=<br>(1#)(5")(37,571gs)= | : 37.571 lbs<br>187.855 in- |

Boundary Forces: Fx = 30.82 lbs My = 154.1 in-1b

Random Response, Boundary Forces: Fx = 30,477 1bs My=170.646 in-1b

W/Eff w+-RSS :

From



HI-PAC-DTV PDAC INTERFACE FORCE COMPARISON - MILES EQN, EFF WT/RSS, RANDOM RESPONSE

| Axis   | Grid No. | RLF Method      | X (Lbs) | Y (Lbs) | Z (Lbs) | RSS Force |
|--------|----------|-----------------|---------|---------|---------|-----------|
|        |          | Miles Equation  | -194.2  | -166.1  | 527.1   | 585.8     |
|        | 2        | Eff. Wt./RSS    | -141.9  | -121.4  | 385.2   | 428.1     |
|        |          | Random Response | 138.9   | 142.3   | 516.5   | 553.5     |
|        |          | Miles Equation  | -263.6  | 0.0     | 0.0     | 263.6     |
|        | 4        | Eff. Wt./RSS    | -192.7  | 0.0     | 0.0     | 192.7     |
|        |          | Random Response | 195.9   | 0.0     | 0.0     | 195.9     |
|        |          | Miles Equation  | -194.2  | 166.1   | -527.1  | 585.8     |
|        | 6        | Eff. Wt./RSS    | -141.9  | 121.4   | -385.2  | 428.1     |
| X-Axis |          | Random Response | 138.9   | 142.3   | 516.5   | 553.5     |
|        |          | Miles Equation  | -194.2  | 166.1   | 527.1   | 585.8     |
|        | 44       | Eff. Wt./RSS    | -141.9  | 121.4   | 385.2   | 428.1     |
|        |          | Random Response | 138.9   | 142.3   | 516.5   | 553.5     |
|        |          | Miles Equation  | -263.6  | 0.0     | 0.0     | 263.6     |
|        | 46       | Eff. Wt./RSS    | -192.7  | 0.0     | 0.0     | 192.7     |
|        |          | Random Response | 195.9   | 0.0     | 0.0     | 195.9     |
|        |          | Miles Equation  | -194.2  | -166.1  | -527.1  | 585.8     |
|        | 48       | Eff. Wt./RSS    | -141.9  | -121.4  | -385.2  | 428.1     |
|        |          | Random Response | 138.9   | 142.3   | 516.5   | 553.5     |

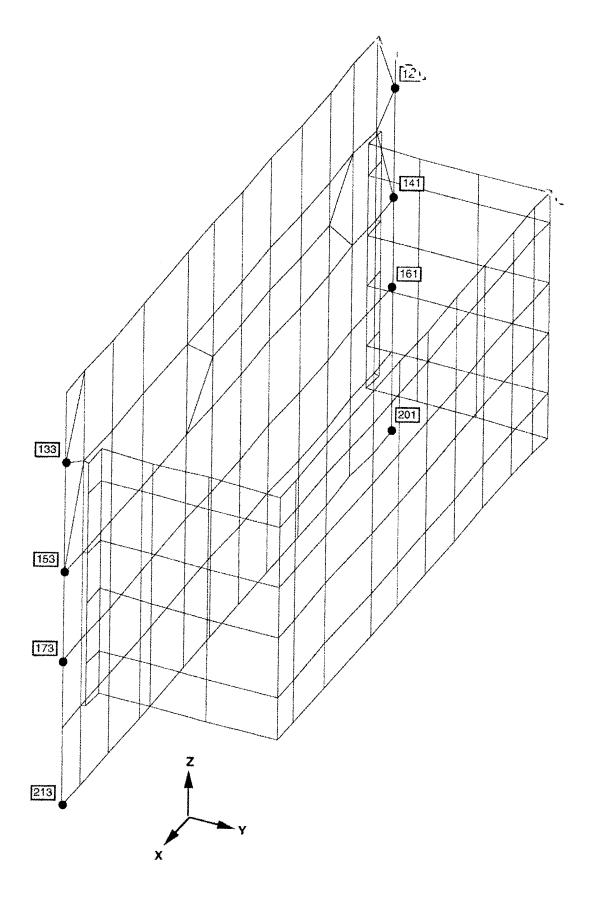
Notes: 1. Miles Equation Loads RLFx=130.4 g; RLFy=65.1 g; RLFz=80.2 g

<sup>2.</sup> Effective Weight/RSS RLFx=95.3 g; RLFy=33.7 g; RLFz=67.9 g

HI-PAC-DTV PDAC INTERFACE FORCE COMPARISON - MILES EQN, EFF WT/RSS, RANDOM RESPONSE

| Axis   | Grid No. | RLF Method      | X (Lbs) | Y (Lbs) | Z (Lbs) | RSS Force |
|--------|----------|-----------------|---------|---------|---------|-----------|
|        |          | Miles Equation  | 21.6    | -120.9  | 71.5    | 142.1     |
|        | 2        | Eff. Wt./RSS    | 11.2    | -62.6   | 37.0    | 73.6      |
|        |          | Random Response | 21.1    | 98.5    | 84.8    | 131.7     |
|        |          | Miles Equation  | 0.0     | -83.7   | 77.3    | 113.9     |
|        | 4        | Eff. Wt./RSS    | 0.0     | -43.3   | 40.0    | 59.0      |
|        |          | Random Response | 0.0     | 58.8    | 92.0    | 109.2     |
|        |          | Miles Equation  | -21.6   | -120.9  | 71.5    | 142.1     |
|        | 6        | Eff. Wt./RSS    | -11.2   | -62.6   | 37.0    | 73.6      |
| Y-Axis |          | Random Response | 21.1    | 98.5    | 84.8    | 131.7     |
|        |          | Miles Equation  | -21.6   | -120.9  | -71.5   | 142.1     |
|        | 44       | Eff. Wt./RSS    | -11.2   | -62.6   | -37.0   | 73.6      |
|        |          | Random Response | 21.1    | 98.5    | 84.8    | 131.7     |
|        |          | Miles Equation  | 0.0     | -83.7   | -77.3   | 113.9     |
|        | 46       | Eff. Wt./RSS    | 0.0     | -43.3   | -40.0   | 59.0      |
|        |          | Random Response | 0.0     | 58.8    | 92.0    | 109.2     |
|        |          | Miles Equation  | 21.6    | -120.9  | -71.5   | 142.1     |
|        | 48       | Eff. Wt./RSS    | 11.2    | -62.6   | -37.0   | 73.6      |
|        |          | Random Response | 21.1    | 98.5    | 84.8    | 131.7     |

Notes: 1. Miles Equation Loads RLFx=130.4 g; RLFy=65.1 g; RLFz=80.2 g


<sup>2.</sup> Effective Weight/RSS RLFx=95.3 g; RLFy=33.7 g; RLFz=67.9 g

HI-PAC-DTV PDAC INTERFACE FORCE COMPARISON - MILES EQN, EFF WT/RSS, RANDOM RESPONSE

| Axis   | Grid No. | RLF Method      | X (Lbs) | Y (Lbs) | Z (Lbs) | RSS Force |
|--------|----------|-----------------|---------|---------|---------|-----------|
|        |          | Miles Equation  | -12.2   | 42.7    | -131.8  | 139.1     |
|        | 2        | Eff. Wt./RSS    | -10.4   | 36.2    | -111.6  | 117.7     |
|        |          | Random Response | 13.6    | 46.2    | 141.5   | 149.4     |
|        |          | Miles Equation  | 0.0     | 11.2    | -137.5  | 137.9     |
|        | 4        | Eff. Wt./RSS    | 0.0     | 9.5     | -116.4  | 116.8     |
|        |          | Random Response | 0.0     | 11.5    | 143.8   | 144.2     |
|        |          | Miles Equation  | 12.2    | 42.7    | -131.8  | 139.1     |
|        | 6        | Eff. Wt./RSS    | 10.4    | 36.2    | -111.6  | 117.7     |
| Z-Axis |          | Random Response | 13.6    | 46.2    | 141.5   | 149.4     |
|        |          | Miles Equation  | -12.2   | -42.7   | -131.8  | 139.1     |
|        | 44       | Eff. Wt./RSS    | -10.4   | -36.2   | -111.6  | 117.7     |
|        |          | Random Response | 13.6    | 46.2    | 141.5   | 149.4     |
|        |          | Miles Equation  | 0.0     | -11.2   | -137.5  | 137.9     |
|        | 46       | Eff. Wt./RSS    | 0.0     | -9.5    | -116.4  | 116.8     |
|        |          | Random Response | 0.0     | 11.5    | 143.8   | 144.2     |
|        |          | Miles Equation  | 12.2    | -42.7   | -131.8  | 139.1     |
|        | 48       | Eff. Wt./RSS    | 10.4    | -36.2   | -111.6  | 117.7     |
|        |          | Random Response | 13.6    | 46.2    | 141.5   | 149.4     |

Notes: 1. Miles Equation Loads RLFx=130.4 g; RLFy=65.1 g; RLFz=80.2 g

<sup>2.</sup> Effective Weight/RSS RLFx=95.3 g; RLFy=33.7 g; RLFz=67.9 g



7.125" thick

CIRCUIT BREAKER PANEL INTERFACE FORCE COMPARISON - MILES EQN, EFF WT/RSS, RANDOM RESP

| Axis   | Grid No. | RLF Method      | X (Lbs) | Y (Lbs) | Z (Lbs)                                                                                         | RSS Force |
|--------|----------|-----------------|---------|---------|-------------------------------------------------------------------------------------------------|-----------|
| ]      |          | Miles Equation  | -10.8   | -0.9    | 2.9 1.7 2.4 -2.6 -1.6 2.2 0.4 0.2 0.5 -0.3 -0.2 0.8 -0.4 -0.2 0.7 0.2 0.1 0.7 -3.4 -2.1 2.2 3.2 | 11.2      |
| l      | 121      | Eff. Wt./RSS    | -6.5    | -0.6    | 1.7                                                                                             | 6.8       |
|        |          | Random Response | 4.0     | 1.9     | 2.4                                                                                             | 5.1       |
| Ĭ      |          | Miles Equation  | -9.2    | 0.9     | -2.6                                                                                            | 9.6       |
| ĺ      | 133      | Eff. Wt./RSS    | -5.6    | 0.6     | -1.6                                                                                            | 5.8       |
| Ì      |          | Random Response | 3.8     | 3.0     | 2.2                                                                                             | 5.3       |
|        |          | Miles Equation  | -10.8   | -3.4    | 0.4                                                                                             | 11.3      |
| ate    | 141      | Eff. Wt./RSS    | -6.5    | -2.1    | 0.2                                                                                             | 6.8       |
|        |          | Random Response | 4.5     | 3.0     | 0.5                                                                                             | 5.4       |
|        |          | Miles Equation  | -9.8    | 3.4     | -0.3                                                                                            | 10.4      |
|        | 153      | Eff. Wt./RSS    | -5.9    | 2.0     | -0.2                                                                                            | 6.2       |
| X-Axis |          | Random Response | 3.8     | 2.3     | 0.8                                                                                             | 4.6       |
| į.     |          | Miles Equation  | -7.2    | -2.7    | -0.4                                                                                            | 7.7       |
|        | 161      | Eff. Wt./RSS    | -4.3    | -1.6    | -0.2                                                                                            | 4.6       |
|        |          | Random Response | 2.6     | 2.5     | 0.7                                                                                             | 3.7       |
|        |          | Miles Equation  | -6.9    | 2.7     | 0.2                                                                                             | 7.4       |
|        | 173      | Eff. Wt./RSS    | -4.1    | 1.7     | 0.1                                                                                             | 4.4       |
| ]      |          | Random Response | 2.3     | 1.6     | 0.7                                                                                             | 3.0       |
|        |          | Miles Equation  | -5.6    | -0.3    | -3.4                                                                                            | 6.6       |
|        | 201      | Eff. Wt./RSS    | -3.4    | -0.2    | -2.1                                                                                            | 3.9       |
|        |          | Random Response | 2.4     | 0.8     | 2.2                                                                                             | 3.3       |
|        |          | Miles Equation  | -5.5    | 0.2     | 3.2                                                                                             | 6.4       |
|        | 213      | Eff. Wt./RSS    | -3.3    | 0.1     | 1.9                                                                                             | 3.9       |
|        |          | Random Response | 2.2     | 0.9     | 1.9                                                                                             | 2.8       |

