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INTRODUCTION TO RANDOM VIBRATION TESTING

What Is Random Vibration Testing?

To understand random vibration testing, it is necessary to fully understand
random waves, how they are controlled, shaped, measured, and analyzed.

It is also necessary to know why random signals are used, how specifications
are derived, and what methods are used in random vibration testing.

What Are Random Waves?

A random wave is one which never repeats itself; the same set of instantaneous
amplitude values will never occur again. A random wave is generally thought
of as being a broad spectrum process such as thermal noise or the output of

a random noise generator. However, most random processes are very narrow
bandwidth, usually due to filtering. When observing on an oscilloscope, we
see a typical scrambled, jumbled picture. If we were to observe a random
wave using a narrowband filter, such as 2 Hz or 3 Hz, we would see a wave
undulating in amplitude at a 2 to 3 Hz rate. The wave appears to be sinusocidal
with an amplitude modulation. Nevertheless, it is not a sinusoid. No matter
how narrow we make the filter, a random wave will never become sinusoidal,

even though we may have difficulty in distinguishing such a narrowband random
wave from a sinusoid.

How Are Random Waves Measured?

When we observe random waves on an oscilloscope, we are looking at the time
domain. Ordinarily, we begin with a time function from which we wish to produce
the corresponding spectrum. This process of obtaining a spectrum from a time

function is called analysis. The complementary process of obtaining a time function
from a spectrum is called synthesis.

Since random waves are neither periodic nor stationary, we resort to describing
the wave characteristic in terms of a "law of averages". In fact, one way in
which a random wave can be described is by its average or mean value. The
instantaneous values of a random wave will fluctuate about the average value.
This is called dispersion. To measure the average, we can use the common
full-wave rectifier type voltmeter.

While the mean value of a random wave is analogous to its "center of gravity"
and is called the first moment of the distribution, the second moment is also a
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valuable statistic. Higher moments also exist mathematically, but are not in com-
mon use. The second moment of the signal's distribution is the "mean square",
Voltmeters are available to measure this function and are sometimes called "true
rms meters" since some of them measure rms as well as mean square. By
employing a full-wave electronic rectifier circuit, the bottom half or negative

portion of the wave is folded up into the top or positive half and squared using
a squaring cireuit. : : :

Another function often required in analysis work is the root mean squire or rms.
The rms is the positive square root of the mean square. From this definition,

we note that, in order to compute the rms, we must first compute the mean square.

This is the classical way of obtaining rms: first square, then add the squares,
divide by the number of squares and finally extract the square root. In analog
~ instruments, the process is continuous. K -

When a mechanical structure is excited into vibration, the frequencies are, in
general, contained in the exciting force and the natural frequerncies of resonance
of the structure. The method used for this analysis is called PSD Analysis or
power spectral density. The purpose of power spectral density is to plot these
vibrations in terms of the mean of the square of the amplitude against frequency.
The reason the square of amplitude is used instead of the Hnear amplitude is

that we wish to know the frequency distribution of the power or intensity dis-
sipated or the real part of the vibration, and we are not concerned with the re-
active component of the vibration. We also require the differential power rather
than the power at discrete frequencies because there are no discrete frequencies
in a random process as there are in the case of periodic waves. Hence, we
think not of the power at a certain specific frequency, but of the power in a
band of frequencies. : ‘

What are the Requirements for Random Vibration Systems?

The random vibration system (consisting of a shaker or exciter head, power :
amplifier, vibration sensor or pick-up, charge amplifier, equalizer/analyzer, true
rms meter, X-Y plotter or recorder and noise generator/source) shall be capable
of generating a random vibration for which the magnitude has Gaussian (normal)
amplitude distribution, except that the acceleration magnitudes of the peak values
may be limited to a minimum of three times the rms (three-sigma limits).

The system shall be capable of being equalized so that the magnitude of its

spectral-sensity curve will be between specified limits when the test item, or
a substitute equivalent mass,is appropriately secured to the shaker or exciter
machine. The equalization of an electro-dynamic vibration machine system is
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the adjustment of the electrical amplifier and control system so that the ratio —_—
of the output-vibration amplitude to the input-signal amplitude is of a constant
value (or given values) throughout the requirgd frequency spectrum.

Why Use Random Testing?

Many parts or components, when exposed to vibration, may have more than one
resonant frequency that could be detrimental to the unit's life or its capability

to function. This test is conducted for the purpose of determining the ability

of component parts to withstand the dynamic stress exerted by random vibration
applied between upper and lower frequency limits to simulate the vibration experi-
enced in various service-field environments. Random vibration is more charac-
teristic of modern-field environments produced by missiles, high-thrust jets, and

rocket engines. In these types of environments, the random vibration provides
a more realistic test.

By exposing component parts to random vibration, we can:
(1) Determine if the unit will meet the .re’quirements that it was designed for;
(2) Determine if a change in mounting or re-design is required; |
(3) Predict the life expectancy or failures that may occur; and,

(4) Guarantee that all units of the same design will be acceptable.
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PROPERTIES OF RANDOM WAVES

Wide and Narrow Band Random Waves
A random wave is one which never repeats itself; the same set of in-
stantaneous amplitude values will never occur again. We generally conceive of a

random wave as being a broad spectrum process such as Brownian motion, thermal

noise or the output of a random noise generator. However, many random
processes are of very narrow bandwidth, usually due to filtering. When we
observe a wide-band random wave on a cathode ray oscilloscope, we are
accustomed to seeing a typical scrambled, jumbled picture. When we observe
a narrow-band random wave, particularly when the bandwidth is as narrow as
2 or 3 Hz, we observe a wave undulating in amplitude at a 2 to 3 Hz rate, most
probably in accordance with a Gaussian amplitude distribution and most prob-
ably having a uniform rectangular phase distribution from -mto +m. Actually,
on a cathode ray scope, we will not see much phase variation because the
synchronizing CRO signal tends to hold the picture'ateady on the X axis. The
wave appears to be a sinusoid with an amplitude modulation. Nevertheless, it
is pot a sinusoid. No matter how narrow we make the filter, a random wave
will never becbmg sinusoidal, even though we may have difficulty in distin-

guishing such a narrow-band random wave from a sinusoid.

Stationarity

Aside from the statistical functions which characterize a random
Wave, such as autocorrelation, PSD, etc., there are some other properties
which we will now discuss. The first of these is stationarity. A random wave
is said to be weakly stationary when its primary statistics are invariant with

time. The primary statistics are the mean, mean square and the autocor-

relation function (ar PSD). If these functions do not vary outside of statistical
limits with time, the wave is said to be weakly stationary. To be strongly stationary,
all the higher moments of the mean and autocorrelation functions must also be

invariant. In general, if the mean and mean square are reasonably steady, we can
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ssume stationarity for practical purposes. The property of stationarity is
esirable. With sﬁaﬁonarity, it does not matter where a sample is

taken in

1e sequence of an experiment.

