
CHAPTER 3

TUNED LIQUID COLUM DAMPERS

There is nothing more practical than a good theory
- T. Von Karman

In this chapter, tuned liquid column dampers (TLCDs) are discussed. First, the

mathematical model of the TLCD is presented and the equivalent linearized model is com-

pared with the nonlinear model. Next, numerical optimization studies are conducted to

determine the important parameters for optimum TLCD performance, namely, the tuning

ratio and the damping ratio. In a later section, similar values of optimal parameters have

been determined for multiple tuned liquid column dampers (MTLCDs).

3.1  Introduction

In the classical work on the Dynamic Vibration Absorber (also known as TMD),

Den Hartog (1956) derived expressions for the optimum damping ratio and tuning ratio

(i.e., ratio of the absorber frequency to the natural frequency of the primary system) for a

coupled SDOF-TMD system subjected to harmonic excitation. The optimum absorber

parameters which minimize the displacement response of the primary system were found

to be simple functions of the mass ratio (ratio of mass of structure and damper).

McNamara (1977) reported design of TMDs for buildings with attention to experimental

studies and design considerations. Ioi and Ikeda (1978) developed empirical expressions

to determine correction factors for optimum parameters in the case of lightly damped

structures. Randall et al. (1981) and Warburton and Ayorinde (1980) further tabulated and
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developed design charts for the optimum parameters for specified mass ratios and different

primary system damping.

Previous work has been done with the aim of deriving optimum parameters for

TLCDs. Abe et al. (1996) derived optimum parameters using perturbation techniques.

Gao et al. (1997) studied numerically the optimization of TLCDs for sinusoidal excita-

tions. Chang and Hsu (1998) have also discussed optimal absorber parameters for TLCDs

for undamped structure attached to a TLCD. These dampers were found to be effective for

wind loading (Xu et al. 1992; Balendra et al. 1995) and earthquake loading (Won et al.

1996; Sadek et al. 1998).

In this chapter, similar expressions have been developed and parameters have been

tabulated for undamped and damped primary systems equipped with TLCDs. Usually, in

the design of TMDs for wind and earthquake excitations, the optimum parameters are cho-

sen to be those obtained by assuming a white noise random excitation. In this study, in

addition to the white noise excitation, a set of filtered white noise (FWN) excitation has

been considered for evaluating the optimal absorber parameters.

Optimum parameter analysis of MTLCDs is similar to MMDs (multiple mass

dampers), where the important design parameters are the frequency range of the dampers

and the damping ratio of the dampers (Yamaguchi and Harnpornchai, 1993; Kareem and

Kline, 1995). MTLCDs are useful because the efficiency is higher as compared to a single

TLCD and moreover, the sensitivity to the tuning ratio is diminished. Multiple liquid

dampers have also been studied by Fujino and Sun (1993); Sadek et al. (1998) and Gao et

al. (1999).
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3.2  Modeling of Tuned Liquid Column Dampers

Figure 3.1 shows the schematic of the TLCD mounted on a structure represented

as a SDOF system.

Figure 3.1 Schematic of the Structure-TLCD system

The equation describing the motion of the fluid in the tube is given as (Sakai et al. 1989),

(3.1)

where the natural frequency of oscillations in the tube are given by . The equa-

tion of motion for the primary system (structure) is given as,

(3.2)

where = response of the primary system (structure); = response of the liquid damper

(TLCD); Ms = mass of the primary system; Ks = stiffness of the primary system; Cs=

damping in the primary system = ; = damping ratio of the primary system;

= natural frequency of the primary system; ρ= liquid density; A = cross sectional area

Ms

ξ

Xs

Xf

F(t)

Ks

Cs

b

l
headloss
coefficient

xf

Fe(t)

Xs
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of the tube; l = total length of the liquid column; b = horizontal length of the column; g =

gravitational constant; =coefficient of headloss of the orifice. The two equations can be

combined into the following matrix equation:

, , (3.3)

where α = length ratio = b/l; mf = mass of fluid in the tube = ρAl; cf = equivalent damp-

ing of the liquid damper = ; ζf = damping ratio of TLCD; = natural fre-

quency of the liquid damper; kf is the stiffness of the liquid column = 2ρAg, and is

the external excitation. The constraint on Eq. 3.3 is placed so as to ensure that the liquid in

the tube maintains the U-shape and the water does not spill out of the tube, thereby

decreasing the dampers effectiveness.