Notes: 1. Miles Equation Loads RLFx=11.13 g; RLFy=7.76 g; RLFz=13.35 g

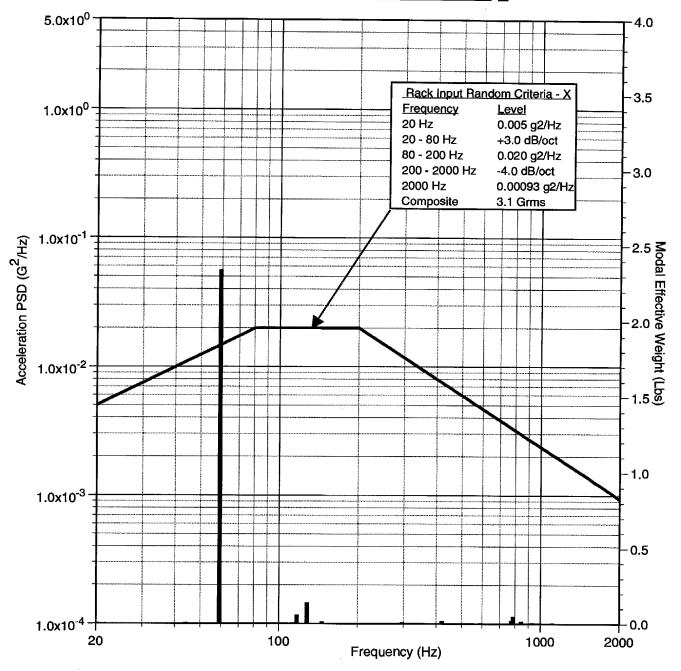
<sup>2.</sup> Effective Weight/RSS RLFx=6.69 g; RLFy=5.79 g; RLFz=6.37 g

CIRCUIT BREAKER PANEL INTERFACE FORCE COMPARISON - MILES EQN, EFF WT/RSS, RANDOM RESP

| Axis     | Grid No. | RLF Method      | X (Lbs) | Y (Lbs) | Z (Lbs) | RSS Force |
|----------|----------|-----------------|---------|---------|---------|-----------|
|          |          | Miles Equation  | -1.9    | -6.5    | 1.4     | 6.9       |
| <u> </u> | 121      | Eff. Wt./RSS    | -1.4    | -4.9    | 1.0     | 5.2       |
|          |          | Random Response | 1.9     | 5.8     | 1.3     | 6.2       |
| į.       |          | Miles Equation  | 1.9     | -6.0    | 1.4     | 6.5       |
| į        | 133      | Eff. Wt./RSS    | 1.4     | -4.5    | 1.0     | 4.8       |
| j        |          | Random Response | 2.5     | 6.7     | 1.6     | 7.4       |
|          |          | Miles Equation  | -6.2    | -7.7    | 1.0     | 10.0      |
|          | 141      | Eff. Wt./RSS    | -4.6    | -5.8    | 0.8     | 7.4       |
|          |          | Random Response | 4.6     | 5.9     | 1.4     | 7.6       |
|          |          | Miles Equation  | 6.1     | -7.5    | 0.7     | 9.6       |
|          | 153      | Eff. Wt./RSS    | 4.5     | -5.6    | 0.5     | 7.2       |
| Y-Axis   |          | Random Response | 5.0     | 6.2     | 1.4     | 8.1       |
|          |          | Miles Equation  | -1.6    | -7.0    | -0.9    | 7.2       |
| ŀ        | 161      | Eff. Wt./RSS    | -1.2    | -5.2    | -0.6    | 5.4       |
|          |          | Random Response | 1.1     | 4.6     | 1.0     | 4.8       |
|          |          | Miles Equation  | 1.8     | -7.1    | -0.8    | 7.3       |
|          | 173      | Eff. Wt./RSS    | 1.3_    | -5.3    | -0.6    | 5.5       |
| l        |          | Random Response | 1.6     | 5.1     | 1.0     | 5.4       |
|          |          | Miles Equation  | -1.3    | -2.0    | -1.6    | 2.9       |
| ļ        | 201      | Eff. Wt./RSS    | -1.0    | -1.5    | -1.2    | 2.1       |
| Į.       |          | Random Response | 1.0     | 1.6     | 1.5     | 2.4       |
|          |          | Miles Equation  | 1.2     | -2.1    | -1.3    | 2.8       |
|          | 213      | Eff. Wt./RSS    | 0.9     | -1.6    | -1.0    | 2.1       |
| Ì        |          | Random Response | 1.1     | 1.8     | 1.4     | 2.6       |

Notes: 1. Miles Equation Loads RLFx=11.13 g; RLFy=7.76 g; RLFz=13.35 g

<sup>2.</sup> Effective Weight/RSS RLFx=6.69 g; RLFy=5.79 g; RLFz=6.37 g


CIRCUIT BREAKER PANEL INTERFACE FORCE COMPARISON - MILES EQN, EFF WT/RSS, RANDOM RESP

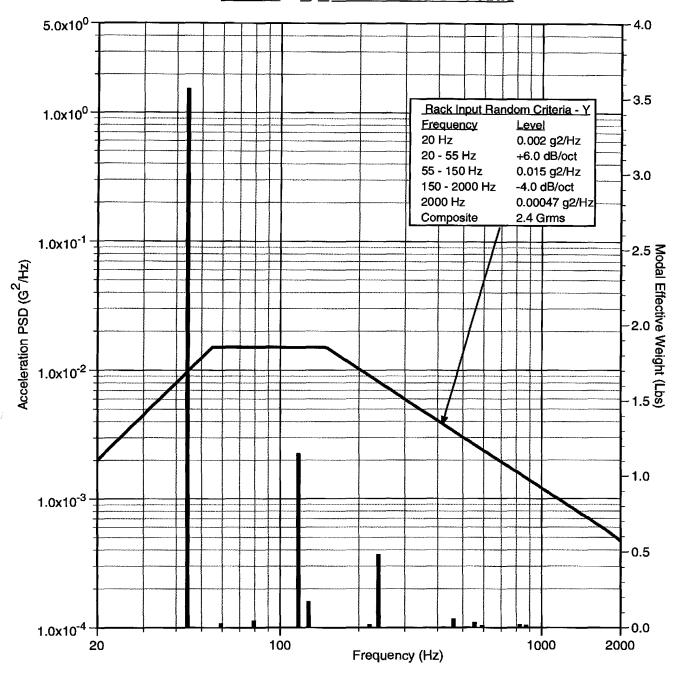
| Axis     | Grid No. | RLF Method      | X (Lbs) | Y (Lbs) | Z (Lbs) | RSS Force |
|----------|----------|-----------------|---------|---------|---------|-----------|
|          |          | Miles Equation  | 14.9    | 12.2    | -8.8    | 21.2      |
|          | 121      | Eff. Wt./RSS    | 7.1     | 5.8     | -4.2    | 10.1      |
| i        |          | Random Response | 10.0    | 7.6     | 4.9     | 13.5      |
|          |          | Miles Equation  | -14.6   | 14.4    | -8.6    | 22.2      |
|          | 133      | Eff. Wt./RSS    | -7.0    | 6.9     | -4.1    | 10.6      |
| }        |          | Random Response | 8.6     | 8.0     | 3.9     | 12.4      |
| 1        |          | Miles Equation  | 0.4     | 1.8     | -13.1   | 13.2      |
| ]        | 141      | Eff. Wt./RSS    | 0.2     | 0.9     | -6.3    | 6.3       |
|          |          | Random Response | 0.9     | 1.2     | 6.9     | 7.1       |
|          |          | Miles Equation  | -0.5    | 2.1     | -13.0   | 13.2      |
|          | 153      | Eff. Wt./RSS    | -0.2    | 1.0     | -6.2    | 6.3       |
| Z-Axis   |          | Random Response | 0.8     | 1.1     | 5.7     | 5.8       |
|          |          | Miles Equation  | -6.1    | -6.9    | -11.1   | 14.4      |
| <b>.</b> | 161      | Eff. Wt./RSS    | -2.9    | -3.3    | -5.3    | 6.9       |
|          |          | Random Response | 3.2     | 4.1     | 6.1     | 8.1_      |
| ł        |          | Miles Equation  | 6.4     | -8.0    | -10.7   | 14.9      |
| 1        | 173      | Eff. Wt./RSS    | 3.1     | -3.8    | -5.1    | 7.1       |
|          |          | Random Response | 3.5     | 5.0     | 4.9     | 7.8       |
|          |          | Miles Equation  | -10.2   | -7.2    | -7.1    | 14.4      |
|          | 201      | Eff. Wt./RSS    | -4.9    | -3.4    | -3.4    | 6.9       |
| ļ        |          | Random Response | 8.2     | 4.7     | 5.1     | 10.8      |
|          |          | Miles Equation  | 9.7     | -8.5    | -6.6    | 14.5      |
| 1        | 213      | Eff. Wt./RSS    | 4.6     | -4.0    | -3.2    | 6.9       |
|          |          | Random Response | 7.7     | 5.3     | 4.3     | 10.3      |