Aside from practical aspects such as this, stationarity means a

reat deal to the theoretical engineer. It means that he is relieved of the
reat labor associated with the study of non-stationary events. This is so

mportant to him that he will invoke stationarity whenever he can and he will

slerate some namtationarity rather than deal with a much xxmre difficult prob-
lem, and this is rightfully so.

Actually, very few physical processes are -tatioiiary in a full mathe-

matical sense. A practical example is the vibration of a.hquid fuel rocket

ngine. As the fuel is gradually depleted, a change in the vibration character-

stics results. However, the process may be considered W sta-
onary for short periods of time but not from the beginning to the end of the

ight. On the other hand, the output of a random noise generator is itationary'
5 long as it is turned on. In the rocket engine case, we may have to analyze

.

series of five second samples over a period of sixty seconds. In the noise

:nerator case, we can make an on-line analysis.

If we were to make an on-line analysis of non-stai:ionnry data, we

ould get the average of all the different vibrational conditions from the be-

nning to the end of the experiment. Little useful purpose would be achieved

7 such an experiment, In some cases, it may be desirable to test the entire
¢periment for stationarity before we analyze a sample. We cbserve the data

‘om the output of an averaging type meter and also a true mean squared

eter. In each case, there will be a fluctuation of the meter readings about

e mean value. If the meter movement is fairly steady and to a good first

sproximation, does not swing too much about its average reading, we can say

- process is stationary. This statement leads to criticism since it is pureiy'.
1alitative, but be assured that a little experience will enable a good decision
 be made. Although the definition of ''weakly stationary' includes the require-~

ent of a stationary autocorrelation function in addition to the mean and mean

juare, it is often not necessary to make this measurement to prove stationarity.
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Since the spectrum does not often change during a trial, PSD may be found

to be more revealihg in such cases than the autocorrelation function as a
spectrum stationarity guidepost despite the fact that both contain the same
basic information, being Fourier transforms of each other. An exception
might be a solid fuel rocket engine which will have a spectral shift as the com=
bustion cavity grows in volume as the fuel is depleted. In this case, the
spectrum shifts downward from some high frequency as the burning proceeds.
This is readily detected by listening to the sample. Accordingly, mean, mean
square and listening tests are usually enough to establish a practical level

of stationarity. We should, however, use our intuitive knowledge of the experi-
ment and particularly our eyes and ears as they are excellent analyzers in their

own right.

Ergodicity

In addition to being stationary, we also desire the process we are
analyzing to be ergodic. To explain this property, suppose we have a large
nuniber of independent experiments on the same problem. Let us sa}; that
each of these experiments is one minute long. We know that, if the statistics
of the test are steady throughout the one-minute interval of each experiment,
we can call the process stationary. Now, in addition to this, if we aQerage

"across the ensemble'' of experiments at some time, t , all the values at

time, t1 , for each member of the enserpble being addeld and then divide by

the number of the members of the ensemble, we will obtain an ''ensemble
average''. This would apply to all such statistics as the mean, mean square,
etc. If, now, the average in time over the period of one minute is the same

as the average over the ensemble, the process is said to be ergodic, This

is a very powerful attribute since it means that we can base all of our calcu-
lations on a gingle record; we will not require an analysis of each individual
record. Ergodicity is said to be weak if the primary ensemble statistics of
mean, mean square and autocorrelation are steady; strong if all higher moments

of these functions are included. We shall have more to say later about the

moments of a function. Ergodicity is difficult to prove quantitatively. We
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do not usually have a large number of identical tests tc;iform an ensemble.
Ordinarily, we must depend on a quahtatwe intuition wh:ch tells us that if

a certain experiment were exactly repeated, it would lead to the same results

as the first,

Refer to Figure 3-1. Here we see some random ﬁroéesseb /'

¥ (t), yz(t) cee s yk(t) The time averages, shown for ¥, (t) and yk(t)

only are indicated by a bar over the average qua.ntu:y as ?1 or yk The enaembiﬂ

- averages are indicated by arrow sha.ped brackets, (y(t )) (y(tz)) If the

process is stationary, (y(t )) = (y(tz)) That is, the average rema.ma atatxstxcany
constant no matter where in time we average across the ensemble. It is

ergod1c if (y(t)) = Y fori=1,2, 3, ...

Figure 3-2 shows this condition for mean squared values and F1gure

3-3 for the autocorrelation function.

If the mean or another statistic for two members of an ensemble are

plotted, the plots are not to be expected to overlay. However, they will have

the same mean or average value, they will both have the same amount of dis-

person about the mean and these conditions will hold true within the given

interval of statistical confidence.

Normalcy )

The terms ''normal' and "Gaussian' éfe' identical when applied to
the amplitude distribution of a random wave. Itis generally argued that the -
Gaussian distribution arises from the implications of the’"'Centralf Limit

Theorem''. This theorem states that if there are a large number of independ-

ent wavelets, such as there are in thermal noise where a very large number
of molecular and electronic collisions each cause a minute wavelet of

‘electrical current and each wavelet has its own amplitude distribution

different from any other, the overall amplitude distribution &f the process
tends to become Gaussian. The mathematical expression for a Gaussian

distribution is: ' o N
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In words, this says that the probability density p (x) is equal to the
product of a term containing the variance cz and an exponential with a com~=
plicated negative exponent. See 3-1. The exponent hag the term ~(x - m)2
which is the mean value, m, of the function subtracted from x, all squared
This is dxvxded by two times the variance. It is not necessary' to campute

this equation since it is tabulated in many «texts.

Before we go to Figure 3-4, we should discuss the quantity, o. oz is
the variance. The variance is the dispersion or scatter of the squared va.luea ~
of x about the Y axis or centroid. It is closely related to the mean square
value since it is equal to the mean square value when the square of the aver-
age or ''dc'' is zero, thus mean square - mean2 = variance = cz.

The positive square root of the variance is called the standard devia-
tion, g. The standard deviation is the positive square root of the mean square

and also equal to the rms when there is no '"d-c¢" component. Since there is

seldom a ''d-c'' component, mean = zero, in vibration work because the instru-

mentation renders the mean to zero, the variance can usually be taken as the
mean square and the standard deviation, 0, taken as the rms. This makes

life easy since we can read the standard deviation and the variance on a true

rms meter,

Refer now to Figure 3-4a. The abscissa is normalized in terms of
the ¢ and plotted in terms of insrtanta.neous values of the function, x. Thus,
when x = 0, the probable instantaneous value is about 40%. When the instant-
aneous value is equal to o, the probable value of the instantaneous value is
about 25%. Put in another way, if a function has a Gaussian distribution, the
chance that the instantaneous value is zero is about 40%. The chance that the
instantaneous value is equal to the rms (0= 1) is about 25%. The chance that
it is three times the rms (o = 3) is about 1/2 of 1%. This distribution is
tabulated in many books. o is both positive and negative since an instantan-
eous peak can occur in either the positive or negative region. Figure 3-4b

shows the amplitude profile.

