
 

CALCULATION OF SHOCK RESPONSE SPECTRUM  
Jiří TŮMA1 and Petr Kočí2 • 

Abstract: As it is stated in the ISO 18431-4 Standard, a Shock 
Response Spectrum is defined as the response to a given acceleration 
acting at a set of mass-damper-spring oscillators, which are adjusted to 
the different resonant frequencies while their resonance gains (Q-factor) 
are equal to the same value. The maximum of the calculated responses 
as a function of the resonance frequencies compose the Shock Response 
Spectrum. The paper will deal with employing Signal Analyzer, the 
software for signal processing, for calculation SRS. The theory will be 
illustrated by examples. 
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1. INTRODUCTION 
Shock Response Spectrum (SRS) analysis was developed as a standard data 

processing method in the early 1960’s. Firstly SRS was used by U.S. Department Of 
Defense. Now this signal processing method is standardized by ISO 18431-4 Mechanical 
vibration and shock — Signal processing — Part 4: Shock response spectrum analysis 
[1]. 

Let it be assumed that many small instruments or parts as substructures are 
mounted to the base structure of a product [2]. The mounting elements are flexible and 
could be described by stiffness and damping parameters. The mass of the mentioned 
substructure creates the mechanical oscillator. Now, we suppose that a vibration 
transient is excited on the base structure as a consequence of either its environment or 
normal operation. Many sources of excitation could be described: Drop impact during 
handling, explosive bolts on aerospace structures, bolted joints suddenly opening and 
closing with an impact, reciprocating engine fuel explosions inside cylinders, etc.. For 
example we could assume that vibration transient results from the product dropping onto 
a concrete surface while producing an impact load on one corner of the base structure. 
The impulse force acting to substructures excites lightly damped oscillations. The peak 
value of the substructure acceleration may cause destruction of the substructure due to 
the large inertia force. Two main parameters specifying the oscillation are the 
substructure natural frequency and damping. For a normalized value of the damping 
parameter Q the key role plays the substructure natural frequency fn. The individual 
frequency components of the force, acting to the base structure, excite the various peak 
values of accelerations of the substructure. The dependence of the peak values 
(maximum or minimum) on the natural frequency in the form of a diagram is called 
Shock Response Spectrum (SRS). 
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SRS is a tool for evaluating the effect of the impact load of the base structure to 
the mounted substructures differing in the resonant frequencies. It is required that the 
mentioned substructures, in fact equipments and instruments, have to survive 
mechanical shocks. Shock exposure has to be under control and verified by shock tests. 

As it was stated above, mechanical shock pulses are analyzed in terms of shock 
response spectra. The shock response spectrum assumes that the mechanical shock 
pulse is applied as a common base input to a group of independent single-degree-of-
freedom systems, see figure 1. The shock response spectrum gives the peak response of 
each system with respect to the natural frequency of each system. Damping is typically 
fixed at a constant value, such as 5%, which is equivalent to an amplification factor of 
Q=10. 

 

Figure 1: Shock Response Spectrum Model 

2. SINGLE-DEGREE- OF-FREEDOM MODEL 
The equation of motion, which is describing oscillation of the single-degree-of-

freedom (SDOF), shown in figure 2, is written in the form 
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where x1 is a base input displacement and x2 is a 
response displacement of a single-degree-of-freedom 
szstem, m, c, k  are mass, damping parameter and 
stiffness, respectively. The corresponding velocity as a 
time function is designated by v1 and v2 and acceleration 
is designated by a1  and a2 .  

The Laplace transfer function relating the base 
displacement to the substructure mass displacement is 
as follows 

 

Figure 2: Single-degree-of-
freedom system 
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Assuming the zero initial condition, the relationship between the Laplace 
transform of displacement and velocity and relationship between the same transform of 
velocity and acceleration are as follows 
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Alternatively the Laplace transfer function relating the base velocity to the 
substructure mass velocity and the base acceleration to the substructure mass 
acceleration are as follows 
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All the transfer functions are of the same form. Introducing the SDOF system 
natural frequency nf , Q value (resonance gain) and damping ratio ξ  (fraction of critical 

damping), we obtain  
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The Laplace transfer function relating the base acceleration to the substructure 
mass acceleration could be written in the form 
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For a given damping ratio Q , natural frequency nω  and base structure 

acceleration a1 in the form of the time function, it is theoretically possible to calculate the 
acceleration response a2 in the form of the time function as well and consequently to 
determine the peak value (either maximum or minimum)) of this time function. The 
problem is that the input acceleration signal is in the form of the sampled signal with the 
sampling interval SS fT 1= , not in the form of a continuous signal. The transfer function 

(9) has to be approximated by the Z-transform function, i.e. to be transformed into a 
discrete system (digital filter). 

3. DISCRETE APPROXIMATION OF CONTINUOUS TRANSFER FUNCTION 
Approximation of a complex function in s-plane by a function in the z-plane, i.e. 

approximation of the differential equation by the difference equation, is a problem of the 
numerical integration. The continuous function between two adjacent samples may be 
approximated either by a constant value or by a ramp or by any suited function. We need 
find a mapping of the s-plane to the z-plane saving the important properties of the 
continuous system after transformation into a discrete system of the same order. There 
are two important properties, namely the resonant frequency and resonant gain.  