Notes: 1. Miles Equation Loads RLFx=11.13 g; RLFy=7.76 g; RLFz=13.35 g

<sup>2.</sup> Effective Weight/RSS RLFx=6.69 g; RLFy=5.79 g; RLFz=6.37 g

## LMS CIRCUIT BREAKER PANEL RANDOM INPUT MODAL EFFECTIVE WEIGHTS - X-AXIS




## LMS BDPU HVA CIRCUIT BREAKER PANEL RANDOM LOAD DERIVATION

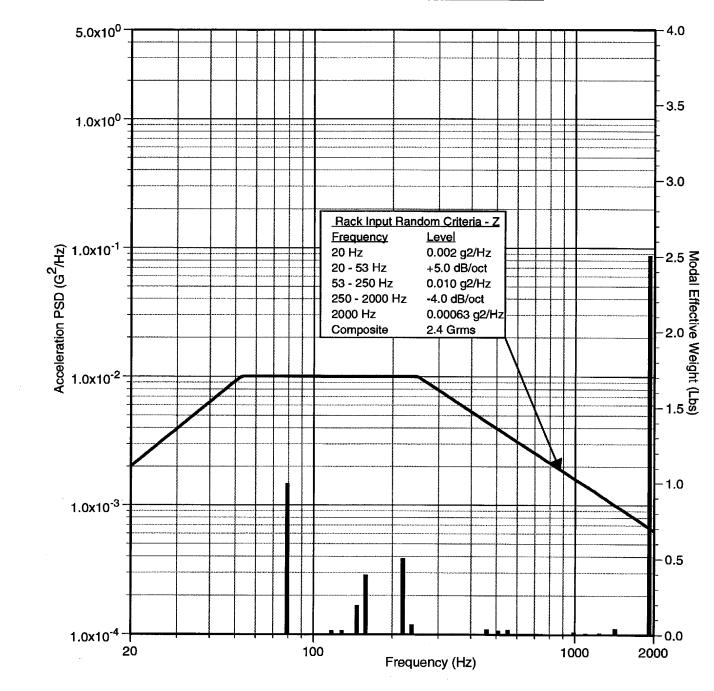
|              |        | RANDOM     | LOAD FACT   | TOR IN X- | AXIS   |                                       |          |         |      |
|--------------|--------|------------|-------------|-----------|--------|---------------------------------------|----------|---------|------|
| Input at the | standa | rd Spacela | b Rack Inte | erfaces - | X-Axis | · · · · · · · · · · · · · · · · · · · |          |         |      |
| F01 =        | 20     | PSD01 =    | 0.00500     | n1 =      | 3      |                                       | Grms1=   | 0.87    |      |
| F02 =        | 80     | PSD02 =    | 0.02000     | n2 =      | 0      |                                       | Grms2=   | 1.55    |      |
| F03 =        | 200    | PSD03 =    | 0.02000     | n3 =      | -4     |                                       | Grms3=   | 2.54    |      |
| F04 =        | 2000   | PSD04 =    | 0.00093     | n4 =      | 0      |                                       |          |         |      |
| Q =          | 10     |            |             |           |        |                                       | Grms=    | 3.10    |      |
|              |        |            |             |           |        |                                       |          |         | 1    |
| FREQUENCY    | F0     | PSD0       | SLOPE       | PSD       | RLF(i) | EFFW                                  | RLF*EFFW | Force^2 | RLF  |
| 44.1         | 20     | 0.005      | 3           | 0.0110    | 8.28   | 0.006                                 | 0.0      | 0.      | 0.01 |
| 59.3         | 20     | 0.005      | 3           | 0.0148    | 11.13  | 2.339                                 | 26.0     | 677.    | 4.40 |
| 79.2         | 20     | 0.005      | 3           | 0.0197    | 14.86  | 0.005                                 | 0.1      | 0.      | 4.40 |
| 117.2        | 80     | 0.02       | 0           | 0.0200    | 18.20  | 0.057                                 | 1.0      | 1.      | 4.40 |
| 128.3        | 80     | 0.02       | 0           | 0.0200    | 19.05  | 0.137                                 | 2.6      | 7.      | 4.42 |
| 146.5        | 80     | 0.02       | 0           | 0.0200    | 20.35  | 0.013                                 | 0.3      | 0.      | 4.42 |
| 158.3        | 80     | 0.02       | 0           | 0.0200    | 21.16  | 0.000                                 | 0.0      | 0.      | 4.42 |
| 219.6        | 200    | 0.02       | -4          | 0.0177    | 23.42  | 0.000                                 | 0.0      | 0.      | 4.42 |
| 237.6        | 200    | 0.02       | -4          | 0.0159    | 23.12  | 0.001                                 | 0.0      | 0.      | 4.42 |
| 296.8        | 200    | 0.02       | -4          | 0.0118    | 22.29  | 0.010                                 | 0.2      | 0.      | 4.42 |
| 335.2        | 200    | 0.02       | -4          | 0.0101    | 21.84  | 0.006                                 | 0.1      | 0.      | 4.42 |
| 357.7        | 200    | 0.02       | -4          | 0.0092    | 21.61  | 0.000                                 | 0.0      | 0.      | 4.42 |
| 420.8        | 200    | 0.02       | -4          | 0.0074    | 21.04  | 0.017                                 | 0.4      | 0.      | 4.42 |
| 459.6        | 200    | 0.02       | -4          | 0.0066    | 20.74  | 0.001                                 | 0.0      | 0.      | 4.42 |
| 508.7        | 200    | 0.02       | -4          | 0.0058    | 20.40  | 0.002                                 | 0.0      | 0.      | 4.42 |
| 523.0        | 200    | 0.02       | -4          | 0.0056    | 20.30  | 0.002                                 | 0.0      | 0.      | 4.42 |
| 545.7        | 200    | 0.02       | -4          | 0.0053    | 20.16  | 0.002                                 | 0.0      | 0.      | 4.42 |
| 553.2        | 200    | 0.02       | - 4         | 0.0052    | 20.12  | 0.001                                 | 0.0      | 0.      | 4.42 |
| 592.2        | 200    | 0.02       | -4          | 0.0047    | 19.89  | 0.006                                 | 0.1      | 0.      | 4.42 |
| 652.5        | 200    | 0.02       | -4          | 0.0042    | 19.58  | 0.000                                 | 0.0      | 0.      | 4.42 |
| 675.0        | 200    | 0.02       | -4          | 0.0040    | 19.47  | 0.002                                 | 0.0      | 0.      | 4.42 |
| 728.9        | 200    | 0.02       | -4          | 0.0036    | 19.23  | 0.000                                 | 0.0      | 0.      | 4.42 |
| 776.8        | 200    | 0.02       | -4          | 0.0033    | 19.03  | 0.022                                 | 0.4      | 0.      | 4.43 |
| 786.3        | 200    | 0.02       | -4          | 0.0032    | 18.99  | 0.049                                 | 0.9      | 1.      | 4.43 |
| 823.4        | 200    | 0.02       | -4          | 0.0031    | 18.84  | 0.001                                 | 0.0      | 0.      | 4.43 |
| 845.1        | 200    | 0.02       | -4          | 0.0029    | 18.76  | 0.015                                 | 0.3      | 0.      | 4.43 |
| 871.1        | 200    | 0.02       | -4          | 0.0028    | 18.67  | 0.001                                 | 0.0      | 0.      | 4.43 |
| 900.0        | 200    | 0.02       | -4          | 0.0027    | 18.57  | 0.000                                 | 0.0      | 0.      | 4.43 |
| 930.0        | 200    | 0.02       | -4          | 0.0026    | 18.47  | 0.008                                 | 0.1      | 0.      | 4.43 |
| 943.8        | 200    | 0.02       | -4          | 0.0025    | 18.43  | 0.001                                 | 0.0      | 0.      | 4.43 |
| 959.7        | 200    | 0.02       | -4          | 0.0025    | 18.38  | 0.004                                 | 0.1      | 0.      | 4.43 |
| 987.4        | 200    | 0.02       | -4          | 0.0024    | 18.29  | 0.000                                 | 0.0      | 0.      | 4.43 |
| 1078.6       | 200    | 0.02       |             | 0.0021    | 18.03  | 0.001                                 | 0.0      | 0.      | 4.43 |
| 1092.7       | 200    | 0.02       |             | 0.0021    | 17.99  | 0.000                                 | 0.0      | 0.      | 4.43 |
| 1112.3       | 200    | 0.02       |             | 0.0020    | 17.94  | 0.005                                 | 0.1      | 0.      | 4.43 |
| 1154.5       | 200    | 0.02       |             | 0.0019    | 17.83  | 0.002                                 | 0.0      | 0.      | 4.43 |
| 1167.3       | 200    | 0.02       |             | 0.0019    | 17.79  | 0.000                                 | 0.0      | 0.      | 4.43 |
| 1236.7       | 200    | 0.02       |             | 0.0018    | 17.63  | 0.000                                 | 0.0      | 0.      | 4.43 |
| 1310.3       | 200    | 0.02       |             | 0.0016    | 17.46  | 0.000                                 | 0.0      | 0.      | 4.43 |
| 1360.3       | 200    | 0.02       |             | 0.0016    | 17.35  | 0.001                                 | 0.0      | 0.      | 4.43 |

## LMS BDPU HVA CIRCUIT BREAKER PANEL RANDOM LOAD DERIVATION

|              |         | RANDOM    | LOAD FACT   | OR IN X-    | AXIS       |       |          |             |      |
|--------------|---------|-----------|-------------|-------------|------------|-------|----------|-------------|------|
| Input at the | standar | d Spacela | b Rack Inte | erfaces - 1 | X-Axis     |       |          |             |      |
| F01 =        | 20      | PSD01 =   | 0.00500     | n1 =        | 3          |       | Grms1=   | 0.87        |      |
| F02 =        | 80      | PSD02 =   | 0.02000     | n2 =        | 0          |       | Grms2=   | 1.55        |      |
| F03 =        | 200     | PSD03 =   | 0.02000     | n3 =        | -4         |       | Grms3=   | 2.54        |      |
| F04 =        | 2000    | PSD04 =   | 0.00093     | n4 =        | 0          |       |          |             |      |
| Q =          | 10      |           |             |             |            |       | Grms=    | 3.10        |      |
|              |         |           |             |             | =          |       |          |             |      |
| FREQUENCY    | F0      | PSD0      | SLOPE       | PSD         | RLF(i)     | EFFW  | RLF*EFFW | Force^2     | RLF  |
| 1392.0       | 200     | 0.02      | -4          | 0.0015      | 17.29      | 0.000 | 0.0      | 0.          | 4.43 |
| 1419.9       | 200     | 0.02      | - 4         | 0.0015      | 17.23      | 0.000 | 0.0      | 0.          | 4.43 |
| 1516.7       | 200     | 0.02      | -4          | 0.0014      | 17.04      | 0.000 | 0.0      | 0.          | 4.43 |
| 1522.2       | 200     | 0.02      | -4          | 0.0013      | 17.03      | 0.000 | 0.0      | 0.          | 4.43 |
| 1570.1       | 200     | 0.02      | -4          | 0.0013      | 16.95      | 0.000 | 0.0      | 0.          | 4.43 |
| 1591.8       | 200     | 0.02      | -4          | 0.0013      | 16.91      | 0.000 | 0.0      | 0.          | 4.43 |
| 1646.1       | 200     | 0.02      | -4          | 0.0012      | 16.82      | 0.001 | 0.0      | 0.          | 4.43 |
| 1713.4       | 200     | 0.02      | -4          | 0.0012      | 16.71      | 0.000 | 0.0      | 0.          | 4.43 |
| 1717.0       | 200     | 0.02      | - 4         | 0.0011      | 16.70      | 0.000 | 0.0      | 0.          | 4.43 |
| 1770.6       | 200     | 0.02      | -4          | 0.0011      | 16.62      | 0.000 | 0.0      | 0.          | 4.43 |
| 1830.7       | 200     | 0.02      | -4          | 0.0011      | 16.52      | 0.000 | 0.0      | 0.          | 4.43 |
| 1909.3       | 200     | 0.02      | -4          | 0.0010      | 16.41      | 0.000 | 0.0      | 0.          | 4.43 |
| 1918.6       | 200     | 0.02      | -4          | 0.0010      | 16.40      | 0.002 | 0.0      | 0.          | 4.43 |
| 1939.5       | 200     | 0.02      | -4          | 0.0010      | 16.37      | 0.000 | 0.0      | 0.          | 4.43 |
| 1960.2       | 200     | 0.02      | -4          | 0.0010      | 16.34      | 0.001 | 0.0      | 0.          | 4.43 |
| 2000.0       | 2000    | 0.0009    | 0           | 0.0009      | 9.29       | 3.196 | 29.7     | 881.        | 6.69 |
|              |         |           |             |             |            |       |          |             |      |
|              |         |           |             |             | EFFWSUM    | 2.72  |          | RLF (RSS) = | 39.6 |
|              |         |           |             |             | EFFWRATIO  | 0.46  |          | MASS =      | 5.92 |
|              |         |           |             |             |            |       |          | RLF =       | 6.69 |
|              |         |           |             |             | Delta Wt.= | 3.196 |          |             |      |