3-8
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Skew and Kurtosis

The property of a Gaussian distribution is mvaluable to the theoret~

ical engineer because it simplifies his mathematics since it posseues an

analytical definition, What happens then, when the distribution is not Gaussian?

As we might have known, the Greeks have a word for it -- kurtosis -- which

means bent or curved. Imagine a bell shé:ped curve of Figure 3-4ato become
narrower and taller,

The probability of three-sigma peaks becomes less and
the probability at ¢ = 0 becomes greater. Such a shift in the implitude proba-

bility distribution sometimes occurs when a structure approaches its elastic

limit. The amplitude distribution of the vibration changes from Gausaian to

one which has positive kurtosis distortion. Negative kurtosis is the opposite;

the probability of high amplitude peaks becomes greater, and of sigma equaling
zero becomes less. Sometimes random noise generators have a small amount

of negative kurtosis when the magnetic cap on the noise generafying gas tube is

ime-
properly adjusted. Kurtosis is sometimes called "excess'',

If the center of gravity is shifted away fromthe Y axis makmg the

bell-shaped curve of Figure 3-4a lopsided, we call the condition skew, Skew _

may be either positive or negative. It often occurs when the structural vibraf:“ ’
tion encounters more resistance in the compression mode than it does in the

tensile mode, or vice versa.

To understand the measures of skew and kurtosis, we shall set down .

some rules and definitions. When we know the mean value of a random vari-

able, we often need to know how widely the values of the variable are spread'

on either side of the mean. This is called dispersion and is indicated by the

2 2oy s . .
variance, 0 . When §(x) is such a variable with a mean value of m and a

2 . . . .
variance of ¢ , we may wish to consider a standardized variable

£E-m

v}

- (3-2)

which is the deviation of € from its mean, m, expressed in terms of the stan-

dard deviation, o, (positive square root of the variance). The distribution °
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function of this standardized variable, when the number of events comprising
§ is large, is approximately equal to a Gaussian distribution which we will
call &(z). When &(z) is differentiated, giving 9 (z), the function can be ex-

panded in a series due to Edgeworth.

AR B LIS N I MUy
. o o

In the abbreviated form of Equation 3-3, we show only the first terms

of which the second is

M
‘3!‘ '% 3 Mx) (3-4)
(o}
and the third is
L (fi 3) 4 3-5)
Y, - ¢ (x) (3-

The second term is skewness and can be seen to be proportional to
u3 which is the third moment of the mean. When |.13 is zero, skewness is
zero. The third is kurtosis and is seen to be proportional to the fourth mo-

ment of the mean. ¢(3)(x) and ¢(4)(x) are the third and fourth derivatives of the
Gaussian mathemahical expression., As can be seen from the expression for the

third term, when ':— is greater than 3, the tﬁrm is positive and representative
of positive kurtosiso; the opposite is true when -—:— is smaller than 3, Plots of
skew and kurtosis versus the instantaneous amﬁitude may be made indicating the

departure of the amplitude distribution of a Gaussian function for all values of x.
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Section 3

PROPERTIES OF RANDOM WAVES

If we pass a random wave through an extremely narrowband filter,
does it become periodic? Why?

What are the conditions for a weakly stationary random process?

Define ergodicity.

What is meant by a Gaussian amplitude distribution?

What is the phase distribution of a Gaussian amplitude distributed xfandom'

wave ?

What is skew?

What is kurtosis?
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EUNCTIONS OF RANDOM WAVES

Averages

The definition of a random wave is intuitive. A random wave never

repeats itself; for example, an identical set of amplitudes will never occur again,

Obiriously, it would be impossible to write an equation describing such a wave
as we can do in the case of periodic and other analytic wlawes. ‘Random waves
are sometimes called stochastic, coming from a Greek root word meaning ''to
guess'',

Since we cannot write an analytic expression for a random wave, we
resort to describing the wave characteristics in terms of "the law of averages'',
In fact, one way in which a random wave can be.described is by its average or
mean value. The instantaneous values of a random wave will fluctuate about
the average value. This is called dispersion. To measure the average, we
can use the common full-wave rectifier type voltmeter. Such a measurement
is useful when establishing stationarity.

While the mean value of a random wave is analogous to its ''center of
grafrity” and is called the first moment of the mean, the second moment of the
mean is also a valuable statistic. Higher moments of the mean exist mathe-
‘matically but are not in common use. The second moment of the mean is the
""mean squaré”. Voltmeters are available to measure this function and are
sometimes called 'true rms meters' since some of them measure rms as
well as mean square. An illustration might be helpful. Figure 4-1 shows a
random wave. By employing a full-wave electronic rectifier circuit, the
bottom half or negative portion of the wave is folded up into the top or positive

half as shown by the dotted lines. Each interval along the X axis, as shown

by the perpendiculars (a, b, c, etc.) is measured, added to the others and divided -

by the total number of perpendiculars. In analog meters, the number of perpen~

diculars is infinite and the averaging of the ordinate is done by an RC circuit.

Accordingly, the process is continuous instead of discrete as is shown in Figure 4-1.
In both continuous and discrete examples, however, the average or mean is com-

puted. In the example, the mean might be about as shown. We can think of it as a

4-1
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horizontal axis about which the full-wave rectified signal can fréely rotate; in
other words, the linear center of gravity or first moment of the mean.

The second moment of the mean, or mean square, is calculated as
follows: Each of the perpendiculars is squared before being added and aver-
aged. This results in a different statistic from the mean because the higher
amplitudes after being squared give more Weight to the peaks; in other words,
the dispersion is greater. The mean square, or second moment of the mean,
is useful because it is proportional to power or energy. In mechanics, it is
the "moment of inertia'',

Another function often required in analysis work is the root mean
square or rms. The rms is the positive square root of the mean square.

From this definition, we note that, in order to compute the rms, we must
first compute the mean square. This is the classical way of obtaining rms:
first square, then add the squafes, divide by the number of squares& and
finally extract the square root. Of course, in analog instruments, the process
is continuous. Some meters produce a quantity which is proportional to rms
provided the random signal is Gaussian. Such instruments are therefore sensi-
tive to waveform and should be used with caution. Other instruments rectify
the random signal a:;d then pass it through a segmented diode weighting network
which gives the proper weight to the instantaneous values as they change. Such
instruments produce the mean square voltage and‘the square rooting is accom-
plished by a meter scale calibration. One instrument computes the logarithm
of the average value of the random wave and divides the result by two to obtain
a square root. The result is the square root of the log of the average, not rms.
Still another very acceptable wa.y~ to compute rms is by means of a thermo-
couple or other such thermal device. In such rms meters, the output current
is proportional to heat, which is energy. We repeat an important previous

statement: in most practical cases, the rms and tHe standard deviation, o,

. 2 . . .
are equivalent; the mean square and the variance, ¢, are likewise equivalent,




Autocorrelation

Another function in the time domain which is often used to characterize
a random wave is the autocorrelation function. This function describes the

dependence of the instantaneous values at one time with the instantaneous

values at another time. To illustrate this, refer to Figure 4-2, We observe
that the instantaneous amplitude at T = 0, will obviously not have much influ-

ence on the amplitude, T_, at a later time. T is said to be uncorrelated with

0 The same can be said of Ty and Ts However, we can say that there

appears to be a degree of dependence of T

T

> on TO and still more of 1‘1 on T 0

™ and Tz'are then said to be correlated with 'ro; T, more so than 1’2. It is
evident in our example that the amount of correlation dies out quickly as time in
creases-- a characteristic of wide ba'nd random waves. A correlogram is
shown in Figure 4-3 which plots the conditions shown in Figure 4-2.