3.2.1  Equivalent Linearization

Using the expressions derived in section 2.4, one can obtain equivalent linear

damping for the nonlinear TLCD damping (cf). In particular, using Eq. 2.20 one can

obtain:

(3.4)

where the excitation force is harmonic, , while for random

excitation, using Eq. 2.24:
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where is the standard deviation of the liquid velocity. This analytical model will be

used in the rest of the study.

3.2.2  Accuracy of Equivalent linearization

Since the equivalent damping will be used in later studies on TLCDs, it is useful to

study the accuracy of the equivalent linearization method. The two equations, written in

non-dimensional form, are as follows,

Nonlinear System:

(3.6)

Equivalent Linear System:

(3.7)

where µ is the mass ratio = . The nonlinear equations were simulated using the

nonlinear differential equation solver in MATLABTM, while for the linear equation, an

iterative method was used to solve the equivalent linearized equations. In the second case,

one first assumes a value for , simulates the linear system, recalculates the value of

and iterates till the response quantity converges to an acceptable value. In this study,

the main focus is to examine the error between the exact nonlinear and linearized equation

for variations in the parameter ξ. The excitation used is a band-limited Gaussian white

noise with a pulse width of 0.002 seconds and a spectral intensity of 0.01 m2 /sec3/Hz.
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Figure 3.2 shows the comparison of the response of the structure and damper for various

headloss coefficients. The maximum error between the nonlinear and the equivalent linear

system is about 2%. Figure 3.3 shows the time histories of the various response quantities

for ξ = 75.

Figure 3.2 Exact (Non-linear) and Equivalent Linearization results

Figure 3.3 Time histories for ξ = 75
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3.3  Optimum Absorber Parameters

It has been observed from numerical studies that the headloss coefficient affects

the structure’s frequency response curve. As the head-loss coefficient (ξ) increases, the

response curve changes from a double hump curve to a single hump curve (Fig. 3.4).

Numerical studies conducted by the author indicate that an optimal damping level exists

for the TLCD which depends on the excitation level and the head loss coefficient. The first

task, however, is to obtain the optimum damping ratio and tuning ratio of the absorber.

Figure 3.4 Variation of dynamic magnification factor with the head-loss coefficient
and frequency ratio for a TLCD
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   and

where for base excitation in which case is the relative displacement, and

for primary system excitation where corresponds to the absolute displacement.

One can compute the response quantities of interest using random vibration analysis. In

particular, we are interested in the variance of the primary system displacement and the

variance of the liquid velocity in the TLCD. The response quantities are obtained as,

(3.8)

(3.9)

where is the power spectral density of the forcing function. Equation 3.9 is useful

in evaluating the equivalent damping of the TLCD from Eq. 3.5. A simplified solution to

the integral for random vibration analysis has been used to evaluate Eqs. 3.8 and 3.9 (see

Appendix A.1 for details). Three representative forcing functions have been studied here,

as listed in Table 3.1. The optimal absorber parameters are derived for each individual case

of white noise and FWN excitations. It will be shown in subsequent sections that typical

wind and earthquake excitations can be approximated through the use of such filters.
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TABLE 3.1  Example forcing functions

Based on these three excitation models, optimal parameters have been obtained for

TLCD attached to damped and undamped primary systems. It has been seen that one can

derive an explicit expression for the case of undamped structure-TLCD system subjected

to white noise. However, for damped systems and/or other excitations, the development of

closed-form solutions is challenging. This is because some characteristics of the classical

damper system, like invariance points, do not exist when damping is introduced in the pri-

mary system (Den Hartog, 1956). Therefore, the optimal absorber parameters (i.e., and

) are obtained numerically for these cases. The optimal conditions are

obtained by setting:

 ; (3.10)

One can obtain and  by solving the two conditions given by Eq. 3.10

In the case of tuned mass dampers, a detailed analysis was carried out by Warbur-

ton (1982) to determine optimum damper parameters for the case of random excitations

(represented by white noise), with excitation applied to the structure (as in the case of
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wind) or as a base acceleration (as in the case of ground motion). The design of TMDs for

wind and earthquake applications, therefore, uses these design expressions for the optimal

parameters. In the next sub-sections, the theory to determine the optimal parameters is

presented for the example forcing functions listed in Table 3.1.