The digital filter corresponding to SDOF system responses is the second order 
filter IIR (Infinite Impulse Response), with the general z-transform expression 
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where 21210 ,,,, ααβββ  are the filter parameter. 

The approach to the approximation, which is preferred in the ISO 18431-4 
Standard, is based on the Ramp Invariant Method, which was described in [3]. The 
transfer function corresponds to the difference equation, which is enabling to calculate 
the response function in the time domain 
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The digital filter parameters are calculated by formulas given below  
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4. TRANSFER FUNCTIONS FOR RELATIVE VELOCITY AND DISPLACEMENT 

RESPONSE  
For some substructure, the difference of the velocity or displacement between the 

base structure and the mentioned substructure, which is excited by the base structure 
impulse load, is more dangerous than the substructure acceleration. The other transfer 
functions, which are relating this velocity or displacement difference to the base structure 
acceleration, are shown in table 1. The corresponding filter coefficients could be found in 
[1]. 

Tab. 1 Laplace transfer function 

Relative velocity response spectrum Relative displacement response spectrum 
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5. SOFTWARE TOOLS FOR SRS CALCULATION  
There are many software tools for 

signal analysis, for example Matlab®, 
which is a high-performance language for 
technical computing. The disadvantage is 
that the high frequency sampling is not 
integrated in the unified environment and 
a user has to import the input data. On 
the other side there are software tools 
specialized only on signal measurements 
and recordings without signal processing.  

Signal Analyzer extended by 
Scripts, the VSB - Technical University of 
Ostrava indoor software is an experiment 
how to overcome the mentioned 
disadvantage. Signal Analyzer is software 
intended to support laboratory 
measurements. The recorded data may be 

‘Shock Response Spectrum’;  
‘CrLf’; 
ymax=[]; 
ff=[]; 
fmin=1; 
fmax=1000; 
n=90; 
qv=(fmax/fmin)^(1/n); 
T=1/get(input1,'freq'); 
Q=10; 
for(i=0;i<n;i=i+1) 
{ 
  fn=fmin*qv^i; 
  ff=[ff,fn]; 
  wn=2*pi*fn; 
  A=wn*T/2/Q; 
  B=wn*T*sqr(1-1/4/Q/Q); 
  b0=1-exp(-A)*sin(B)/B; 
  b1=2*exp(-A)*(sin(B)/B-cos(B)); 



  b2=exp((-2)*A)-exp(-A)*sin(B)/B; 
  a1=(-2)*exp((-1)*A)*cos(B); 
  a2=exp((-2)*A); 
  BB=[b0,b1,b2]; 
  AA=[-a1,-a2]; 
  y=filter(input1,BB,AA); 
  yy=max(y); 
  ymax=[ymax,yy]; 
}; 
save(ff); 
save(ymax); 

immediately tested by an analyzer virtual 
instrument. The script language is 
described by a paper [4].  

The script for calculating SRS is 
shown in figure 3. The input signal is 
arranged into a vector input1. The other 
parameters are included into the script 
code. The frequency scale is logarithmic 
containing 30 values of SRS per decade. 
The output data are arranged in the 
frequency vector ff and the vector ymax, 
which is containing the response maxima.  Figure 3: Signal Analyser script for 

calculation SRS  

6. HALF-SINE AS AN INPUT FUNCTION  
The popular testing function for SRS is a half-sine function. The input signal and 

the result of calculation are shown in figure 4. The maximum value of the acceleration 
response is for the substructure natural frequency of 100 Hz.  
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Figure 4: Shock Response Spectrum of a half-sine impulse (interval of 11 ms)  

7. MEASUREMENT EXAMPLES  
Two examples of shock measurements and calculation SRS are added to 

demonstrate the described methods. The first measurement is focused to the 
acceleration signal produced during impact test of a car front light. The result is shown in 
figure 5.  
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Figure 5: Acceleration during impact of a car light system and corresponding SRS 



The second measurement shows the result of the impact test of the light plastic 
rear shield by a steel hammer. This measurement verifies the computer simulation of the 
crash test.  
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Figure 6: Acceleration during impact of a steel hammer to the plastic shield  
and corresponding SRS 

8. CONCLUSION  
The paper presents the method of calculation the shock response spectrum, which 

is corresponding to an acceleration signal exciting the resonance vibration of 
substructures. SRS determines the maximum or minimum of the substructure 
acceleration response as a function of the natural frequencies of a set of the single-
degree-of-freedom systems modelling the mentioned substructures.  

The vibration (or shock) is recorded in digital form, commonly as acceleration 
signal. The single-degree-of-freedom systems are approximated by an IIR digital filter 
and the filter response to the sampled acceleration signal may be easily calculated. This 
shock response spectrum shows how the individual component of the impulse signal 
excites the mechanical structure to resonate. 
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