We see that at TO the wavé is completely correlated with itself and |
the correlation is normalized to unity at this point. Also, negative values are
sk;own along the X axis. As shown in Figure 4-4, this wide ba:'xd:ran‘dom noise

situation becomes somewhat different in the case of narrow band random noise
" in that the narrow band noise correlation persists over a greater time interval.
Figure 4-4 should be compared with Figure 4-3. In passing, it may be of |
interest to note that the autocorrelation function of a sinewave is a cosine wave.

The autocorrelation function can be computed graphically, It is a |
very laborious process but a simple example will be given to illustrate the
method. The mathematical expression for autocorrelation is given by Equation

4-1,

o (T) = -%Jx(t)x(‘t-i-‘r)'dt : o (4-1)

T-'°°
This says that the function x (t) is multiplied by itself lagged by a time, T;
that is x (t) times x(t + 7)., This is integrated over the period of time, T,
and divided by T and the function, ¢ (T), approaches exactneu as the time
of observation approaches infinity, T % ® . Equation 4-1 has to be computed
over the time, T, for each value of T which results, as we shall see, in a
tremendous amount of labor. Note that the mean power in Equation 4-] is

obtained when T is set to zero.

"
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Figure 4~5a shows a wave extending from ~T to T. The‘g_a_r_r_xe_wave
is shown laggingy by an amount, T, and extending from (=T ~T)to T - T. The
first plot is x (t) and the lagged plot is x (t = T), At each point on the time
axis, t, the function, x (t), is multiplied by x (t -~ T) and the result plotted in
Figure 4-5b. Enough points must be taken on the time axis so that the wave is
clearly defined. After all multiplications are complete and plotted in Figure
4-5b, the graph must be integrated or averaged. When this is done, a single
point on the autocorrelation curve is established, as shov‘m for T=1 in Figure
4-6. A large number of such points must be calculated and plotted to produce
an adequate correlation function.

- Next, the lagged curve is ''slid over'' by an amount equal to T, now
making the lag 2T, See Figure 4~5a., The above process is repeated for 2 T
resulting in the next point on the correlation curve shown in Figure 4-6, It is
evident that, for accurate results, when T becomes large and there are a large
number of lags, the graphical process is very laborious.

Refer to Figure 4-7. Here we see a typical w‘idé band random shot

noise in 4-7 a. This is in the time domain. In 4-7 b we see its autocorrelation

function. This shows that the autocorrelation function is both positive and nega- :

tive, although often the absolute value is plotted. This is also in the time domaiﬁ.\

If a sinusoid is combined with the shot noise and an autocorrelation function then

produced, a function such as shown in 4-7 c results. As time pasgses the corre~

lation of the random shot noise approaches zero but a periodic signal attributable

to the sinusoid remains. This is a cosine wave which is the autocorrelation func- :

tion of a sine wave and it remains as long as the sinusoid does.
When the Fourier transform of the shot noise function is taken, the:
power spectrum results. This is shown in Figure 4-7 d. Note that negative

frequencies are implied. Such frequencies do not really exist but are the result

of expressing the Fourier transform in exponential terms instead of trigonometric :

terms. Easier mathematical handling results but we must be careful to take this

into account when mathematical and experimental results are compared. In the-

mathematical case, we have a minor image of the positive side reproduced in the

4-8




negative frequency regions. In the experimental case, no negative frequencies
exist and the results will be as though the 'negative frequencies are folded over
to the positive side along the zero frequency ordinate. This results in doubling

the amplitude of the mathematical model at each po‘mtion the positive abscissa,

Power Spectral Density

Loosely we can define power spectral density as the distribution of
mean power with frequency. The same information that the autocorrelation
function in the time domain contains is also possessed by the power spectral
density function in the frequency domain. The autocorrelation function and the
power spectral density function are Fourier transforins of each other and, al-
though they contain the same information, one is a time history and the other is

a spectrum. This remarkable mathematical relationship was discovered by

Professor Norbert Wiener of MIT near the beginning of World War II. This far
reaching development was a landmark in the theory of statistical communication
since it wedded the disciplines of statistics and communication. It is called the
Wiener-Khintchine theorem. Because the central idea in the statistical theory
of communication is that messages and noise are both considered random
phenomena, control problems are seen in a better light, statistical filtering

can be formulated and the theory of generalized harmonic analysis has developed.

4-9
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FIGURE 4.7

(a) TYPICAL WIDE-BAND SHOT NOISE

(b) ITS AUTO CORRELATION FUNCTION

(c) ITS AUTO CORRELATION FUNCTION PLUS A SINUSOID |
(d) TS POWER SPECTRUM

|
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We will not attempt, as some writers do, to define power spectral
density in terms of the autocorrelation function; it will be defined on its own
merits. Since in mechanical systemé the vibration of a structure concerns us,
we shall begin from that point of view. When a mechanical structure is excited
into vibration, the frequencies are, in general contained in the exciting force and
the natural frequencies of resonance of the structure. The purpose of power
spectrai density is to plot these vibrations in terms of the mean of the square of
the amplitude against frequency. The reason the square of amplitude is used
instead of the linear amplitude is that we wish to know the frequéncy distribution
of the power or intensity dissipated or real part of the vibration, and we are not
concerned with the reactive,com'ponent of the vibration. We also require the
differential power rather than the power at discrete frequencies because there
are no discrete frequencies in a random process as there are in the case of
periodic waves. Hence, we think not of the power at a certain specific frequency,
but of the power in a band of frequencies. To obtain the differential of power, we

reduce the width of this band until it approaches zero. This is standard differ-

‘ential calculus practice. However, in real life, we cannot do this. A practical

filter must have a finite bandwidth, even if it is as narrow as 1 to 2 Hz. We define
power spectral density as 'the limiting mean square acceleration (velocity, dis-
placement, etc;) per unit of bandwidth, divided by the bandwidth as the bandwidth
approaches zero'. The expression for power sapectral dens ity becomes exact as
the period of observation apprc;aches infinity, We will later see what the effect is

when the bandwidth of the filter is not infinitesimally narrow and when the period

of observation is relatively short..