# LMS CIRCUIT BREAKER PANEL RANDOM INPUT MODAL EFFECTIVE WEIGHTS - Y-AXIS



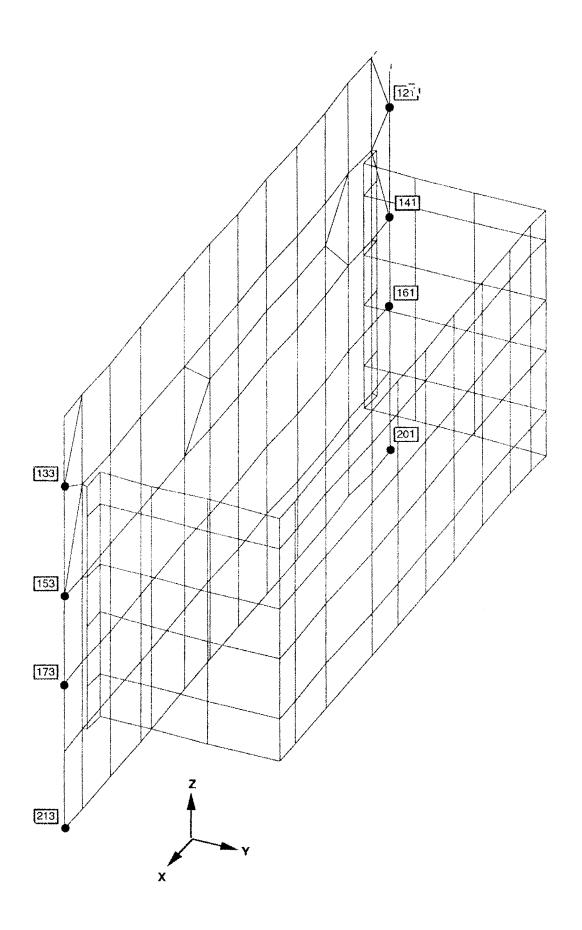

### LMS BDPU HVA CIRCUIT BREAKER PANEL RANDOM LOAD DERIVATION

|                  |         | RANDOM         | LOAD FACT   | FOR IN Y- | AXIS   |        | 337      |         |      |
|------------------|---------|----------------|-------------|-----------|--------|--------|----------|---------|------|
| Input at the     | standaı | rd Spacela     | b Rack Inte | erfaces - | Y-Axis | 171100 |          |         |      |
| F01 =            | 20      | PSD01 =        | 0.00200     | n1 =      | 6      |        | Grms1=   | 0.51    |      |
| F02 =            | 55      | PSD02 =        | 0.01500     | n2 =      | 0      |        | Grms2=   | +       |      |
| F03 =            | 150     | PSD03 =        | 0.01500     | n3 =      | -4     |        | Grms3=   |         |      |
| F04 =            | 2000    | PSD04 =        | 0.00047     | n4 =      | 0      |        |          |         |      |
| Q =              | 10      |                |             |           |        |        | Grms=    | 2.36    |      |
|                  |         |                |             |           |        |        |          |         |      |
| FREQUENCY        | F0      | PSD0           | SLOPE       | PSD       | RLF(i) | EFFW   | RLF*EFFW | Force^2 | RLF  |
| 44.1             | 20      | 0.002          | 6           | 0.0097    | 7.76   | 3.567  | 27.7     | 766.    | 4.68 |
| 59.3             | 55      | 0.015          | 0           | 0.0150    | 11.21  | 0.030  | 0.3      | 0.      | 4.68 |
| 79.2             | 55      | 0.015          | 0           | 0.0150    | 12.96  | 0.047  | 0.6      | 0.      | 4.68 |
| 117.2            | 55      | 0.015          | 0           | 0.0150    | 15.76  | 1.156  | 18.2     | 332.    | 5.60 |
| 128.3            | 55      | 0.015          | 0           | 0.0150    | 16.50  | 0.173  | 2.9      | 8.      | 5.62 |
| 146.5            | 55      | 0.015          | 0           | 0.0150    | 17.62  | 0.001  | 0.0      | 0.      | 5.62 |
| 158.3            | 150     | 0.015          | -4          | 0.0140    | 17.68  | 0.002  | 0.0      | 0.      | 5.62 |
| 219.6            | 150     | 0.015          | -4          | 0.0090    | 16.75  | 0.021  | 0.4      | 0.      | 5.62 |
| 237.6            | 150     | 0.015          | - 4         | 0.0081    | 16.54  | 0.484  | 8.0      | 64.     | 5.78 |
| 296.8            | 150     | 0.015          | -4          | 0.0061    | 15.94  | 0.004  | 0.1      | 0.      | 5.78 |
| 335.2            | 150     | 0.015          | -4          | 0.0052    | 15.63  | 0.001  | 0.0      | 0.      | 5.78 |
| 357.7            | 150     | 0.015          | -4          | 0.0047    | 15.46  | 0.006  | 0.1      | 0.      | 5.78 |
| 420.8            | 150     | 0.015          | -4          | 0.0038    | 15.05  | 0.007  | 0.1      | 0.      | 5.78 |
| 459.6            | 150     | 0.015          | -4          | 0.0034    | 14.84  | 0.061  | 0.9      | 1.      | 5.79 |
| 508.7            | 150     | 0.015          | -4          | 0.0030    | 14.59  | 0.008  | 0.1      | 0.      | 5.79 |
| 523.0            | 150     | 0.015          | -4          | 0.0029    | 14.52  | 0.005  | 0.1      | 0.      | 5.79 |
| 545.7            | 150     | 0.015          | -4          | 0.0027    | 14.42  | 0.002  | 0.0      | 0.      | 5.79 |
| 553.2            | 150     | 0.015          | - 4         | 0.0026    | 14.39  | 0.036  | 0.5      | 0.      | 5.79 |
| 592.2            | 150     | 0.015          | -4          | 0.0024    | 14.23  | 0.014  | 0.2      | 0.      | 5.79 |
| 652.5            | 150     | 0.015          | -4          | 0.0021    | 14.01  | 0.005  | 0.1      | 0.      | 5.79 |
| 675.0            | 150     | 0.015          | -4          | 0.0020    | 13.93  | 0.002  | 0.0      | 0.      | 5.79 |
| 728.9            | 150     | 0.015          | -4          | 0.0018    | 13.75  | 0.000  | 0.0      | 0.      | 5.79 |
| 776.8            | 150     | 0.015          | -4          | 0.0017    | 13.61  | 0.001  | 0.0      | 0.      | 5.79 |
| 786.3            | 150     | 0.015          | -4          | 0.0017    | 13.58  | 0.001  | 0.0      | 0.      | 5.79 |
| 823.4            | 150     | 0.015          | -4          | 0.0016    | 13.48  | 0.022  | 0.3      | 0.      | 5.79 |
| 845.1            | 150     | 0.015          | -4          | 0.0015    | 13.42  | 0.022  | 0.1      | 0.      | 5.79 |
| 871.1            | 150     | 0.015          | -4          | 0.0014    | 13.36  | 0.019  | 0.1      | 0.      | 5.79 |
| 900.0            | 150     | 0.015          | -4          | 0.0014    | 13.28  | 0.019  | 0.3      | 0.      | 5.79 |
| 930.0            | 150     | 0.015          | -4          | 0.0013    | 13.21  | 0.007  | 0.1      | 0.      | ·    |
| 943.8            | 150     | 0.015          | -4          | 0.0013    | 13.21  | 0.004  | 0.0      |         | 5.79 |
| 959.7            | 150     | 0.015          | -4          | 0.0013    | 13.14  | 0.002  |          | 0.      | 5.79 |
| 987.4            | 150     | 0.015          | -4          | 0.0013    | 13.14  |        | 0.0      | 0.      | 5.79 |
| 1078.6           | 150     | 0.015          | -4          | 0.0012    |        | 0.000  | 0.0      | 0.      | 5.79 |
| 1078.6           | 150     |                |             |           | 12.89  | 0.000  | 0.0      | 0.      | 5.79 |
| 1112.3           | 150     | 0.015          | -4          | 0.0011    | 12.87  | 0.000  | 0.0      | 0.      | 5.79 |
| 1112.3           | 150     | 0.015          | -4          | 0.0010    | 12.83  | 0.002  | 0.0      | 0.      | 5.79 |
|                  | 150     |                | -4          | 0.0010    | 12.75  | 0.002  | 0.0      | 0.      | 5.79 |
| 1167.3<br>1236.7 | 150     | 0.015          | -4          | 0.0010    | 12.73  | 0.001  | 0.0      | 0.      | 5.79 |
| 1310.3           | 150     | 0.015<br>0.015 | -4          | 0.0009    | 12.61  | 0.000  | 0.0      | 0.      | 5.79 |
| 1360.3           | 150     |                | -4          | 0.0008    | 12.49  | 0.000  | 0.0      | 0.      | 5.79 |
| 1300.3           | 130     | 0.015          | -4          | 0.0008    | 12.41  | 0.000  | 0.0      | 0.      | 5.79 |

#### LMS BDPU HVA CIRCUIT BREAKER PANEL RANDOM LOAD DERIVATION

|              |         | RANDOM I  | LOAD FACT   | OR IN Y-    | AXIS       |       |          |             |      |
|--------------|---------|-----------|-------------|-------------|------------|-------|----------|-------------|------|
| Input at the | standar | d Spacela | b Rack Inte | erfaces - ` | Y-Axis     |       |          |             |      |
| F01 =        | 20      | PSD01 =   | 0.00200     | n1 =        | 6          |       | Grms1=   | 0.51        |      |
| F02 =        | 55      | PSD02 =   | 0.01500     | n2 =        | 0          |       | Grms2=   | 1.19        |      |
| F03 =        | 150     | PSD03 =   | 0.01500     | n3 =        | - 4        |       | Grms3=   | 1.98        |      |
| F04 =        | 2000    | PSD04 =   | 0.00047     | n4 =        | 0          |       |          |             |      |
| Q =          | 10      |           |             |             |            |       | Grms=    | 2.36        |      |
|              |         |           |             | _           |            |       |          |             |      |
| FREQUENCY    | F0      | PSD0      | SLOPE       | PSD         | RLF(i)     | EFFW  | RLF*EFFW | Force^2     | RLF  |
| 1392.0       | 150     | 0.015     | - 4         | 0.0008      | 12.37      | 0.005 | 0.1      | 0.          | 5.79 |
| 1419.9       | 150     | 0.015     | -4          | 0.0008      | 12.33      | 0.000 | 0.0      | 0.          | 5.79 |
| 1516.7       | 150     | 0.015     | -4          | 0.0007      | 12.19      | 0.004 | 0.0      | 0.          | 5.79 |
| 1522.2       | 150     | 0.015     | -4          | 0.0007      | 12.18      | 0.000 | 0.0      | 0.          | 5.79 |
| 1570.1       | 150     | 0.015     | -4          | 0.0007      | 12.12      | 0.000 | 0.0      | 0.          | 5.79 |
| 1591.8       | 150     | 0.015     | -4          | 0.0007      | 12.10      | 0.000 | 0.0      | 0.          | 5.79 |
| 1646.1       | 150     | 0.015     | -4          | 0.0006      | 12.03      | 0.002 | 0.0      | 0.          | 5.79 |
| 1713.4       | 150     | 0.015     | - 4         | 0.0006      | 11.95      | 0.001 | 0.0      | 0.          | 5.79 |
| 1717.0       | 150     | 0.015     | -4          | 0.0006      | 11.95      | 0.001 | 0.0      | 0.          | 5.79 |
| 1770.6       | 150     | 0.015     | -4          | 0.0006      | 11.89      | 0.000 | 0.0      | 0.          | 5.79 |
| 1830.7       | 150     | 0.015     | -4          | 0.0005      | 11.82      | 0.000 | 0.0      | 0.          | 5.79 |
| 1909.3       | 150     | 0.015     | -4          | 0.0005      | 11.74      | 0.000 | 0.0      | 0.          | 5.79 |
| 1918.6       | 150     | 0.015     | -4          | 0.0005      | 11.73      | 0.000 | 0.0      | 0.          | 5.79 |
| 1939.5       | 150     | 0.015     | -4          | 0.0005      | 11.71      | 0.000 | 0.0      | 0.          | 5.79 |
| 1960.2       | 150     | 0.015     | -4          | 0.0005      | 11.69      | 0.000 | 0.0      | 0.          | 5.79 |
| 2000.0       | 2000    | 0.0005    | 0           | 0.0005      | 7.09       | 0.207 | 1.5      | 2.          | 5.79 |
|              |         |           |             |             |            |       |          |             |      |
|              |         |           |             |             | EFFWSUM    | 5.71  |          | RLF (RSS) = | 34.3 |
|              |         |           |             |             | EFFWRATIO  | 0.97  |          | MASS =      | 5.92 |
|              |         |           |             |             |            |       |          | RLF=        | 5.79 |
|              |         |           |             |             | Delta Wt.= | 0.207 |          |             |      |