3.3.1  White Noise excitation

The response integral in Eqs. 3.8 and 3.9 can be cast in the following form:

(3.11)

Details of the integration scheme can be found in Appendix A.1.

Undamped Primary System

Solving the two optimization conditions in Eq. 3.10 and setting  yields:

 ; (3.12)

In case, one can assume the tuning ratio to be equal to one, one can obtain a sim-

pler expression for the optimal damping given by,

(3.13)
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by Eq. 3.13 approximates Eq. 3.12 quite well. Similar expressions exist for an optimal

damping coefficient and tuning ratio of a TMD given by Warburton and Ayorinde (1980),
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 ; (3.14)

Note that in all cases considered, the optimum damping coefficient is independent

of the value of S0, the intensity of white noise excitation. It is noteworthy that Eq. 3.14

reduces to Eq. 3.12 as approaches 1. Comparison of optimal parameters under different

optimization criteria are summarized in Table 3.2 for TMDs and TLCDs. Figure 3.5 shows

the variation of optimum parameters as a function of the mass ratio. As the length ratio

increases, the damping ratio increases because there is more mass in the horizontal portion

of the TLCD. This contributes to indirect damping, which implies that it is better to keep

the length ratio as high as possible without violating the constraints of the TLCD or the

limitations of structural/architectural considerations.

Figure 3.5 Comparison of optimum absorber parameters for a TLCD with
varying α and a TMD.
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Damped Primary System

As discussed earlier, it is not convenient to obtain a closed-form solution for opti-

mum damper parameters for a damped primary system; therefore, it must be estimated

numerically (Warburton, 1982). These computations have been conducted for = 1, 2

and 5% and µ= 0.5, 1, 1.5, 2 and 5% and optimum absorber parameters are presented in

Table 3.3.

Table 3.3 shows that as the mass ratio increases, also increases. Equation 3.12

verifies this for undamped case, since it is approximately proportional to the square root of

the mass ratio. The tuning ratio also decreases as the mass ratio and the damping in the

primary system increase, which is consistent with the results obtained for tuned mass

TABLE 3.2  Comparison of optimal parameters for TMD and TLCD
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dampers. It is observed that for small values of , is not affected; therefore for a

lightly damped system, the optimum absorber parameters derived for an undamped pri-

mary system are valid. For higher levels of damping in the primary system, one can derive

empirical expressions for the optimum damping ratio as a function of the primary system

damping ratio.

TABLE 3.3  Optimum parameters for white noise excitation for different mass
ratios.

3.3.2  First order filter (FOF)

The forcing function for a FOF has a spectrum given by,

(3.15)

This type of function can be used to approximate wind-induced positive pressures for the

alongwind loading. Figure 3.6 (a) shows the transfer functions of the first order filter with

different values of the parameter . Also shown for reference is the transfer function of

the primary system. Table 3.4 gives the optimum absorber parameters for these first order

filters. Note that when =10, the optimum parameters are the same as those obtained for

white noise, since the filter is fairly uniform like white noise excitation around the natural
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γopt γopt γopt γopt

µ=0.5% 0.9965 0.0317 0.9962 0.0317 0.9958 0.0317 0.995 0.0317

µ=1% 0.993 0.0448 0.9925 0.0448 0.9921 0.0448 0.9908 0.0448

µ=1.5% 0.9896 0.0547 0.989 0.0547 0.9885 0.0547 0.9869 0.0547

µ=2% 0.986 0.0631 0.9855 0.0631 0.985 0.0631 0.983 0.0631

µ=5% 0.966 0.0986 0.965 0.0986 0.964 0.0986 0.962 0.0986
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frequency of the primary system. However, for other cases (e.g., = 0.1 and 1), the opti-

mum parameters are slightly different. The effect is more pronounced in the case of the

tuning ratio and increases as the damping in the primary system increases. Optimum

parameters have been computed for ν1 = 1 and tabulated in Table 3.5. Though the optimal

parameters can be obtained through the simultaneous solution of the two non-linear equa-

tions resulting from Eq. 3.10, the task becomes computationally intensive for the first and

second order filters. In this numerical study, optimal parameters were obtained by utilizing

the MATLAB optimization toolbox (Grace, 1992).

