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Variables 
 

airc  = speed of sound in the air 

( )aircρ  = specific acoustic impedance of the air 

LC  = longitudinal wave speed 

radσ  = radiation efficiency of the cylindrical shell 

sρ  = mass/area of the cylinder  

vρ  = mass/volume of the cylinder 

E = elastic modulus 

μ  = Poisson’s ratio 

h  = Thickness 

d = Diameter 

S  = surface area 

n (f) = modal density 

M = mass of the cylinder 

ω  = excitation frequency (rad/sec) 

f = excitation frequency (Hz) 

f c = critical frequency 

f r = ring frequency 

vo = nondimensional frequency parameter 
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Variables Continued 
 
 

η  = loss factor 

λ = wavelength 

ξ  = fraction of critical damping 

Q = quality factor 

2p  = the space-time average mean-square acoustic 
pressure 

2v  = normal component of the space-time average mean-
square vibration velocity of the radiating surface 

2a  = normal component of the space-time average mean-
square vibration acceleration of the radiating surface 

)f(Sa  = acceleration power spectral density 

)f(Sp  = pressure power spectral density 

T(f) = power transmissibility function 

radW  = radiated sound power 

m = mode number or number of half-wavelengths in the 
longitudinal axis 

n = mode number or number of half-wavelengths in the 
circumferential direction 

mk  = axial wave number 

nk  = circumferential wave number 

k = acoustic wave number 

 
 
 
Vibroacoustic Formulas 
 
Consider a homogeneous, cylindrical shell subjected to a diffuse, broadband sound field 
where the surrounding medium is air.  The shell could represent an aircraft fuselage 
segment or a rocket vehicle avionics module. 
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The primary goal is to calculate the response of the shell.  Note that the shell is also a 
radiator or transponder because it transmits some of its vibration energy back into the 
sound field. 
 
A secondary goal is to derive a transmissibility function that reasonably matches the 
Franken method, particularly near the ring frequency.   
 
The following equation is a modified version of an equation in Reference 1, section 9.8.  
The original equation in this reference was derived for a flat panel in a reverberant field 
using statistical energy analysis. 
 

The mean square, space-time average velocity 2v  of the cylindrical shell is 

 
 

( )
( )

( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧

ωηρ+σρ

σρ

ωρ

π
=

sradair

radair
2

air

2
air22

c
c

Mc

fnc
pv                                   (1) 

 
 
The corresponding acceleration is 
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Equation (3) can be expressed in terms of the corresponding power spectral density 
functions. 
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Rewrite equation (3) in terms of a power transmissibility function T(f). 
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The modal density ( )fn  is the parameter which usually has the greatest effect on shaping 
the power transmissibility function.  
 
 
Ring Frequency 
 
The ring frequency f r is the frequency at which the longitudinal wavelength in the skin 
material is equal to the vehicle circumference.  The ring frequency is not an explicit 
variable in equation (3), but it affects the modal density n(f).  It also appears in certain 
formulas for the radiation efficiency radσ , although a wave number approach is used in 
this tutorial. 
 
The ring frequency is 
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The shell moves radially outward and the radially inward at the ring frequency if the 
cylinder has infinite length.  On the other hand, the shell has pure tangential motion for 
the case of a finite shell with fixed-fixed boundary conditions, as show in Reference 5. 
 
Note that the wave speed can be calculated from  
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Critical Frequency 
 
The critical frequency cf  is another parameter which has an indirect effect on equation 
(3).  It is the frequency at which the airborne acoustic wavelength matches the panel 
bending wavelength.   
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Equation (8) is taken from Reference 1, equation (9.84). 
 
The critical frequency may also be expressed as 
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A cylinder shell is considered as “acoustically thin” if cr ff <  , as is the case with the 
example in Appendix A.  The radiation efficiency has a peak at the ring frequency in 
acoustically thin shell. 1 
 
Furthermore, the cylindrical shell tends to vibrate as a flat plate above the ring frequency 
because the shell’s curvature is less important. 
 
See Reference 7 for further details. 
 
 
Loss Factor 
 
The loss factor η  is related to other damping parameters by  
 
 

Q
12 =ξ=η                                                                             (10) 

 
 
The loss factor varies with frequency.  For a vibroacoustic analysis, the highest loss 
factor may occur at the critical frequency where the cylindrical shell has the greatest 
amount of coupling with the acoustic field.   
 
 
Wavenumbers 
 
The wavenumber k has a dimension of [radians/length].  It is the inverse of the 
wavelength. 
 

λ
π

=
2k                                                                                   (11a) 

                                                 
1    Acoustical thick shells occur when cr ff >  .  The radiation efficiency is less clear for 
thick shells. 
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The acoustic wave number is 
 

airc/k ω=                                                                                      (11b) 
 

The axial wave number is 
 

L/mk m π=                                                                                  (12) 
 

 
The circumferential wave number is 
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Acoustically Fast Modes 
 
Cylinder modes must be categorized as either acoustically fast (AF) or acoustically slow 
(AS) in order to determine their ability to interact with sound waves. 
 