As stated previously, the autocorrelation function and power spectral

density are Fourier transforms of one another. The transformation is:
- ]
V)= [ g(r)e I2METy, (4-2)

where § (f) is the power spectral density function and ¢ (T) is the autécorre-
lation function. The inverse transform is:

¢(T)=£¢(f)ej2"£Tdf : (4-3)
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In digital cbmputation techniques, the classical approach to powevr

spectral density is to first compute the autocorrelation fﬁnétfbn, Equation 4-1,

and then take the Fourier transform to obtain PSD from Equation 4-2. In ana-

log computation practice, it is usual to compute PSD directly. When the proper

procedures are used, both analog and digital methods are equivalent. Figure 4-8‘ ,

shows the PSD curve of a random wave exciting a filter,

Cross Functions

In autocorrelation and power spectral density, we have dealt with
single valued functions in which we have mathematically operated on the func- l
~ tion itself, Similar functions are possible when two or more variables are
involved. These are called the cross-correlation functions and cross spectral
density functions. The usefulness of these functions arises, for example,
when it is desired to see what dependence the vibration on one part of a stx.-uc-‘
ture has on the vibration of another part of the same structure. For instance,
we may wantto see how much of the vibration of an engine is affecting a gyro
mount. The normaliied crosécorrelation function will give us the percentage

- amount of vibration on the gyro mount and also the time of propagation from

the engine to the mount. The frequency distribution of that amount of vibration

getting to the gyro mount will be derived from the cross spcéiral density func-
tion. From both these data, remedial measures can usually be determined and
taken if necessary. As would be expected, the cross-correlation functioxi and
the cross spectral density functions are related by Fourier transforms similar
to those in Equations 4-2 and 4-3. :
There are some differences between the auto- and tiig cross-

correlation functions. The amplifude of the autocorr’ela.tion fﬁnctien can never
be greater than it is at T = 0. Infact, at T=0 the value of the autocorrelation
function is equal to the mean square of the process being analyzed. In the case
of the crogs=correlation function, the maximum amplitude can occur anywhere
but ordinarily never reaches a value as great as the autocorrelation of either
parent function, which it cannot exceed. Calibration of the autocorrelation

function is rather simple. We set in the lag value to T = 0-and adjust the

4-14
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amplitude control for a normalized value of unity.. We cannot do this with the
cross-correlation function so usually we correlate one of the two functions
with itself at T = 0 and use this normalized unity value for calibration purpo;es,* 5
The cross spectral density is a complex variable having both phase |
and a.mphtude, whereas the power spectral density has no phase information
since power has no phase. Cross spectral density can be plotted in geveral
ways. The usual presentation is in an orthogonal :ectilixiatr coordinate
system displaying the réal part 6£ the cross spectrum plotteéd against fre-
quency on one graph and the imaginarjr part of the cross ‘spectrum plotted
against frequency on the other graph. The first is called the coincident ‘
spectrum or co-spectrum; the second is called the quadrature spectrurmn or
quad-spectrum. The principal advantage of this method of display is that
it is the natural computational process to follow in analog cém"puting. In
addition, coordinates are not crowded and resonances are clearly shown,
Also used are the Nyquist plot and the Bode plot. The Nyquist plot clearly
shows regions of conditional stability but it has a polar coordinate form
from which it is somewhat difficult to tell the exact irequmcy since it is
sometimes crowded on the scale.  The Bode plot shows magnitude on one’
gra.ph and phase on the other. This is generally the form inwhtch mechan-
ical engineers like to see their cross spectral density data Vbﬁtit has the
drawback of fequiring further analog computations, thus &iminishing the

accuracy.

Higher Moments

All the above described functions have higher moments which, in
general, are not used in practice. To illustrate the idea of moments, the

first moment of the mean for random processes is:

Clim 1 LT SR |

M % raeT ‘j‘ £(t)dt (4-4)
The second moment of the mean or mean square is: :
lim 1 :

btk [Foe (4-5)
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The nth moment is:

lim 1 LT
M= e ?of fh(t)dt (4-6)

It is interesting to note that Equation 4-5 is the value of the auto-
correlation function when 7 = 0, When f (t) has no d-c component, Equation
4-5 is the variance. When the idea of a differential frequency or ''spectral
density" is introduced into Equation 4-5 and we divide by the bandwidth of
the filter in the analyzer, we have the power spectral density function.
Lastly, the area under a power spectral density curve is Equation 4-5 when
there is no dc in f (t). The correlation functions and spectral density
functions have higher moments, as well as does the mean. Although they
are important mathematically, the state of the practicing art has not yet

made their computation necessary.
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Section 4

FUNCTIONS OF RANDOM WAVES

What is the difference between RMS and the standard deviition?

Define autocorrelation.

Define power spectral density.

What is the amplitude of an autocorrelation function at tau equals zero?

What does a cross spectral density plot tell us?

Define the firet moment of the mean.

What is the difference between the first moment of the mean and its
higher moments?
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SOME STATISTICS

Estimators v
Our insight tells us that certain functions such as autocorrelation and

power spectral density become exact when the number of observations approaches
infinity. In real life, there is no such thing as an infinite number of observa-
tions so we become interested in how closely we can approach exactitude when
we have only a comparativeijr few observations. We would hope to attain a
reasonable estimate so we give attention to the quantity used to obtain this
reasonable estimate, which is called an "estimator".' Some estimators are
good and some are better. Three principal factors influence the ''goodness’'
of an estimator. .

. . 1. The estimators should have, if poisible, an "expected value'

: équal to that of the parameter being established. The ''expected
value'" is the mean or avengef-vah‘xe. That is to say, the estimator
should be equal to the mean value of the parameter under investi-
gation. If this is true, the estimator is said to be "unbiased'.

2. It is desirable that the mean square error of the estimator

be smaller than that for other possible estimators. That is
- 2 ~ \z
| (3.~ = (5,-0) 51
where 6‘ is the estimator (designated by the.little hat *)
under consideration, ¢b is any other possible estimator and ¢

is the true value of the parameter we seek to estimate. If
this condition is true, the estimator is called "efficient'.

3. It is desirable that the estimator approach the parameter
being estimated with a probability of unity whean the sample
size becomes large. If this is true , the estimator is said to
be ''consistent''.

For the functions of interest to us, 'c‘ompotont rhtthcmitical statisti-
cians have investigated the goodness of certain estimators and we are accordiﬁg!y
advised to use the Chi-Square probability distribution and the normalized

N D
[y
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standard error function. These will be discussed in some detail after a little

sampling theory which is desirable to our understanding of the derivation of
these distributions.

Sampling Theory

If a continuous wave is sampled enough times per ucond. ‘it becomes
obvious that every detail of the wave shape can be recoenstructed exactly. If
the continuous wave is a periodic or random wave having so components

higher than some frequency, f, sampling theory tells us that only two samples

per wavelength of this highest frequency are necessary to completely identify

_ the wave. This is not so obvious and requires further explanation.