                     (These values are computed for undamped primary system with µ =1%)

TABLE 3.5  Optimum absorber parameters for FOF for various mass ratios.

TABLE 3.4  Optimum absorber parameters for FOF for different parameter ν1

parameter of
first order filter γopt

ν1 = 0.1 0.991 0.04477

ν1 = 1 0.992 0.04476

ν1 = 5 0.9925 0.04483

ν1 = 10 0.993 0.04482

v1 = 1

Undamped
primary system 1% Damping 2% Damping 5% Damping

γopt γopt γopt γopt

µ=0.5% 0.993 0.03197 0.992 0.03190 0.991 0.03185 0.988 0.0317

µ=1% 0.992 0.04476 0.991 0.04474 0.990 0.04470 0.987 0.04456

µ=1.5% 0.986 0.05484 0.985 0.05476 0.984 0.05468 0.979 0.0545

µ=2% 0.984 0.0630 0.983 0.0629 0.9815 0.06287 0.978 0.0626

µ=5% 0.962 0.0980 0.960 0.09795 0.958 0.0978 0.953 0.09727

ν1

ζopt

ζopt ζopt ζopt ζopt
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Figure 3.6 Transfer function of the filters and the primary system: (a) first order
filters (b) second order filters

3.3.3  Second order filter (SOF)

A general second order filter studied here has the following spectral description,

(3.16)

where a1, b1, c1 and d1 are the parameters of the filter. Second order filters can be used to

represent earthquake and wind excitations. For earthquake representation, the excitation

acts at the base of the structure, while for wind representation, the excitation acts on the

structure. The expression in Eq. 3.16 also describes the well known Kanai-Tajimi spec-

trum (Kanai, 1961; Tajimi, 1960):

(3.17)

where  is the dominant ground frequency and  is the ground damping factor.
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Similarly, the across-wind excitation can be modeled as a FWN using a second

order filter. Kareem (1984) has proposed the following empirical expression for the spec-

tral density of the across-wind force for square buildings:

 for

                 =  for (3.18)

where ; ;

is the shedding frequency = ; B is the breadth of the building; is the mean

speed at height z; S is the Strouhal number; is the mean square value of the fluctuat-

ing across-wind force; is the exponent term in the power law of the wind velocity pro-

file; H is the height of the building; is the band width coefficient = , where I(z) is

the turbulence intensity at height z; and δ = 0.9. Details of this model can be found in

Kareem (1984). This across-wind loading model can also be represented by Eq. 3.16.

The magnitude of the transfer function of the filter given by Eq. 3.16 is shown in

Fig. 3.6 (b) for parameters a1 = 0.01, c1 =1, d1 =10 and varying b1 = 6, 10, 15 and 20.

Table 3.6 shows how the optimal parameters are influenced as the filter parameter b1

changes. As b1 increases, the assumption of purely white noise becomes valid and the

solution approaches that for the white noise case. The other parameters have been kept the

same and optimal parameters have been computed for damped and undamped cases (Table

3.7).
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TABLE 3.6  Optimum absorber parameters for SOF for different values of b1

(All the other parameters are kept constant a1 = 0.01, c1 =1, d1 =10, =0.02 and =0.05)

TABLE 3.7  Optimum absorber parameters for SOF for various mass ratios.

As in previous cases, decreases as the damping in the primary system

increases and increases as the mass ratio increases; however, the damping in the primary

system affects more in this case than in the case of white noise. In addition, the tun-

ing ratio slightly departs from γ =1.00 as the damping in the primary system increases.

3.3.4  EXAMPLE

The optimum parameters for a TLCD placed on an eight story structure subjected

to an earthquake excitation are determined in this example using the theory presented in

the previous section. The parameters of the building stories considered are: floor mass =