# LMS <u>CIRCUIT BREAKER PANEL RANDOM INPUT</u> MODAL EFFECTIVE WEIGHTS - Z-AXIS




## LMS BDPU HVA CIRCUIT BREAKER PANEL RANDOM LOAD DERIVATION

|              |         | RANDOM     | LOAD FACT   | OR IN Z-A  | AXIS        |              |          |         |      |
|--------------|---------|------------|-------------|------------|-------------|--------------|----------|---------|------|
| Input at the | standaı | rd Spacela | b Rack Inte | rfaces - 2 | Z-Axis      |              |          |         |      |
|              | 20      |            | 0.00200     | n1 =       |             |              | Grms1=   | 0.43    |      |
| F02 =        | 53      | PSD02 =    | 0.01000     | n2 =       | 0           |              | Grms2=   | 1.40    |      |
|              | 250     |            | 0.01000     | n3 =       |             |              | Grms3=   | 1.94    |      |
| F04 =        | 2000    |            | 0.00063     | n4 =       | 0           |              |          |         |      |
| Q =          |         |            |             |            |             |              | Grms=    | 2.43    |      |
|              |         |            |             |            |             |              | . #      |         |      |
| FREQUENCY    | Fo      | PSD0       | SLOPE       | PSD        | RLF(i)      | EFFW         | RLF*EFFW | Force^2 | RLF  |
| 44.1         | 20      | 0.002      | 5           | 0.0074     | 6.81        | 0.002        | 0.0      | 0.      | 0.00 |
| 59.3         | 53      | 0.01       | 0           | 0.0100     | 9.16        | 0.000        | 0.0      | 0.      | 0.00 |
| 79.2         | 53      | 0.01       | 0           | 0.0100     | 10.58       | 0.997        | 10.6     | 111.    | 1.78 |
| 117.2        | 53      | 0.01       | 0           | 0.0100     | 12.87       | 0.028        | 0.4      | 0.      | 1.78 |
| 128.3        | 53      | 0.01       | 0           | 0.0100     | 13.47       | 0.030        | 0.4      | 0.      | 1.79 |
| 146.5        | 53      | 0.01       | 0           | 0.0100     | 14.39       | 0.194        | 2.8      | 8.      | 1.85 |
| 158.3        | 53      | 0.01       | 0           | 0.0100     | 14.96       | 0.396        | 5.9      | 35.     | 2.10 |
| 219.6        | 53      | 0.01       | 0           | 0.0100     | 17.62       | 0.504        | 8.9      | 79.     | 2.58 |
| 237.6        | 53      | 0.01       | 0           | 0.0100     | 18.33       | 0.065        | 1.2      | 1.      | 2.59 |
| 296.8        | 250     | 0.01       | -4          | 0.0080     | 18.28       | 0.000        | 0.0      | 0.      | 2.59 |
| 335.2        | 250     | 0.01       | -4          | 0.0068     | 17.91       | 0.001        | 0.0      | 0.      | 2.59 |
| 357.7        | 250     | 0.01       | -4          | 0.0062     | 17.72       | 0.003        | 0.1      | 0.      | 2.59 |
| 420.8        | 250     | 0.01       | -4          | 0.0050     | 17.26       | 0.005        | 0.1      | 0.      | 2.59 |
| 459.6        | 250     | 0.01       | -4          | 0.0045     | 17.01       | 0.037        | 0.6      | 0.      | 2.59 |
| 508.7        | 250     | 0.01       | -4          | 0.0039     | <del></del> | 0.026        | 0.4      | 0.      | 2.59 |
| 523.0        | 250     | 0.01       | -4          | 0.0038     |             | 0.000        | 0.0      | 0.      | 2.59 |
| 545.7        | 250     | 0.01       | -4          | 0.0035     |             | 0.006        | 0.1      | 0.      | 2.59 |
| 553.2        | 250     | 0.01       | -4          | 0.0035     |             | 0.035        | 0.6      | 0.      | 2.59 |
| 592.2        | 250     | 0.01       | -4          | 0.0032     |             | 0.002        | 0.0      | 0.      | 2.59 |
| 652.5        | 250     | 0.01       | -4          | 0.0028     |             | 0.000        | 0.0      | 0.      | 2.59 |
| 675.0        | 250     | 0.01       | -4          | 0.0027     | <del></del> | 0.002        | 0.0      | 0.      | 2.59 |
| 728.9        | 250     | 0.01       | -4          | 0.0024     |             | 0.000        | 0.0      | 0.      | 2.59 |
| 776.8        | 250     | 0.01       | -4          | 0.0022     | <del></del> | 0.000        | 0.0      | 0.      | 2.59 |
| 786.3        | 250     | 0.01       | -4          | 0.0022     |             | 0.000        | 0.0      | 0.      | 2.59 |
| 823.4        | 250     | 0.01       | -4          | 0.0021     | 15.45       | 0.001        | 0.0      | 0.      | 2.59 |
| 845.1        | 250     | 0.01       | -4          | 0.0021     |             | 0.001        | 0.0      | 0.      | 2.59 |
| 871.1        | 250     | 0.01       | -4          | 0.0020     |             | 0.001        | 0.0      | 0.      | 2.59 |
| 900.0        | 250     | 0.01       | -4          | 0.0018     |             | 0.000        | 0.0      | 0.      | 2.59 |
|              | 250     | 0.01       | -4          | 0.0017     |             | 0.000        | 0.0      | 0.      | 2.59 |
| 930.0        | 250     | 0.01       | -4          | 0.0017     |             | 0.000        | 0.0      | 0.      | 2.59 |
| 943.8        |         | 0.01       | -4          | 0.0017     |             | 0.000        | 0.0      | 0.      | 2.59 |
| 959.7        | 250     | 0.01       | -4          | 0.0017     | <del></del> | 0.020        | 0.3      | 0.      | 2.60 |
| 987.4        | 250     |            | -4          | 0.0018     | <del></del> | 0.020        | 0.0      | 0.      | 2.60 |
| 1078.6       | 250     | 0.01       |             | +          |             | <del>+</del> |          | 0.      | 2.60 |
| 1092.7       | 250     | 0.01       | -4          | 0.0014     |             | 0.010        | 0.1      |         |      |
| 1112.3       | 250     | 0.01       | -4          | 0.0014     |             | 0.000        | 0.0      | 0.      | 2.60 |
| 1154.5       | 250     | 0.01       | -4          | 0.0013     |             | 0.001        | 0.0      | 0.      | 2.60 |
| 1167.3       | 250     | 0.01       | -4          | 0.0013     |             | 0.000        | 0.0      | 0.      | 2.60 |
| 1236.7       | 250     | 0.01       | -4          | 0.0012     |             | 0.011        | 0.2      | 0.      | 2.60 |
| 1310.3       | 250     | 0.01       | -4          | 0.0011     |             | 0.001        | 0.0      | 0.      | 2.60 |
| 1360.3       | 250     | 0.01       | -4          | 0.0011     | 14.23       | 0.000        | 0.0      | 0.      | 2.60 |

#### LMS BDPU HVA CIRCUIT BREAKER PANEL RANDOM LOAD DERIVATION

|              |         | RANDOM    | LOAD FACT   | OR IN Z-A   | AXIS             |       |           |             |      |
|--------------|---------|-----------|-------------|-------------|------------------|-------|-----------|-------------|------|
| Input at the | standar | d Spacela | b Rack Inte | erfaces - 2 | Z-Axis           |       |           |             |      |
| F01 =        | 20      | PSD01 =   | 0.00200     | n1 =        | 5                |       | Grms1=    | 0.43        |      |
| F02 =        | 53      | PSD02 =   | 0.01000     | n2 =        | 0                |       | Grms2=    | 1.40        |      |
| F03 =        | 250     | PSD03 =   | 0.01000     | n3 =        | - 4              |       | Grms3=    | 1.94        |      |
| F04 =        | 2000    | PSD04 =   | 0.00063     | n4 =        | 0                |       |           |             |      |
| Q =          | 10      |           |             |             |                  |       | Grms=     | 2.43        |      |
|              |         |           |             |             |                  |       |           | T           |      |
| FREQUENCY    | _F0     | PSD0      | SLOPE       | PSD         | RLF(i)           | EFFW  | RLF*EFFW_ | Force^2     | RLF  |
| 1392.0       | 250     | 0.01      | -4          | 0.0010      | 14.18            | 0.001 | 0.0       | 0.          | 2.60 |
| 1419.9       | 250     | 0.01      | -4          | 0.0010      | 14.13            | 0.042 | 0.6       | 0.          | 2.60 |
| 1516.7       | 250     | 0.01      | -4          | 0.0009      | 13.98            | 0.003 | 0.0       | 0.          | 2.60 |
| 1522.2       | 250     | 0.01      | -4          | 0.0009      | 13.97            | 0.001 | 0.0       | 0.          | 2.60 |
| 1570.1       | 250     | 0.01      | - 4         | 0.0009      | 13.90            | 0.000 | 0.0       | 0.          | 2.60 |
| 1591.8       | 250     | 0.01      | -4          | 0.0009      | 13.87            | 0.002 | 0.0       | 0.          | 2.60 |
| 1646.1       | 250     | 0.01      | -4          | 0.0008      | 13.79            | 0.000 | 0.0       | 0.          | 2.60 |
| 1713.4       | 250     | 0.01      | -4          | 0.0008      | 13.70            | 0.004 | 0.1       | 0.          | 2.60 |
| 1717.0       | 250     | 0.01      | -4          | 0.0008      | 13.70            | 0.002 | 0.0       | 0.          | 2.60 |
| 1770.6       | 250     | 0.01      | -4          | 0.0007      | 13.63            | 0.000 | 0.0       | 0.          | 2.60 |
| 1830.7       | 250     | 0.01      | -4          | 0.0007      | 13.55            | 0.000 | 0.0       | 0.          | 2.60 |
| 1909.3       | 250     | 0.01      | -4          | 0.0007      | 13.46            | 0.006 | 0.1       | 0.          | 2.60 |
| 1918.6       | 250     | 0.01      | -4          | 0.0007      | 13.45            | 2.508 | 33.7      | 1138.       | 6.26 |
| 1939.5       | 250     | 0.01      | -4          | 0.0007      | 13.42            | 0.006 | 0.1       | 0.          | 6.26 |
| 1960.2       | 250     | 0.01      | -4          | 0.0006      | 13.40            | 0.001 | 0.0       | 0.          | 6.26 |
| 2000.0       | 2000    | 0.0006    | 0           | 0.0006      | 7.29             | 0.961 | 7.0       | 49.         | 6.37 |
|              |         |           |             |             |                  |       |           |             |      |
|              |         |           |             |             | EFFWSUM          | 4.96  |           | RLF (RSS) = | 37.7 |
| 1            |         |           |             |             | <b>EFFWRATIO</b> | 0.84  |           | MASS =      | 5.92 |
|              |         |           |             |             |                  |       |           | RLF =       | 6.37 |
|              |         |           |             |             | Delta Wt.=       | 0.961 |           |             |      |



Panel = 0,190" thick

CIRCUIT BREAKER PANEL INTERFACE FORCE COMPARISON - MILES EQN, EFF WT/RSS, RANDOM RESP (RE-DESIGN OF CIRCUIT BREAKER PANEL WITH 0.19 INCH THICKNESS)

| Axis   | Grid No. | RLF Method      | X (Lbs) | Y (Lbs) | Z (Lbs) | RSS Force |
|--------|----------|-----------------|---------|---------|---------|-----------|
|        |          | Miles Equation  | -13.8   | -0.4    | 3.5     | 14.2      |
|        | 121      | Eff. Wt./RSS    | -5.0    | -0.1    | 1.3     | 5.1       |
|        |          | Random Response | 4.6     | 1.2     | 2.8     | 5.5       |
|        |          | Miles Equation  | -12.1   | 0.4     | -3.2    | 12.5      |
|        | 133      | Eff. Wt./RSS    | -4.4    | 0.1     | -1.2    | 4.5       |
|        |          | Random Response | 4.4     | 1.8     | 2.7     | 5.4       |
|        |          | Miles Equation  | -13.2   | -4.7    | 0.6     | 14.0      |
|        | 141      | Eff. Wt./RSS    | -4.8    | -1.7    | 0.2     | 5.1       |
|        |          | Random Response | 4.9     | 4.3     | 0.5     | 6.5       |
|        |          | Miles Equation  | -12.1   | 4.6     | -0.5    | 13.0      |
|        | 153      | Eff. Wt./RSS    | -4.4    | 1.7     | -0.2    | 4.7       |
| X-Axis |          | Random Response | 4.6     | 3.7     | 0.5     | 6.0       |
|        |          | Miles Equation  | -9.4    | -3.2    | -0,4    | 9.9       |
|        | 161      | Eff. Wt./RSS    | -3.4    | -1.1    | -0.1    | 3.6       |
|        |          | Random Response | 2.9     | 2.8     | 0.8     | 4.1       |
|        |          | Miles Equation  | -8.9    | 3.3     | 0.2     | 9.5       |
|        | 173      | Eff. Wt./RSS    | -3.2    | 1.2     | 0.1     | 3.4       |
|        |          | Random Response | 2.8     | 2.3     | 0.8     | 3.7       |
|        |          | Miles Equation  | -7.4    | 0.0     | -4.3    | 8.6       |
|        | 201      | Eff. Wt./RSS    | -2.7    | 0.0     | -1.6    | 3.1       |
|        |          | Random Response | 2.8     | 0.5     | 2.5     | 3.8       |
|        |          | Miles Equation  | -7.4    | 0.0     | 4.2     | 8.5       |
|        | 213      | Eff. Wt./RSS    | -2.7    | 0.0     | 1.5     | 3.1       |
|        |          | Random Response | 2.7     | 0.7     | 2.4     | 3.6       |

Notes: 1. Miles Equation Loads RLFx=12.05 g; RLFy=10.76 g; RLFz=12.80 g

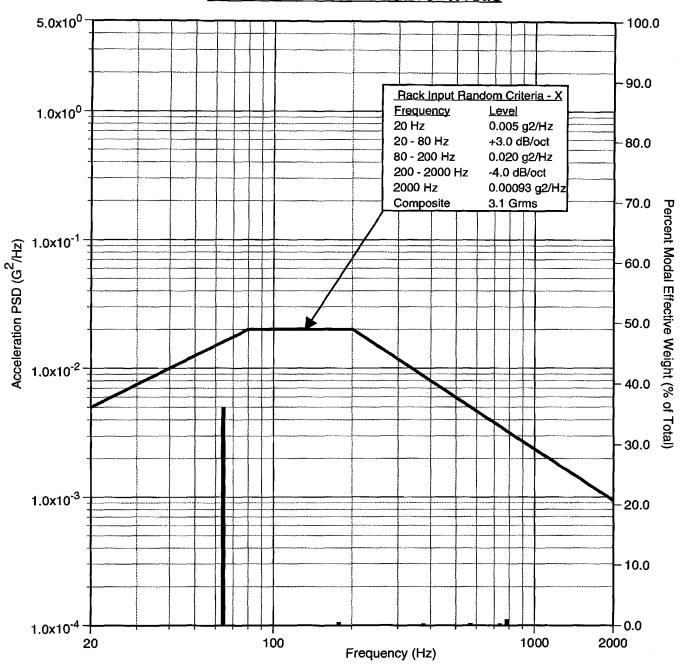
<sup>2.</sup> Effective Weight/RSS RLFx=4.35 g; RLFy=7.69 g; RLFz=3.63 g