To synthesize a wave, we employ a rectanguhr sampling pulse. This -
pulse is in the time domain and must be transferred imto the frequency domain. 0

This is done by a Fourier transformation.

o
{

o T,
. A SINGLE SAMPLING PULSE OF HEIGHT A AND DURATION T,,
' " . FIGURE 5-1.

The pulse can be described as:
A from 0 to Tp

0 everywhere else

£(t) =i

G (juw)= f A o 10, R o s




integrating
G e = 34 (1-e70TP) . (5-3)
2A . wTp\ -uT_/2
= == sin (""z—‘l) P , (5-4)

The absolute amplitude of G (jw) is

lG(jw) = 24 | 4in (E’?TE)I | (5-5)
i T, /2
= AT, rm“’" 2| (5-6)
wTp/2

Here pr # 21 because Tp.is not the period of a periodic function and w can

havé any value. |-G(m)| is of the form l(sin x)/x ' ‘ and is plotted in
Figure (5-2). '
[ Gljw) |
'}

Equation 5-6 is sometimes called a "sinc" function. It can be readily calculated
but also exists in tables. It has the form shown in Figure 5-2. Consequently, for
each rectangular sampling pulse occuring in the time domain, we get one sinc function

in the frequency domain. If these functions are combined or added in accordance

. Rev 5/72
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with the proper time and with an amplitude equal to that of £ ( t), the wave is
completely synthesized. Figure 5-3 shows a sine wave constructed from

three equally spaced sinc functions.

We have thus shown that a wave can be completely synthesized by two
perfectly chosen data points per cycle of the highest frequency contained in
the wave. The data poi.nts, of course, must be evenly spaced. Caanuently,
if we employ a filter luvxng a bandwidth of 10 Hz and then sample its output for

10 seconds, we have:

2BT =2 x 10 Hz x 10 sec = 200 degrees of freedom (5-7)

' Before we further consider how we will use the number of degrees of -
freedom in a Chi-Square estimator, we will consider implications of the sampling

theore;n a little further.

Aliasing .

What happens when a signal is sampled thh fewer than two paint: por
wavelength? The effect is sornewhat similar to that observed if a wheel rotating .
at a high speed is seen under stroboscopic light flashing at a different rate than.

: e B .
e . . o 2 .

the wheel rotates. The wheel will appear to be rotating at a different speed thtn
its true rate. This phenomenon is often seen in motion pictures. If the whcel
is illuminated once in each revolution (or any integral multiple thereof), it will y
appear as though standing still. If the wheel is illuminated at least twice every .
revolution, it will appear to rotate at its correct rate, There are, of course, .
all the conditions in between. This phenomenon, whereby the wheel appears to
be rotating at an h.xcorrect rate, is called frequency folding or aliasing. Refer
to Figure 5-4. Figure 5-4 shows an input frequency of 3. 75 kHz on the X axis. ’
which is higher than the sampling rate can reconstruct. At the output, the
3,75 kHz input wave appears as if it were 1.25 kHz, 8 | ,
‘As this consequence of the sampling theory, we provide low pass mun -
in sampling cxrcuitry which cut off all frequencies above.1/2 the sampling rate, "
These are called anti-aliasing filters. N

Rev. 5/72
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Chi-Square Distribution

When estimating the mean square of a wave function, the confidence in

- our measurement can be determined from a knowledge of the number of statis-

tical degfeet of freedom, n.

| na=2BT" (5-8)
where B is the bandwidth of an ideal rectangular filter and T is the integrating
time of a ti.xﬁe integrator, Equation 5-8 shows that the requirement for a Chi-
Square confidence estimate is identical to the sampling theorem requirement to
synthesize a wave function as given in Equation 5-7. This satisfies our sensi-
bilities if not our mathematical curiosity. The mathematical treatment is too
involved for presentation here and can be found in statistical texts. ‘

\ Consider a wave with a Gaussian probability density function and a
gg_c.mean square amplitude of cz; Assume we rheasure a mean square voltage
of sz. " Then the Chi-Square relationship exists:

2, o0
F s ' | (5-9)

Now, if the mean square amplitude, sz,ic measured for a time, T, the true

mean square amplitude will lie within a confidence interval determined by:
cz 3("“2' ).2 ' where n = 2BT (5-10)
X

Figure 5-5 shows some confidence intervals for the Chi-Square distribution and
more detailed information is available in statistical texts. Note from Figure 5-5
that a confidence interval is bounded by an upper-and lower error for each n
degrees of freedom. Thus, for any cr:;or. chosen or anumed.. there exists an

interval of confidence for any n. The Chi-Square distribution is therefore two
dimensional.

The Chi-Square distribution is a distribution of squared values and is
therefore particularly suited to the estimation of the confidence interval of
squared functions such as the mean square and power spectral density.

Standard Error Estimator

The ''standard error' estimate cnn be developed from the expected mean

square error. - The estimated mean square error for a time function, x (t), can

-
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be computed by time averaging over a finite time, T. This is permissible

since we assume x (t) is stationary. The estimated error is:

T
i2-% j‘xzmaz o (- 11)

This is probably not the true mean square error since we are not avcraging over
an infinite time. It is an ggtimate as indicated by the little hat over ' We
can write for the true mean square error:

2 -E[xz (t)] o | o (5-12)
; 2 in Equation 5-12 has a variance
var[i 2] [0 - v ]-r.LG‘-v ] : (8-13)

It tan be shown that:
Var L vxz ] 1 ‘ ‘
c ' ' (5-14) .

': BT

which holds when the mean is zero.

cz is defined as the normalised mean square error. The aquiro root
of Equation 5-14 gives the normalised standard error.

VARTI X (5-15)

The estimator, ¢, and the Chi-Square estimates are approximately equivalent
when the Chi-Square degrees of freedom are bounded by 70% on the upper bound
and 30% on the lower. The confidence interval for the standard error, ¢ is
68% that the orror.l/fﬁ_ is plus or minus the calculated value. Figuu 5-6 is
a plot of the estimator, ¢.

Use of Estimators
The use of the Chi-Square distribution allows a more refined estimate
of confidence within much smaller limits than the standard error,¢, does, However,
one needs a Chi-Square table or chart. The value of ¢ can be computed without
a table or chart being available, but has the rather large confidence interval of 68%.