345.6 tons, elastic stiffness = 34040 kN/m and internal damping coefficient = 2937 tons/

sec, which corresponds to a 2% damping for each vibrational mode of the structure. The

parameter of
SOF γopt

b1 = 6 1.05 0.1111

b1 = 10 1.01 0.0702

b1 = 15 1.00 0.0572

b1 = 20 0.995 0.0524

a1 = 0.01
b1 = 36
c1=1
d1=10

Undamped
primary system 1% Damping 2% Damping 5% Damping

γopt γopt γopt γopt

µ=0.5% 1.04 0.1510 1.04 0.1401 1.045 0.1299 1.05 0.0956

µ=1% 1.04 0.1559 1.04 0.1450 1.045 0.1350 1.05 0.1008

µ=1.5% 1.04 0.1606 1.04 0.1498 1.045 0.1399 1.05 0.106

µ=2% 1.04 0.1654 1.04 0.1546 1.045 0.1448 1.05 0.1111

µ=5% 1.04 0.1927 1.04 0.1821 1.045 0.173 1.05 0.1406

ζopt

µ ζ s

ζopt ζopt ζopt ζopt

ζopt

ζopt
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computed natural frequencies are 5.79, 17.18, 27.98, 37.82, 46.38, 53.36, 58.53 and 61.69

rad/sec. The base excitation is modeled by the Kanai-Tajimi spectrum given in Eq. 3.17

with the parameters = 10.5 rad/sec and = 0.317. The parameters of the general sec-

ond order filter can be related to these as follows: and . The

mass of the damper has been taken as 2% of the first generalized mass of the structure. In

Table 3.8, the optimum design damper parameters for the TMD have been compared with

TLCD parameters, both under the white noise and the SOF excitations. It is noted that

there are significant differences in the optimum absorber parameters, justifying the inclu-

sion of the anticipated loading in the optimization process for the damper design.

3.4  Multiple tuned liquid column dampers (MTLCDs)

Multiple units of TLCDs can be incorporated in a structural system at one location

or distributed spatially. In this system, the natural frequencies of the TLCDs are distrib-

uted over a range of frequencies. The advantages of a distributed system is that it is more

robust and effective for excitation frequencies distributed over a wide frequency band. In

the following study, MTLCD configuration design parameters are evaluated.

The primary system is represented as a single degree of freedom (SDOF) system

and the secondary system, in this case, is the system of MTLCDs. The equations of

motion of the SDOF-MTLCD system (Fig. 3.7) can be written in a matrix notation as:

TABLE 3.8  Optimum absorber parameters

TMD TLCD ( white noise) TLCD ( SOF)

γopt
0.98 0.985 1.027

7.3 % 6.31 % 6.51 %

ωg ζg

a c 2ζg= = b d ωg= =

ζopt
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(3.19)

where   ;  ;

;  and  are (n, n) diagonal matrices similar to .

The transfer function of the primary system is obtained by non-dimensionalising Eq. 3.19,

and the transfer function for each TLCD is given by,

 ; n=1..N

Figure 3.7 MTLCD configuration

The analysis of MTLCDs is similar to MMDs (multiple mass dampers), where the

important design parameters are the frequency range and damping ratio of the dampers

(Kareem and Kline, 1995). The frequency range is defined as the total frequency span of
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Ẋ s
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the MTLCDs given as . The central damper (n = (N+1)/2) is tuned

exactly to the natural frequency of the primary system. It is assumed that N is an odd num-

ber in this analysis. The frequency of each damper can be written as,

  ;

             ;

  ;

A numerical study has been conducted to examine the effects of the number of dampers,

frequency range and damping ratio of the dampers. Optimum values of these parameters

have been obtained by minimization of the RMS displacement.

3.4.1   Effect of number of dampers (N)

From Fig. 3.8, one can observe the flattening action of MTLCDs as compared to

the double peaked response due to an STLCD. The effect of increasing dampers is similar

to that of adding damping: i.e., flattening of the frequency response function. However, it

is also noted that the frequency response due to 5, 11 and 21 TLCD groups, for the partic-

ular frequency range of 0.2, are very similar. This suggests that a large number of TLCDs

do not necessarily mean better performance, limiting the advantage of utilizing large num-

ber of MTLCDs for a particular frequency range.

3.4.2   Effect of damping ratio of dampers (ζfn)

The damping ratio of MTLCDs is studied for a group of eleven dampers with a

fixed frequency range of 0.2 (Fig. 3.9). It is noted that at low damping ratios, the ampli-

tude of the response function is spiked. As the damping ratio is increased, the response

ω∆ ω fN ω f 1–=

ω fn ωs
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N
-------n–= 1 n
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2
--------------<≤

ωs= n
N 1+
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function slowly becomes smoother and the amplitude decreases. After an optimal damp-

ing ratio for the dampers is reached, any further increase in the damping ratio results in an

increase in the amplitude. This suggests that there exists an optimum damping ratio for a

particular set of MTLCD configurations.