The distinction between these two classes is that an AF mode has a structural 
wavenumber smaller than the acoustic trace, according to Reference 6.  In other words, 
the AF mode has a longer wavelength than the acoustic wave at the corresponding 
frequency.  The converse is true for AS modes. 
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A cylindrical shell can have AF modes in all frequencies domains in which modes occur, 
unlike plates. 
 
The importance of the classification is that AF modes are superior in terms of their ability 
both to be excited by sound and to radiate sound.  AS modes can only generate sound at 
structural boundaries or discontinuities. 
 

 
Radiation Efficiency 
 
The radiation efficiency of a vibrating body generating sound energy in air is 
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Equation (15) is taken from Reference 1, section 9.6.   
 
A larger radiation efficiency means that a vibrating body will be generate a greater 
amount of sound energy. 
 
Only a brief discussion of radiation efficiency is within the scope of this tutorial.  A 
thorough treatment of this subject is given in References 5 and 6. 

 
The radiation efficiency for AF modes is 
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The original source for equation (17) is Reference 6, equation (2.16).  
 
The radiation efficiency of AS modes is less than that of AF modes, but there is no 
readily available reliable formula because AS modes can only generate sound at 
structural boundaries or discontinuities.  AS modes are assumed to have zero radiation 
efficiency in this tutorial for simplicity. 
 
The radiation efficiency can be expressed as the average value of all modes in a given 
one-third octave band. 
 
 
Modal Density 
 
The modal density is the number of modes in a particular frequency band.  Typically, the 
bandwidth is one-third octave. 
 
The highest modal density may occur near the ring frequency, as shown in the example in 
Appendix A. 
 
Formulas for estimating the modal density of a cylinder shell are given in References 2 
and 5.  See Appendix B.  The preferred method in this tutorial, however, is a direct count 
method described in Reference 4. 
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Mass Law 
 
As the excitation frequency increases beyond the ring frequency, the power 
transmissibility is assumed to converge to that of the mass law. 
 

2
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This condition is not directly derivable from equation (5) but is rather supplementary. 
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APPENDIX A 
 
 
Cylindrical Shell Parameters 
 
A cylindrical shell with the following values is subjected to a diffuse, broadband sound 
field.  The sound pressure level is shown in Figure 5.  The surrounding medium is 
ambient air. 
 
The shell’s boundary conditions are fixed-fixed. 
 

d = 48 inch 

h = 0.125 inch 

L = 48 in 

E = 1.0e+07 psi 

vρ  = 0.1 lbm/in^3 = 0.000259 lbf sec^2/in^4 

μ  = 0.3 

 
The resulting ring frequency is f r = 1309 Hz.    
The critical frequency is f c = 3843 Hz. 
 
The shell is “acoustically thin” because the critical frequency is about three times greater 
than the ring frequency. 
 
Furthermore, assume 5% damping for all modes. 
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Figure A-1. 
 
 
 
 
The modal density is calculated by directly counting the modes in each one-third octave 
band.  The peak occurs near the ring frequency. 
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Figure A-2. 
 
 
The cylindrical shell’s radiation efficiency function is shown in Figure A-2. 
 
The radiation efficiency is the average for all modes in each one-third octave band. 
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Figure A-3. 
 
 
 
The impedance ratio is the term 
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Figure A-4. 
 
 
The cylindrical shell’s transmissibility function is shown in Figure A-4. 
 
The transmissibility function’s lower frequency limit is determined by the first AF mode, 
which is 331 Hz. 
 
The power transmissibility is constant at frequencies above 4000 Hz due to the 
supplementary mass law with a 4.5 dB margin. 
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Figure A-5. 
 
 
The overall level is 144.5 dB.  
 
This is the external pressure field that is applied against the cylindrical shell. 
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Figure A-6. 
 
 
The cylindrical shell’s response PSD is shown in Figure A-6. 
 
The response PSD is calculated by multiplying the power transmissibility function in 
Figure A-5 by the SPL in Figure A-6, with the appropriate unit conversion. 
 
 
The overall acceleration is 5.1 GRMS over the domain up to 2000 Hz. 
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Figure A-7. 
 
 
The SEA curve is the cylindrical shell’s response PSD that was previously shown in 
Figure A-6. 
 
The accuracy of the SEA curve below 600 Hz is questionable due to the scarcity of AF 
modes in this below this frequency. 
 
The response via the Franken method is also shown in Figure A-7. 
 
The following statements apply to the overall level over the domain up to 2000 Hz. 
 

The SEA level is 5.1 GRMS. 
 

The Franken level is 4.0 GRMS. 
 
The SEA level is 1.7 dB higher. 
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APPENDIX B 

 
 
Modal Density of a Cylindrical Shell 
 
The following is taken from Reference 5. 
 
Let 

   ν o   =  f o / f r                                                                         (B-1) 
 

 
The normalized modal density B is  
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The upper frequency band limit is   ν o F.    The lower limit is   ν o / F.  
 
F=1.122 for one-third octave bands and F=1.414 for octave bands. 

 
 
The modal density  ( )ωn   is 
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where 
 

h = shell thickness 
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L = cylinder length 

Rω  = ring circular frequency 

 