L1
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Although Figure 5-6 indicates BT products down to 5, the BT product
should always be BT >>1; BT 220 should be achieved if possxble. The same
thing applies to a Chi-Square distribution. An attempt to keep n = degrees of
freedom > 10 should always be made. Both estimators show diminishing returns.
However, when BT is very large, for exa.mple, the Chi-Square distribution in
Figure 5-5 shows very little improvement in confidence when n = 2BT goes from
500 to 1000. Yet, this can represent a doubling of the analysis time or a two-
fold reduction in frequency resolutmn

The standard error formula for estimating the confidence interval for
amplitude probability density must be modified from that given in Equation 5-15,
This arises from the fact that the confidence interval improves as the number
of events per unit time increases. Assuming a Gaussian amplitude distribution,
it ts clearly recognized that the number of events when ¢ = 0 is much larger
than when ¢ = 43 (3 times rms). Accordingly, a factor must be inserted in the
formula for the normalized standard error to compensate for the reduction of
the number of events as o increases. A suitable formula is: '

s - ' (5-18)
“VEIWp &) :

where B is the bandwidth of the process being analyzed, T is the true averaging
time, W is the width of the "amplitude window!'' stated in terms of g,and p (x) is

the Gaussian amplitude probability at the amplitude in consideration. If the win-
dow makes 10 contiguous steps from 0 = 0to 0 = 1, then, W = 0.1, At an amplitude .
of o= %1 p (x) is 24.2% or .242. At an amplitude of g = £2,p (x) is . 054. The
bandwidth, B, is a.unmed to be idealized and white. T assumes true integration

for each step of the window The value 0.3 is derived empxrically from test

~ data since no exact expres sion is known. The value 0.3 becomes considerably

larger in digital computing techniques.

For mean and correlation measurements, the value of ¢ should be

modified for Equation 5-15 to:
1

€= \m. (5-17)
For power spectral density me;mrements. ¢ should become ¢ = l/‘/ﬂBT in those
cases where the analyzer filter approximates a single tuned circuit rather than
the idealized rectangular straight-sided type.

5-11




Section §
. SOME STATISTICS

What is an "'estimator' as pertaining to statistics?

sin nx
nx

Sketch a function.

‘What is the theoretical number of samples per wavelength required
. to reconstruct a wave?

Define aliasing.

When would one use a Chi Square distribution as an estimator?

- g - - . + - B : :

What is the mathematical expression for the standard error cstimat:or?i
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Section 5
SOME STATISTICS

What is an "estimator'' as pertaining to statistics?

: in nx .
Sketch a LU function.

What is the theoretical number of sarbples per wavelength required
to reconstruct a wave?

Define aliasing.

" When would one use a Chi Square distribution as an estimator?

What is the mathematical expression for the standard error estimator?
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PROBLEMS IN ANALYZING RANDOM WAVES

Randomness

The first problem in analyzing an arbitrary wave is to determine if it
is periodic or random. A very narrow random peak, caused by a high Q reso-
nance, is sometimes difficult to distinguish from a periodic component. If the
vibration data is purely periodic, the fact is usually obvious by observing an
oscilloscope picture but, if it is a mixture of sine and random, this fact is not
always obvious. A simple test which is effective in many cases is to fune in
t;he peak which is suspected to be a sinusoid with an analyzer and successively
switch in two or more filters of different bandwidths. Since the amplitude of a
sinusoid is independent of the filter bandwidth, whereas a random wave is not,
the presence of a sinusoid in random noise is often revealed. In addition, the
"bandwidth' of a sinusoidal component will always be the same as the filter
bandwidth and decrease as filter bandwidth is decreased. The bandwidth of a
narrow band random signal will not decrease below its effective width no

matter how narrow the filter becomes. Figure 12-1 shows the results of such

a test. This method will not work when the random response peak is less than

the filter bandwidth. For the case of random spectral peaks with center fre-
quencies of less than perhaps 50 Hz, the structural resonance may have a
bandwidth of less than 1 Hz making it very difficult to distinguish from a sine
wave. '

In the latter case, a quantitative test for randomness may be useful,
aithough somewhat tedious. As has been seen from Figure 12-1, the existence
of a sinusoid in an otherwise random signal will be revealed by a sharp peak
in a properly resolved power spectrum. However, a narrowband random signal
representing a high Q resonance in a structural vibration response will also
show up as a sharp peak in the power spectrum. The two cases can be distin-
guished from one another by eximi.ning repeated records of the mean square
vaiue for the spectral peak at different times. If the peak is a sinusoid, the
mean square value should be the same except for observation and instrument

errors. On the other hand, mean square measurements taken at different

12-1
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times will show a dispersion or scatter if the signal is random. The following

steps are suggested for such a test:

1. Using the narrowest filter available, tune the PSD analyzer
over the peak of interest so that the peak is isolated from
the rest of the signal.

‘2. Make a number of mean square measurements by averaging
over each of a number, N, of equally long segments of the
sample récord. The averaging time, Ta’ should be equal to
Ta = T/N where T is the total length of the sample record.
N should be less than 0.1 BT where B is the bandwidth
between the -3 dB points of the filter in the analyzer. See
Figure 12-2, ,

3. If an RC type continuously averaging system is used, the
mean square values can be recorded as in Figure 12-2,
Equally spaced discrete values of the mean square are
selected and the expected normalized variance, e:z, is
computed from: |

€? = -é—l,i:- (12-1)

A

4. Calculate the actual normalized variance, ¢, from the formula:

N (N N Ms
22 i=1 !

= - - -1 : (12-2)
N-l "IN Ms
i=1 1
5. Determine the ratio:
R, = e?/e? (12-3)

If Rc is statistically equivalent to unity, the signal in question is random. If
significantly less than unity, it is considered to be periodic. Figure 12-3 ig
the criterion for decision, wherea is the level of significance for the decision.
Thﬁs, if the -number of measurements is 20 and the variance ratio is 0. 6, there
is a 5% probability (a = 0; 05) that the decision is wrong. Therefore, the

decision is in the region of acceptance.

12.3
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Gwma%mdofMTmn&,amﬂmsncw
mean square value measurement may be reduced to a collection of
equivaient true aversged mean square value measurements as follows: Let
mnc«mﬁmwxummwmmm
T; that is, K << T. Now, divide the continuous measurement into N squal
intervals such that each interval is about 3K or 4K long, as shown below.
Tmmwmmsmtammmmmm
madmmhdummw”m
time of T, = 2K. The individual readings should be 3K or 4K spert to
amnﬂmﬂnynmﬁsﬂallyim_.

B

MS; M MS3 MS(N-1)

1 2 3 N~y | N
! T T T ‘ ™ t
(4] T/N ZT/N 3T/N {N-1)T/N T

Time, ssconds

ANALYSIS OF CONTINUOUS MEAN SQUARE VALUE MEASUREMENTS

"FIGURE 12-2
12-4
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Stationarity

The stationarity of a process can easily be determjin’ed by some«simple'
measurements. An analyzer is not required. With an rmﬁ meter, plot a2 mean
square curve as in Figure 12-2. Divide the curve into N segments with-N
discrete mean square measurements. Determine the médian for the measure-
ments; that is, the value for whxch half the mealurements are higher and half
lower. Identify each measurement higher than the medianbya (+) and each
lower by a (-). Arrange the measurements in the proper time sequence.
Count the number of ''runs'. A 'run'' is defined as a sequence of identical

symbols which is followed and preceded by a dxfferent symbol or no symbol
at all., As an example:

t+ - 4+ = FHt - + 2= + = + -
1 2 3 4 5 6 7 9 10 11 12 . -

the number of runs is twelve, the number of segments, N, is 20. Entering
the chart of Figure 12-4 at 12 and 20, it is evident that the séquence is sta-

tionary with a 90% confidence interval.