CIRCUIT BREAKER PANEL INTERFACE FORCE COMPARISON - MILES EQN, EFF WT/RSS, RANDOM RESP (RE-DESIGN OF CIRCUIT BREAKER PANEL WITH 0.19 INCH THICKNESS)

| Axis   | Grid No. | RLF Method      | X (Lbs) | Y (Lbs) | Z (Lbs) | RSS Force |
|--------|----------|-----------------|---------|---------|---------|-----------|
|        |          | Miles Equation  | -1.7    | -12.3   | -0.1    | 12.4      |
|        | 121      | Eff. Wt./RSS    | -1.2    | -8.8    | -0.1    | 8.9       |
|        |          | Random Response | 1.6     | 9.3     | 0.6     | 9.5       |
|        |          | Miles Equation  | 1.8     | -11.6   | -0.2    | 11.7      |
|        | 133      | Eff. Wt./RSS    | 1.3     | -8.3    | -0.1    | 8.4       |
|        |          | Random Response | 1.9     | 8.4     | 0.6     | 8.7       |
|        |          | Miles Equation  | -7.2    | -10.1   | 0.7     | 12.4      |
|        | 141      | Eff. Wt./RSS    | -5.2    | -7.2    | 0.5     | 8.9       |
|        |          | Random Response | 5.2     | 7.3     | 1.1     | 9.0       |
|        |          | Miles Equation  | 7.1     | -9.8    | 0.6     | 12.2      |
|        | 153      | Eff. Wt./RSS    | 5.1     | -7.0    | 0.4     | 8.7       |
| Y-Axis |          | Random Response | 5.3     | 7.2     | 1.0     | 9.0       |
|        |          | Miles Equation  | -2.3    | -11.1   | 0.1     | 11.3      |
|        | 161      | Eff. Wt./RSS    | -1.6    | -7.9    | 0.1     | 8.1       |
|        |          | Random Response | 1.6     | 7.2     | 0.6     | 7.4       |
|        |          | Miles Equation  | 2.4     | -11.1   | 0.2     | 11.3      |
|        | 173      | Eff. Wt./RSS    | 1.7     | -7.9    | 0.1     | 8.1       |
|        |          | Random Response | 1.9     | 7.2     | 0.5     | 7.5       |
|        |          | Miles Equation  | -1.1    | -4.5    | -0.7    | 4.7       |
|        | 201      | Eff. Wt./RSS    | -0.8    | -3.2    | -0.5    | 3.4       |
|        |          | Random Response | 0.8     | 2.9     | 0.6     | 3.1       |
|        |          | Miles Equation  | 1.1     | -4.8    | -0.6    | 4.9       |
|        | 213      | Eff. Wt./RSS    | 0.8     | -3.4    | -0.4    | 3.5       |
|        |          | Random Response | 1.0     | 3.1     | 0.7     | 3.3       |

Notes: 1. Miles Equation Loads RLFx=12.05 g; RLFy=10.76 g; RLFz=12.80 g

<sup>2.</sup> Effective Weight/RSS RLFx=4.35 g; RLFy=7.69 g; RLFz=3.63 g


# CIRCUIT BREAKER PANEL INTERFACE FORCE COMPARISON - MILES EQN, EFF WT/RSS, RANDOM RESP (RE-DESIGN OF CIRCUIT BREAKER PANEL WITH 0.19 INCH THICKNESS)

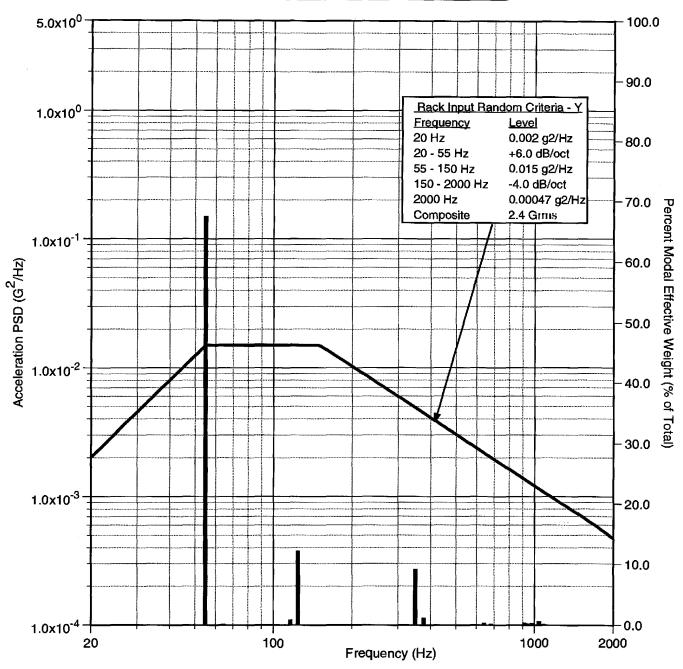
| Axis   | Grid No. | RLF Method      | X (Lbs) | Y (Lbs) | Z (Lbs) | RSS Force |
|--------|----------|-----------------|---------|---------|---------|-----------|
|        |          | Miles Equation  | 15.9    | 12.2    | -10.3   | 22.5      |
|        | 121      | Eff. Wt./RSS    | 4.5     | 3.5     | -2.9    | 6.4       |
|        |          | Random Response | 3.5     | 11.0    | 3.4     | 12.0      |
|        |          | Miles Equation  | -15.5   | 14.5    | -10.1   | 23.5      |
|        | 133      | Eff. Wt./RSS    | -4.4    | 4.1     | -2.9    | 6.7       |
|        |          | Random Response | 3.5     | 10.5    | 3.3     | 11.5      |
|        |          | Miles Equation  | 0.5     | 0.7     | -13.8   | 13.8      |
|        | 141      | Eff. Wt./RSS    | 0.1     | 0.2     | -3.9    | 3.9       |
|        |          | Random Response | 0.5     | 1.5     | 4.1     | 4.4       |
|        |          | Miles Equation  | -0.6    | 0.9     | -13.4   | 13.5      |
|        | 153      | Eff. Wt./RSS    | -0.2    | 0.3     | -3.8    | 3.8       |
| Z-Axis |          | Random Response | 0.4     | 1.4     | 4.0     | 4.2       |
|        |          | Miles Equation  | -5.4    | -5.2    | -12.3   | 14.4      |
|        | 161      | Eff. Wt./RSS    | -1.5    | -1.5    | -3.5    | 4.1       |
|        |          | Random Response | 1.7     | 4.6     | 3.7     | 6.2       |
|        |          | Miles Equation  | 5.5     | -6.3    | -11.9   | 14.6      |
|        | 173      | Eff. Wt./RSS    | 1.6     | -1.8    | -3.4    | 4.1       |
|        |          | Random Response | 1.7     | 4.7     | 3.6     | 6.2       |
|        |          | Miles Equation  | -12.1   | -7.7    | -9.0    | 16.9      |
| Ì      | 201      | Eff. Wt./RSS    | -3.4    | -2.2    | -2.5    | 4.8       |
|        |          | Random Response | 2.0     | 6.8     | 2.1     | 7.4       |
|        |          | Miles Equation  | 11.9    | -9.1    | -8.8    | 17.3      |
| 1      | 213      | Eff. Wt./RSS    | 3.4     | -2.6    | -2.5    | 4.9       |
| 1      |          | Random Response | 2.1     | 7.0     | 2.2     | 7.7       |

Notes: 1. Miles Equation Loads RLFx=12.05 g; RLFy=10.76 g; RLFz=12.80 g

<sup>2.</sup> Effective Weight/RSS RLFx=4.35 g; RLFy=7.69 g; RLFz=3.63 g

# LMS CIRCUIT BREAKER PANEL RANDOM INPUT MODAL EFFECTIVE WEIGHTS - X-AXIS




# LMS BDPU HVA CIRCUIT BREAKER PANEL RLF DERIVATION (0.19" THICK PANEL)

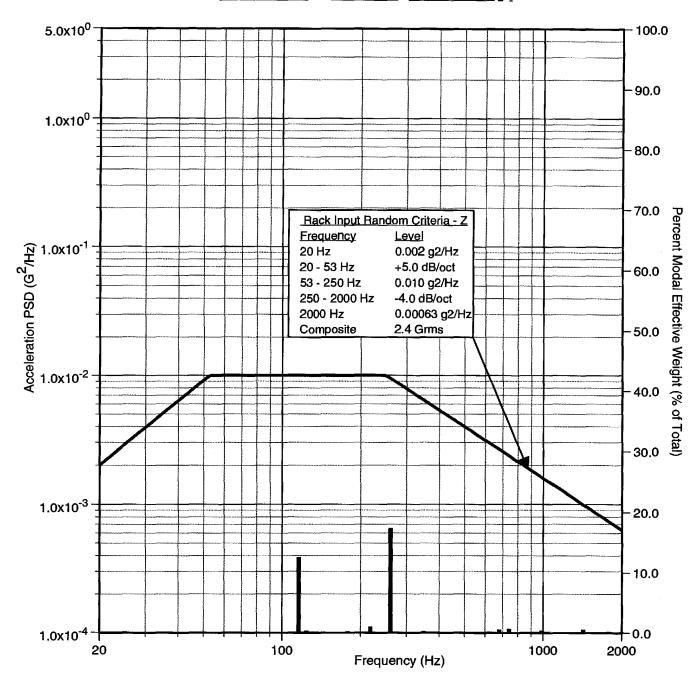
|              |         | RANDOM     | LOAD FACT   | TOR IN X- | AXIS   |       |          |          |              |
|--------------|---------|------------|-------------|-----------|--------|-------|----------|----------|--------------|
| Input at the | standaı | rd Spacela | b Rack Inte | erfaces - | X-Axis |       |          |          |              |
| F01 =        | 20      | PSD01 =    | 0.00500     | n1 =      | 3      |       | Grms1=   | 0.87     |              |
| F02 =        | 80      | PSD02 =    | 0.02000     | n2 =      | 0      |       | Grms2=   | 1.55     |              |
| F03 =        | 200     | PSD03 =    | 0.02000     | n3 =      | -4     |       | Grms3=   |          |              |
| F04 =        | 2000    | PSD04 =    | 0.00093     | n4 =      | 0      |       |          |          |              |
| Q =          | 10      |            |             |           |        |       | Grms=    | 3.10     |              |
| FREQUENCY    | F0      | PSD0       | SLOPE       | PSD       | RLF(i) | EFFW  | RLF*EFFW | Force^2  | RLF          |
| 54.8         | 20      | 0.005      | 3           | 0.0137    |        | 0.002 | 0.0      | 0.       |              |
| 64.2         | 20      | 0.005      | 3           | 0.0160    |        | 2.522 | 30.4     | 923.     | 0.00<br>4.34 |
| 116.0        | 80      | 0.02       | 0           | 0.0200    | 18.11  | 0.001 | 0.0      | 0.       |              |
| 124.1        | 80      | 0.02       | 0           | 0.0200    | 18.73  | 0.006 |          | 0.       | 4.34         |
| 178.6        | 80      | 0.02       | 0           |           | 22.47  |       | 0.1      |          | 4.34         |
|              |         |            |             | 0.0200    |        | 0.034 | 0.8      | 1.       | 4.35         |
| 200.1        | 200     | 0.02       | -4          | 0.0200    | 23.78  | 0.001 | 0.0      | 0.       | 4.35         |
| 218.1        | 200     | 0.02       | -4          | 0.0178    | 23.44  | 0.001 | 0.0      | 0.       | 4.35         |
| 260.5        | 200     | 0.02       | 4           | 0.0141    | 22.77  | 0.000 | 0.0      | 0.       | 4.35         |
| 349.7        | 200     | 0.02       | -4          | 0.0095    | 21.69  | 0.004 | 0.1      | 0.       | 4.35         |
| 377.1        | 200     | 0.02       | -4          | 0.0086    | 21.43  | 0.022 | 0.5      | 0.       | 4.35         |
| 465.7        | 200     | 0.02       | - 4         | 0.0065    | 20.69  | 0.001 | 0.0      | 0.       | 4.35         |
| 522.2        | 200     | 0.02       | -4          | 0.0056    | 20.31  | 0.000 | 0.0      | 0.       | 4.35         |
| 536.2        | 200     | 0.02       | - 4         | 0.0054    | 20.22  | 0.001 | 0.0      | 0.       | 4.35         |
| 546.3        | 200     | 0.02       | -4          | 0.0053    | 20.16  | 0.000 | 0.0      | 0        | 4.35         |
| 570.3        | 200     | 0.02       | -4          | 0.0050    | 20.02  | 0.024 | 0.5      | 0        | 4.35         |
| 641.3        | 200     | 0.02       | -4          | 0.0043    | 19.63  | 0.000 | 0.0      | 0.       | 4.35         |
| 680.7        | 200     | 0.02       | -4          | 0.0039    | 19.44  | 0.001 | 0.0      | 0.       | 4.35         |
| 737.0        | 200     | 0.02       | -4          | 0.0035    | 19.19  | 0.020 | 0.4      | 0.       | 4.35         |
| 740.7        | 200     | 0.02       | -4          | 0.0035    | 19.17  | 0.000 | 0.0      | 0.       | 4.35         |
| 785.7        | 200     | 0.02       | -4          | 0.0032    | 18.99  | 0.069 | 1.3      | 2.       | 4.35         |
| 852.8        | 200     | 0.02       | -4          | 0.0029    | 18.74  | 0.000 | 0.0      | 0.       | 4.35         |
| 868.2        | 200     | 0.02       | -4          | 0.0028    | 18.68  | 0.002 | 0.0      | 0.       | 4.35         |
| 915.4        | 200     | 0.02       | -4          | 0.0027    | 18.52  | 0.002 | 0.0      | 0.       | 4.35         |
| 932.5        | 200     | 0.02       | -4          | 0.0026    | 18.46  | 0.001 | 0.0      | 0.       | 4.35         |
| 976.7        | 200     | 0.02       | -4          | 0.0024    | 18.32  | 0.002 | 0.0      | 0.       | 4.35         |
| 988.5        | 200     | 0.02       | -4          | 0.0024    | 18.29  | 0.000 | 0.0      | 0.       | 4.35         |
| 1041.0       | 200     | 0.02       | -4          | 0.0022    | 18.13  | 0.003 | 0.1      | 0.       | 4.35         |
| 1077.9       | 200     | 0.02       | -4          | 0.0021    | 18.03  | 0.000 | 0.0      | <u> </u> | 4.35         |
| 1119.7       | 200     | 0.02       | -4          | 0.0020    | 17.92  | 0.000 | 0.0      | 0.       | 4.35         |
| 1125.6       | 200     | 0.02       | -4          | 0.0020    | 17.90  | 0.003 | 0.1      | 0.       | 4.35         |
| 1160.0       | 200     | 0.02       | -4          | 0.0019    | 17.81  | 0.000 | 0.0      | 0.       | 4.35         |
| 1259.3       | 200     | 0.02       | -4          | 0.0017    | 17.57  | 0.007 | 0.1      | 0.       | 4.35         |
| 1292.6       | 200     | 0.02       | -4          | 0.0017    | 17.50  | 0.007 | 0.0      | 0.       | 4.35         |
| 1338.6       | 200     | 0.02       | -4          | 0.0017    | 17.40  | 0.000 | 0.0      |          | _            |
| 1356.1       | 200     | 0.02       | -4          | 0.0016    | 17.40  | 0.000 |          | 0.       | 4.35         |
| 1396.9       | 200     | 0.02       | -4          | 0.0015    | 17.36  |       | 0.0      | 0.       | 4.35         |
|              | 200     |            |             |           |        | 0.000 | 0.0      | 0        | 4.35         |
| 1423.2       |         | 0.02       | -4          | 0.0015    | 17.22  | 0.000 | 0.0      | 0.       | 4.35         |
| 1509.0       | 200     | 0.02       | -4          | 0.0014    | 17.06  | 0.000 | 0.0      | 0.       | 4.35         |
| 1591.9       | 200     | 0.02       | -4          | 0.0013    | 16.91  | 0.000 | 0.0      | 0.       | 4.35         |
| 1610.3       | 200     | 0.02       | -4          | 0.0013    | 16.88  | 0.000 | 0.0      | 0.       | 4.35         |
| 1643.1       | 200     | 0.02       | -4          | 0.0012    | 16.82  | 0.001 | 0.0      | 0.       | 4.35         |