3.4.3   Effect of frequency range ( )

Figure 3.10 shows the effect of changing the frequency range on the frequency

response function. It is can be seen from the plots that there is an optimum range where

the curve flattens out over a range of frequencies. The frequency response functions of an

STLCD and a MTLCD with a low frequency range (0.02 and smaller) are similar. If the

range is smaller than the optimum, the frequency response of the MTLCD resembles that

of an STLCD, and so in a way, the MTLCD loses its effectiveness. This is intuitive

because there is a practical limit to which one can distribute the MTLCDs over a given fre-

quency range. As this range becomes very small, MTLCDs act almost like an STLCD.

Two types of configurations can be considered for multiple TLCDs: SDOF-

MTLCD configuration (to control single mode of the structure) and MDOF-MTLCD con-

figuration (to control multiple modes). The time frequency analysis of several earthquake

ground motion records utilizing wavelets has revealed the presence of higher frequency

components in the initial stages of the event, e.g., El-Centro (Gurley and Kareem, 1994).

In such cases, the presence of a TLCD or MTLCD tuned to the higher modes will be

essential in controlling motion induced by higher frequency components.

Table 3.9 tabulates the optimum parameters of the different MTLCD system. One

can note that the optimum damping ratio decreases drastically for MTLCD groups as com-

pared to an STLCD.

∆ω
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Figure 3.8 Effect of number of dampers on the frequency response of SDOF-
MTLCD system

Figure 3.9 Effect of damping ratio of the dampers on the frequency response of
SDOF-MTLCD system
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Figure 3.10  Effect of frequency range on the frequency response of SDOF-
MTLCD system

TABLE 3.9  Optimum parameters for MTLCD configurations

(These values have been computed for white noise excitation, So=1, ωs =1 rad/s, ζs=1%, µ = 1%)

3.5  Concluding Remarks

A method to determine the optimum absorber parameters in the case of TLCDs,

using a simplified solution to the integral occurring in the estimation of the mean square

response, has been presented. SDOF systems subjected to the white noise and filtered

white noise excitations utilizing first and second order filters have been analyzed, and the

optimum absorber parameters for TLCDs have been determined numerically based on the

Cases
Optimum damping
ratio of each damper

Optimum frequency
range RMS displacement

No damper - - 12.533

N=1, STLCD 4.5% - 7.226

N=5 1.4% 0.12 6.927

N=11 0.8% 0.145 6.878

N=21 0.6% 0.155 6.864
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minimization of the RMS displacement of the primary system. This work can be extended

to MDOF systems for which a state space approach can be used and the response covari-

ance matrix in the case of white noise can be obtained by solving the Lyapunov equation.

In the case of FWN excitations, the procedure remains the same except that the primary

system equations are augmented with the FWN equations.

Explicit expressions for optimal parameters are only feasible for a simple

undamped primary system subjected to white noise. As the systems and forcing functions

become more complex, numerical solutions are needed to evaluate the optimal parameters.

It has been seen that for lightly damped systems, the optimal damping coefficient

of the absorber does not depend on the damping coefficient of the primary system when

the excitation is purely white noise. However, for the first and second order FWN cases, it

is affected by the primary system damping. This suggests that the damping in the primary

system plays a role in determining the optimum damping coefficient of the TLCD.

Although the undamped case may yield an approximate value of the optimal parameters,

the primary system damping and knowledge of the excitation must be included for accu-

rate estimates.

Optimal absorber parameters have been determined in the case of multiple TLCDs.

These parameters include the number of TLCDs, the frequency range and the damping

ratio of each damper. It is seen that there is an upper limit on the number of TLCDs,

beyond which additional TLCDs in the MTLCD configuration do not enhance the perfor-

mance. MTLCDs are more robust as compared to an STLCD and the smaller value of the

optimal damping makes them more attractive for liquid dampers which have a limited

range of damping. The small size of individual TLCDs in a MTLCD configuration offers

convenient portability and ease of installation at different locations.
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