Spectrum Resolution Cons iderations

o In the analysis of the power spectrum from actual structures, it is
seen from previous discussions that the statistical quality pf-meaicu:emeht
‘improves as the bandwidth of the analysis filter is broadenéd« and the a#éfag-
ing time is increased. However, the analysis time suffers with increine;c in
averaging time and the ability to resolve resonances and peaks in the poﬁer
spectrum suffers with wide filter bandwidths. Therefore, the selection of the
proper bandwidth for an analysis becomes an art. To optimize the analysis
time and resolution, one must virtually know the i'esults of an analysis b?fore
analyzing. Quite often this may be resolved by making quick-look scans of

the data prior to performing the final analysis.

Analysis Rate of a Constant Bandwidth Analyzer

If the filter buildup time TlOO’i~'4/B seconds and we then follow the
A .

detector with a true averaging circuit, we would not want to move the filter

12-6
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any faster than one bandwidth for every 4/B seconds. We would then desire ;.n o

average value of the power from the filter after this time, or the data would
be influenced by transient signals during the buildup time. An expression for

analysis rate is:
B

+ T

AR < (12-4)

W

Where:
AR = analysis rate in Hz/sec

B = filter noise bandwidth in Hz

T = averaging time in seconds
Upon further examination of the above equation and consideration of
the practical values of T for a given B, based on desirable statistical confi-
dence levels, we see that the 4/B term will make very little difference in the
final scan rate value. In other words, as B becoxhes larger, T usually becoﬁ;o:s
smaller and the 4/B part becomes negligible compared to T. For a small B,

T becomes large, therefore, Equation 12-4 becomes:

B fl
AR < 2 (12-5)

If RC averaging is used, we must allow at least 4RC time constants - -
before the output of the averaging circuit is producing a correct averaged value.
Therefore, we would not want to sweep the analyzer filter any faster than one

bandwidth for every 4RC time constants or:

B
AR = 7RC

Let's now compare Equations 12-5 and 12-6. Remember after 4RC

(12-6) -

seconds that RC = T/2. AR for true averaging with the equivalent RC time

constant is twice that of an analyzer using RC averaging frbra:

v B
€ : 3 2.
ART 3RC (using Equation 12-5)
Where:

AR T = analysis rate using true averaging

and,

12-8
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ARRC 4RC (using Equation 12-6)
Where:
ARR c*™ analysis rate using RC averaging
Therefore: - ARgp . B/2RC _,
ARRC "B/4RC ~

This becomes a consideration when trying to shorten the analysis time.
It is also interesting to note that the analysis rate is related to the statistical

confidence levels:

Since n=2BT or B= -2—,1-,- and using Equation 12-5,

B
<- 3 = =
AR =T we find AR (T) =8B —-—ZT or

n = 2AR (T)z ; (12-7)
In another sense, since

n = 4BRC
4RC =n/B
and
AR <7RC

we have
AR < B/n/B

AR < B%/n (12-8)

- so we see that analysis rate is directly related to statistical confidence.

Analysis Rate and Time for Constant Bandwidth Analyzer
The above analysis rates state that the analysis filter should be

scanned using a linear sweep rate, or:

df

dt

AR (12-9)
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£ A, A,
then [ df=AR ‘f dt, solving t| provides
£’ 0 0
1
A== (& .5 (12-10)
t AR \2 "1/
Where: At = total analysis time (sec.)

fz = highest analysis frequency (Hz)

fl = lowest analysis frequency (Hz)

AR = analysis rate (Hz/sec.)

Thus the total analysis time is equal to the total frequencybrange
divided by the analysis rate.
A sample problem of ''on-line' analysis using the equations developed

for a constant bandwidth analyzer follows:

1. Require a 10% statistical accuracy; 10% = 160 €
(from Equation 12-1)

2, Analysis frequency range, 10 Hz to 2000 Hz

3. Analyzer bandwidth, B, required for desired rgsoiutioa
is 10 Hz (noise bandwidth)

Since the error desired is less than 20%, we can use:

1 1 "1
e-ﬁ?, B'I'-ez '.Tf"loo

Since B=10, T = %0-9- = 10 second averaging time.

If the analyzer uses RC averaging, then:

1 1
€ =m , RC = = 5 gseconds
B ZeZB

AR = % 1 = 1 Hz/sec (for true averaging)

—

AR 2-—1856 =12, 0.5 Hz/sec (for RC averaging)

>
o
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2000 - 10 1990
At' AR === = 1990 seconds or 33 minutes

(for true averaging)

_2000 - 10 1990
t AR 0.5

(for RC averaging)

A

= 3980 seconds or 66 minutes

Dynamic Range

A consideration which is very important yet often overlooked in wave
analysis is the dyziamic range capabilities of the analyzing system. This mat-
ter is of such importance that an illustration is warranted.

Consider the case where a band of random frequencies up to 20 kHz
is being analyzed with a 2 Hz filter. To make the example easier, we shall
assume that the 20 kHz spectrum is white, which it undoubtedly will not be.

We will assume that 3-sigma limiting is permissible and that the voltage of the

signal is 1.0 V rms. The dynamic range of the analyzer is 60 dB.

The amplitude adjustment of the input signal must then accommodate
a three volt peak signal. This signal should just be or; the verge of overloading
the analyzer. When this adjustment is made, the voltage out of the 2 Hz filter
becomes 3 millivolts peak which is 60 dB under the input signal. Consequently,
the analyzer has no dynamic range left and the analysis should not be made
since it is worthieu. This state of affairs comes about because the output
voltage is dependent on bandwidth.

bandwidth of output = 2
bandwidth of input ~ 2000

=.001 = -60 dB (12-11)

Therefore, the output of the 2 Hz filter would be at the noise floor of the analyzer.
There is no way out of this dilemma except to bandwidth limit the input or to

use a wider filter. Suppose we limit the input signal to a 10 kHz band. We will
have gained 3 dB and the range of our ana.lyaié will be restricted to that 3 dB,
Suppose we choose a 10 Hz filter instead of the 2 Hz. Then wi"-will have gained

14 dB. 1If both means were employed, we would have an actual dynamic range of
17 dB, which would probably be acceptable if the input signal were white or nearly

12-11




white. Of course, we could gain almost an additional 4 dB if we let the analyzer
overload at 2-sigma. We would lose 5% of the information but, even so, the
solution is not to be recommended unless all else fails. The answer to this is
in-thoughtful compromise and, indeed, it may be necessary to make one or

two trial analyses before a reasonable solution is found.
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Section 12

PROBLEMS IN ANALYZING RANDOM WAVES

How can one tell when the signal to be analyzed is random?

The analysis rate should not be greater than the filter bandwidth divided
by time. What happens if we exceed this rate?

How is the dynamic range of an analyzer affected by the bandwidth of the

input signal? Explain the implications of the ratio '"bandwidth of filter/
bandwidth of input''.