#### LMS BDPU HVA CIRCUIT BREAKER PANEL RLF DERIVATION (0.19" THICK PANEL)

|              |         | RANDOM     | LOAD FACT   | OR IN X-    | AXIS       |        |          |             |      |
|--------------|---------|------------|-------------|-------------|------------|--------|----------|-------------|------|
| Input at the | standaı | rd Spacela | b Rack Inte | erfaces - 2 | X-Axis     |        |          |             |      |
| F01 =        | 20      | PSD01 =    | 0.00500     | n1 =        | 3          |        | Grms1=   | 0.87        |      |
| F02 =        | 80      | PSD02 =    | 0.02000     | n2 =        | 0          |        | _Grms2=  | 1.55        |      |
| F03 =        | 200     | P\$D03 =   | 0.02000     | n3 =        | - 4        | _      | Grms3=   | 2.54        |      |
| F04 =        | 2000    | PSD04 =    | 0.00093     | n4 =        | 0          |        |          |             |      |
| Q =          | 10      |            |             |             |            |        | Grms=    | 3.10        |      |
|              |         |            |             |             |            |        |          |             |      |
| FREQUENCY    | F0      | PSD0       | SLOPE       | PSD         | RLF(i)     | EFFW   | RLF*EFFW | Force^2     | RLF  |
| 1691.4       | 200     | 0.02       | -4          | 0.0012      | 16.74      | 0.000  | 0.0      | 0.          | 4.35 |
| 1750.4       | 200     | 0.02       | -4          | 0.0011      | 16.65      | 0.000  | 0.0      | 0.          | 4.35 |
| 1773.0       | 200     | 0.02       | -4          | 0.0011      | 16.61      | 0.000  | 0.0      | 0.          | 4.35 |
| 1993.8       | 200     | 0.02       | -4          | 0.0009      | 16.29      | 0.000  | 0.0      | 0.          | 4.35 |
|              |         |            |             | _           |            |        |          |             | i    |
|              |         |            |             |             | EFFWSUM    | 2.73   |          | RLF (RSS) = | 30.4 |
|              |         |            |             |             | EFFWRATIO  | 0.39   |          | MASS =      | 6.99 |
|              |         |            |             |             |            |        |          | RLF =       | 4.35 |
|              |         |            |             |             | Delta Wt.= | 4.2619 |          |             |      |

# LMS CIRCUIT BREAKER PANEL RANDOM INPUT MODAL EFFECTIVE WEIGHTS - Y-AXIS




### LMS BDPU HVA CIRCUIT BREAKER PANEL RLF DERIVATION (0.19" THICK PANEL)

|              |         | RANDOM     | LOAD FACT   | OR IN Y-  | AXIS        |       |           |         |      |
|--------------|---------|------------|-------------|-----------|-------------|-------|-----------|---------|------|
| Input at the | standaı | rd Spacela | b Rack Inte | erfaces - | Y-Axis      |       |           |         |      |
| F01 =        | 20      | PSD01 =    | 0.00200     | n1 =      | 6           |       | Grms1=    | 0.51    |      |
| F02 =        | 55      | PSD02 =    | 0.01500     | n2 =      | 0           |       | Grms2=    | 1.19    |      |
| F03 =        | 150     | PSD03 =    | 0.01500     | n3 =      | -4          |       | Grms3=    | 1.98    |      |
| F04 =        | 2000    | PSD04 =    | 0.00047     | n4 =      | 0           |       |           |         |      |
| Q =          | 10      |            |             |           |             |       | Grms=     | 2.36    |      |
|              |         |            |             |           |             |       |           |         |      |
| FREQUENCY    | F0      | PSD0       | SLOPE       | PSD       | RLF(i)      | EFFW  | RLF*EFFW_ | Force^2 | RLF  |
| 54.8         | 20      | 0.002      | 6           | 0.0149    |             | 4.727 | 50.9      | 2587.   | 7.27 |
| 64.2         | 55      | 0.015      | 0           | 0.0150    | 11.67       | 0.012 | 0.1       | 0.      | 7.27 |
| 116.0        | 55      | 0.015      | 0           | 0.0150    |             | 0.061 | 1.0       | 1.      | 7.28 |
| 124.1        | 55      | 0.015      | 0           | 0.0150    |             | 0.863 | 14.0      | 196.    | 7.55 |
| 178.6        | 150     | 0.015      | -4          | 0.0119    |             | 0.004 | 0.1       | 0.      | 7.55 |
| 200.1        | 150     | 0.015      | -4          | 0.0102    |             | 0.002 | 0.0       | 0.      | 7.55 |
| 218.1        | 150     | 0.015      | -4          | 0.0091    | 16.77       | 0.000 | 0.0       | 0.      | 7.55 |
| 260.5        | 150     | 0.015      | -4          | 0.0072    |             | 0.009 | 0.1       | 0.      | 7.55 |
| 349.7        | 150     | 0.015      | -4          | 0.0049    | 15.52       | 0.646 | 10.0      | 100.    | 7.68 |
| 377.1        | 150     | 0.015      | -4          | 0.0044    | 15.33       | 0.087 | 1.3       | 2.      | 7.68 |
| 465.7        | 150     | 0.015      | -4          | 0.0033    | ·           | 0.002 | 0.0       | 0.      | 7.68 |
| 522.2        | 150     | 0.015      | -4          | 0.0029    | <del></del> | 0.001 | 0.0       | 0.      | 7.68 |
| 536.2        | 150     | 0.015      | -4          | 0.0028    |             | 0.002 | 0.0       | 0.      | 7.68 |
| 546.3        | 150     | 0.015      | -4          | 0.0027    | 14.42       | 0.003 | 0.0       | 0.      | 7.68 |
| 570.3        | 150     | 0.015      | -4          | 0.0025    | 14.32       | 0.000 | 0.0       | 0.      | 7.68 |
| 641.3        | 150     | 0.015      | -4          | 0.0022    | 14.05       | 0.031 | 0.4       | 0.      | 7.68 |
| 680.7        | 150     | 0.015      | -4          | 0.0020    | 13.91       | 0.012 | 0.2       | 0.      | 7.68 |
| 737.0        | 150     | 0.015      | -4          | 0.0018    | 13.73       | 0.000 | 0.0       | 0.      | 7.68 |
| 740.7        | 150     | 0.015      | - 4         | 0.0018    | 13.72       | 0.000 | 0.0       | 0.      | 7.68 |
| 785.7        | 150     | 0.015      | -4          | 0.0017    | 13.58       | 0.000 | 0.0       | 0.      | 7.68 |
| 852.8        | 150     | 0.015      | -4          | 0.0015    | 13.40       | 0.005 | 0.1       | 0.      | 7.68 |
| 868.2        | 150     | 0.015      | -4          | 0.0015    | 13.36       | 0.008 | 0.1       | 0.      | 7.68 |
| 915.4        | 150     | 0.015      | -4          | 0.0014    | 13.25       | 0.028 | 0.4       | 0       | 7.68 |
| 932.5        | 150     | 0.015      | -4          | 0.0013    | 13.21       | 0.020 | 0.3       | 0.      | 7.68 |
| 976.7        | 150     | 0.015      | -4          | 0.0012    | 13.11       | 0.030 | 0.4       | 0.      | 7.68 |
| 988.5        | 150     | 0.015      | -4          | 0.0012    | 13.08       | 0.002 | 0.0       | 0.      | 7.68 |
| 1041.0       | 150     | 0.015      | -4          | 0.0011    | 12.97       | 0.052 | 0.7       | 0.      | 7.69 |
| 1077.9       | 150     | 0.015      | -4          | 0.0011    | 12.90       | 0.012 | 0.2       | 0.      | 7.69 |
| 1119.7       | 150     | 0.015      | -4          | 0.0010    | 12.82       | 0.001 | 0.0       | 0.      | 7.69 |
| 1125.6       | 150     | 0.015      | -4          | 0.0010    | 12.80       | 0.005 | 0.1       | 0.      | 7.69 |
| 1160.0       | 150     | 0.015      | -4          | 0.0010    | 12.74       | 0.000 | 0.0       | 0.      | 7.69 |
| 1259.3       | 150     | 0.015      | -4          | 0.0009    | 12.57       | 0.000 | 0.0       | 0.      | 7.69 |
| 1292.6       | 150     | 0.015      | -4          | 0.0009    | 12.52       | 0.002 | 0.0       | 0.      | 7.69 |
| 1338.6       | 150     | 0.015      | -4          | 0.0008    | 12.45       | 0.000 | 0.0       | 0       | 7.69 |
| 1356.1       | 150     | 0.015      | -4          | 0.0008    | 12.42       | 0.003 | 0.0       | 0.      | 7.69 |
| 1396.9       | 150     | 0.015      | -4          | 0.0008    | 12.36       | 0.004 | 0.0       | 0.      | 7.69 |
| 1423.2       | 150     | 0.015      | -4          | 0.0008    |             | 0.001 | 0.0       | 0.      | 7.69 |
| 1509.0       | 150     | 0.015      | -4          | 0.0007    | 12.20       | 0.004 | 0.0       | 0.      | 7.69 |
| 1591.9       | 150     | 0.015      | -4          | 0.0007    | 12.10       | 0.000 | 0.0       | 0.      | 7.69 |
| 1610.3       | 150     | 0.015      | -4          | 0.0006    | 12.07       | 0.000 | 0.0       | 0.      | 7.69 |
| 1643.1       | 150     | 0.015      | -4          | 0.0006    | 12.03       | 0.003 | 0.0       | 0       | 7.69 |

#### LMS BDPU HVA CIRCUIT BREAKER PANEL RLF DERIVATION (0.19" THICK PANEL)

|              |         | RANDOM     | LOAD FACT   | TOR IN Y- | AXIS             |        |          |             |      |
|--------------|---------|------------|-------------|-----------|------------------|--------|----------|-------------|------|
| Input at the | standaı | rd Spacela | b Rack Inte | erfaces - | Y-Axis           |        |          |             |      |
| F01 =        | 20      | PSD01 =    | 0.00200     | n1 =      | 6                |        | Grms1=   | 0.51        |      |
| F02 =        | 55      | PSD02 =    | 0.01500     | n2 =      | 0                |        | Grms2=   | 1.19        |      |
| F03 =        | 150     | PSD03 =    | 0.01500     | n3 ≈      | -4               |        | Grms3=   | 1.98        |      |
| F04 ≈        | 2000    | PSD04 =    | 0.00047     | n4 =      | 0                |        |          |             |      |
| Q =          | 10      |            |             |           |                  |        | Grms=    | 2.36        |      |
|              |         |            |             |           |                  |        |          |             |      |
| FREQUENCY    | F0      | PSD0       | SLOPE       | PSD       | RLF(i)           | EFFW   | RLF*EFFW | Force^2     | RLF  |
| 1691.4       | 150     | 0.015      | -4          | 0.0006    | 11.98            | 0.001  | 0.0      | 0.          | 7.69 |
| 1750.4       | 150     | 0.015      | -4          | 0.0006    | 11.91            | 0.002  | 0.0      | 0.          | 7.69 |
| 1773.0       | 150     | 0.015      | -4          | 0.0006    | 11.88            | 0.000  | 0.0      | 0.          | 7.69 |
| 1993.8       | 150     | 0.015      | -4          | 0.0005    | 11.66            | 0.000  | 0.0      | 0.          | 7.69 |
|              |         |            |             |           |                  |        |          |             |      |
|              |         |            |             |           | EFFWSUM          | 6.65   |          | RLF (RSS) = | 53.7 |
| 1            |         |            |             |           | <b>EFFWRATIO</b> | 0.95   |          | MASS =      | 6.99 |
|              |         |            |             |           |                  |        |          | RLF =       | 7.69 |
| L            |         |            |             |           | Delta Wt.=       | 0.3469 |          |             |      |

## LMS CIRCUIT BREAKER PANEL RANDOM INPUT MODAL EFFECTIVE WEIGHTS - Z-AXIS



### LMS BDPU HVA CIRCUIT BREAKER PANEL RLF DERIVATION (0.19" THICK PANEL)

|              |         | RANDOM     | LOAD FACT   | OR IN Z-       | AXIS                                  |       |          |         |      |
|--------------|---------|------------|-------------|----------------|---------------------------------------|-------|----------|---------|------|
| Input at the | standaı | rd Spacela | b Rack Inte | erfaces -      | Z-Axis                                |       |          |         |      |
| F01 =        | 20      | PSD01 =    | 0.00200     | n1 =           | 5                                     |       | Grms1=   | 0.43    |      |
| F02 =        | 53      | PSD02 =    | 0.01000     | n2 =           | 0                                     |       | Grms2=   | 1.40    |      |
| F03 =        | 250     | PSD03 =    | 0.01000     | n3 =           | - 4                                   |       | Grms3=   | 1.94    |      |
| F04 =        | 2000    | PSD04 =    | 0.00063     | n4 =           | 0                                     |       |          |         | l    |
| Q =          | 10      |            |             |                | <u> </u>                              |       | Grms=    | 2.43    |      |
| FREQUENCY    | F0      | PSD0       | SLOPE       | PSD            | RLF(i)                                | EFFW  | RLF*EFFW | Force^2 | RLF  |
| 54.8         | 53      | 0.01       | 0           | 0.0100         |                                       | 0.001 | 0.0      | 0.      | 0.00 |
| 64.2         | 53      | 0.01       | 0           | 0.0100         | 9.53                                  | 0.000 | 0.0      | 0.      | 0.00 |
| 116.0        | 53      | 0.01       | 0           | 0.0100         |                                       | 0.879 | 11.3     | 127.    | 1.61 |
| 124.1        | 53      | 0.01       | 0           | 0.0100         |                                       | 0.025 | 0.3      | 0.      | 1.61 |
| 178.6        | 53      | 0.01       | 0           | 0.0100         |                                       | 0.024 | 0.4      | 0.      | 1.61 |
| 200.1        | 53      | 0.01       | 0           | 0.0100         | <del></del>                           | 0.010 | 0.2      | 0.      | 1.61 |
| 218.1        | 53      | 0.01       | 0           | 0.0100         | 17.56                                 | 0.073 | 1.3      | 2.      | 1.62 |
| 260.5        | 250     | 0.01       | -4          | 0.0095         | 18.67                                 | 1.216 | 22.7     | 516.    | 3.63 |
| 349.7        | 250     | 0.01       | -4          | 0.0064         |                                       | 0.018 | 0.3      | 0.      | 3.63 |
| 377.1        | 250     | 0.01       | -4          | 0.0058         |                                       | 0.002 | 0.0      | 0.      | 3.63 |
| 465.7        | 250     | 0.01       | -4          | 0.0044         |                                       | 0.000 | 0.0      | 0.      | 3.63 |
| 522.2        | 250     | 0.01       | -4          | 0.0038         |                                       | 0.000 | 0.0      | 0.      | 3.63 |
| 536.2        | 250     | 0.01       | -4          | 0.0036         | 16.58                                 | 0.002 | 0.0      | 0.      | 3.63 |
| 546.3        | 250     | 0.01       | -4          | 0.0035         | 16.53                                 | 0.001 | 0.0      | 0.      | 3.63 |
| 570.3        | 250     | 0.01       | -4          | 0.0033         | 16.42                                 | 0.000 | 0.0      | 0.      | 3.63 |
| 641.3        | 250     | 0.01       | -4          | 0.0029         | 16.10                                 | 0.001 | 0.0      | 0.      | 3.63 |
| 680.7        | 250     | 0.01       | -4          | 0.0026         |                                       | 0.039 | 0.6      | 0.      | 3.63 |
| 737.0        | 250     | 0.01       | -4          | 0.0024         | 15.74                                 | 0.005 | 0.1      | 0.      | 3.63 |
| 740.7        | 250     | 0.01       | -4          | 0.0024         | 15.73                                 | 0.048 | 0.8      | 1.      | 3.63 |
| 785.7        | 250     | 0.01       | -4          | 0.0024         | 15.57                                 | 0.004 | 0.1      | 0.      | 3.63 |
| l            |         |            | -4          | 0.0022         | 15.37                                 | 0.004 | 0.0      | 0.      | 3.63 |
| 852.8        | 250     | 0.01       | -4          | - <del> </del> | 15.37                                 | 0.000 | 0.0      | 0.      | 3.63 |
| 868.2        | 250     | 0.01       | -4          | 0.0019         |                                       | 0.000 | 0.0      | 0.      | 3.63 |
| 915.4        | 250     | 0.01       |             | 0.0018         | 15.19<br>15.14                        |       | 0.0      | 0.      | 3.63 |
| 932.5        | 250     | 0.01       | -4          | 0.0017         |                                       | 0.000 |          |         | 3.63 |
| 976.7        | 250     | 0.01       | -4          | 0.0016         |                                       | 0.008 | 0.1      | 0.      |      |
| 988.5        | 250     | 0.01       | -4          | 0.0016         |                                       | 0.030 | 0.4      | 0.      | 3.63 |
| 1041.0       | 250     | 0.01       | -4          | 0.0015         |                                       | 0.005 | 0.1      | 0.      | 3.63 |
| 1077.9       | 250     | 0.01       | -4          | 0.0014         |                                       | 0.007 | 0.1      | 0.      | 3.63 |
| 1119.7       | 250     | 0.01       | -4          | 0.0014         |                                       | 0.002 | 0.0      | 0.      | 3.63 |
| 1125.6       | 250     | 0.01       | -4          | 0.0014         |                                       | 0.000 | 0.0      | 0.      | 3.63 |
| 1160.0       | 250     | 0.01       | -4          | 0.0013         |                                       | 0.000 | 0.0      | 0.      | 3.63 |
| 1259.3       | 250     | 0.01       | -4          | 0.0012         |                                       | 0.000 | 0.0      | 0.      | 3.63 |
| 1292.6       | 250     | 0.01       | -4          | 0.0011         |                                       | 0.001 | 0.0      | 0       | 3.63 |
| 1338.6       | 250     | 0.01       | -4          | 0.0011         | <del> </del>                          | 0.000 | 0.0      | 0.      | 3.63 |
| 1356.1       | 250     | 0.01       | -4          | 0.0011         |                                       | 0.000 | 0.0      | 0.      | 3.63 |
| 1396.9       | 250     | 0.01       | -4          | 0.0010         |                                       | 0.000 | 0.0      | 0.      | 3.63 |
| 1423.2       | 250     | 0.01       | -4          | 0.0010         |                                       | 0.040 | 0.6      | 0.      | 3.63 |
| 1509.0       | 250     | 0.01       | -4          | 0.0009         |                                       | 0.002 | 0.0      | 0.      | 3.63 |
| 1591.9       | 250     | 0.01       | -4          | 0.0009         | <del></del>                           | 0.001 | 0.0      | 0.      | 3.63 |
| 1610.3       | 250     | 0.01       | -4          | 0.0008         | · · · · · · · · · · · · · · · · · · · | 0.005 | 0.1      | 0.      | 3.63 |
| 1643.1       | 250     | 0.01       | -4          | 0.0008         | 13.79                                 | 0.004 | 0.1      | 0.      | 3.63 |

#### LMS BDPU HVA CIRCUIT BREAKER PANEL RLF DERIVATION (0.19" THICK PANEL)

|              |         | RANDOM    | LOAD FACT   | OR IN Z-    | AXIS       |        |          |             |      |
|--------------|---------|-----------|-------------|-------------|------------|--------|----------|-------------|------|
| Input at the | standar | d Spacela | b Rack Inte | erfaces - : | Z-Axis     |        |          |             |      |
| F01 =        | 20      | PSD01 =   | 0.00200     | n1 =        | 5          |        | Grms1=   | 0.43        |      |
| F02 =        | 53      | PSD02 =   | 0.01000     | n2 =        | 0          |        | Grms2=   | 1.40        |      |
| F03 =        | 250     | PSD03 =   | 0.01000     | n3 =        | -4         |        | Grms3=   | 1.94        |      |
| F04 =        | 2000    | PSD04 =   | 0.00063     | _n4 =       | 0          |        |          |             |      |
| Q =          | 10      |           |             |             |            |        | Grms≔    | 2.43        |      |
|              |         |           |             |             |            |        |          |             |      |
| FREQUENCY    | F0      | PSD0      | SLOPE       | PSD         | RLF(i)     | EFFW   | RLF*EFFW | Force^2     | RLF  |
| 1691.4       | 250     | 0.01      | -4          | 0.0008      | 13.73      | 0.001  | 0.0      | 0.          | 3.63 |
| 1750.4       | 250     | 0.01      | -4          | 0.0008      | 13.65      | 0.003  | 0.0      | 0.          | 3.63 |
| 1773.0       | 250     | 0.01      | -4          | 0.0007      | 13.62      | 0.019  | 0.3      | 0.          | 3.63 |
| 1993.8       | 250     | 0.01      | -4          | 0.0006      | 13.36      | 0.014  | 0.2      | 0.          | 3.63 |
|              |         |           |             |             |            |        |          |             |      |
|              |         |           |             |             | EFFWSUM    | 2.49   |          | RLF (RSS) = | 25.4 |
|              |         |           |             |             | EFFWRATIO  | 0.36   |          | MASS =      | 6.99 |
|              |         |           |             |             |            |        |          | RLF =       | 3.63 |
| Ĺ            |         |           |             |             | Delta Wt.= | 4.4989 |          |             |      |