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ABSTRACT

A theoretical and experimental foundation is established for areverberant field
method of measuring the vibrational power input from a sour ce into an adjoining structure.
Thismethod isanalogousto the reverberant chamber method of measuring the sound power
output of an acoustic source. Thereverberant field method is carried out by mounting the
vibration source on areferee structure which hasbeen calibrated in termsof its frequency
band average loss factors and its mechanical point impedance. The spatial average of the
mean squar e velocity in thereverberant field ismeasured in order to calculate the power
input from the source. The power is calculated by means of thereverberant field theory.

In thisthesisan aluminum plateisused asareferee structure. Thelossfactorsare
measur ed by the multi-degr ee-of-freedom complex exponential method. An electromagnetic
shaker is mounted to the plate via an impedance head to simulate a source. The power input
in the 0-4000 Hz frequency range is measur ed by means of the rever berant field method and
by means of the impedance head signals. The results of the two methods show reasonable

agreement and thereby provide experimental validation of the reverberant field method.
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CHAPTER 1
INTRODUCTION
1.1 Obiective

When two or mor e resonant structures arejoined together, the vibrational energy flow
between them can be estimated by a method called Statistical Energy Analysis (SEA). This
method uses statistical techniquesto average the behavior of individual modesin frequency
bands. The mean energy flow between subsystemsin a given frequency band can thus be
analyzed.

SEA can be used to modd systems of structuresincluding beams, plates, cylinders, circuit
boards, etc. In order to carry out thisanalysis, certain properties of each structure must be
known. These include the mechanical point impedance, modal density, and loss factor for each
structure. The coupling loss factor between each pair of structures must also be known.

In addition, the amount of energy input to each structure by external sources must also be
determined in order to model the energy flow within the system. This external excitation could
be caused, for example, by a turbulent boundary layer, acoustic radiation, or by direct contact
with a mechanical vibration source. Thisthesis dealswith the case of power input from an
exter nal mechanical deviceinto an adjoining structure. A method is developed for measuring
the power input from the deviceto the structure. This method is analogous to the reverberant

chamber method of measuring acoustic power and is based upon previous SEA resear ch.

1.2 Background Literature Review
The development of SEA can betraced back to work done by Lyon, Maidanik, and

Smith in the 1960's. Lyon and Maidanik [1] studied the power flow between two lightly



coupled linear resonators excited by white noise sources. They found that the power flow
was proportional to the difference in uncoupled energies of the systems, and that the power
always flowed from the system with higher modal energy to the system with lower modal
energy. Modal energy is defined as

Enp = [E(A®))/[n(w)An] (1.1)

where E(Aw) is the total energy in the system in frequency band Aw, and n(®) is the modal
density in the band. '

The other contribution to the early development of SEA came from Smith [2], who
studied the response of the structural modes of a linear resonator to excitation from a
diffuse sound field. Lyon and Smith presented their combined research in a NASA report
[3]. This report was the first comprehensive treatment of SEA.

After these publications a wealth of SEA literature appeared. This research was
divided along two lines. One line was the examination and clarification of the basic SEA
assumptions. The other line was the application of SEA to a wide variety of engineering
problems.

In 1975 Lyon [4] wrote an SEA textbook which summarized these developments.

In this text Lyon presented a derivation of the reverberant field method for calculation of the

power input [];, from a device to an adjoining stucture. This derivation yields the formula

[T, = Maon<v2> (1.2)

where M is the mass of the plate, ® is the band center frequency, 7 is the average loss
factor, and <v2> is the spatial average of the mean square velocity in the reverberant field.
Equation (1.2) is refered to as the reverberant field energy method. Lyon suggested that

this method could be used to calculate the loss factors provided the input power was known



or to calculate the input power provided the loss factors were known. Equation (1.2) can
be derived either by taking a wave propagation approach or by using an eigenfunction
expansion in the bending-wave equation, which is the governing differential equation of
motion. Lyon presented both of these approaches in his text.

In recent years Clarkson and others have devoted attention to the problem of
determining loss factors. Clarksbn and Pope [5,6] used the reverberant field energy
method and the decay method to measure the loss factors on a cylinder in the frequency
range 0-2000 Hz. The decay method is a method by which loss factors can be obtained
from reverberation times. Clarkson and Pope found that the energy method gave values
which were approximately an order of magnitude greater than the corresponding values
obtained from the decay tests. They concluded that the decays were dominated by the
mode having the lowest damping in each frequency baﬁd. They thus reasoned that the
energy method should give a more accurate average value than the decay method.

Clarkson, Ranky, and Brown [7,8] examined the discrepency between the energy
and decay methods more closely. They used each method to measure the loss factors on a
flat plate in the frequency range 0-2000 Hz. They found that the decay method results
agreed with the energy method results for bands in which the modes all have similar loss
factors. They also used the half power bandwidth method to determine the loss factors for
individual modes in the 200-300 Hz frequency range. They found that in this frequency
range the individual loss factors were all closely scattered about the average loss factor
obtained from the energy method.

Dimitriadis [9] used the half power bandwidth method to measure loss factors in an
L-shaped plate in the frequency range 0-7000 Hz. He found that 40% of the modes in this
range were distinct enough to be measured by this method. He stated that this percentage
was adequate enough since he saw no reason for the overlapping modes to be more or less

damped than the well separated ones. Dimitriadis also measured the loss factors by the



decay method and found that the results from the two methods agreed reasonably well. He
then used these loss factors in conjunction with SEA theory to determine the coupling loss
factors between the two plates.

Wallace [10] derived expressions for the direct field energy density and the
reverberant field energy density in a thin plate. The direct field energy density € is

_ Il Qe exp[-om,r/c 8]

2nre
g

€

(1.3)
where Qg is the directivity of the power flow, 1, is the distributed loss factor, r is the
radius from the source, and c, is the group velocity of the wave energy. The reverberant

field energy density €, is

II. (1-a) exp[-on A/ 2pc ]
£ = — 2 Do (1.4)
pacg/n + Ao, '

where o is the average boundary absorption coefficient, A is the area of the plate, and p is

the perimeter. The average boundary absorption coefficient is related to the boundary loss
factor N by

a= 1t0)AT]L/pc8 (1.5)

The loss factor used in equation (1.2) is a sum of the distributed and boundary loss factors,
N ="M,+ 1ML . Wallace thus showed that the direct field energy density could be compared

to the reverberant field energy density at a given radius from the source provided the

distributed and boundary loss factors are known. This comparison is important because



equation (1.2) was derived assuming that direct field strength is negligible compared to the

reverberant field strength in the regions where the velocity is measured.

1.3 _Reverberant Sound Chamber Analogy

This thesis also draws upon the reverberant chamber method of determining -
acoustic power output. A continuous sound source in a room produces two sound fields.
One is the direct sound field, or direct arrival from the source. The other field, the
reverberant field, is produced by the reflections from the surfaces of the room. In a
reverberant sound chamber the boundaries are hard, and the total sound absorption is
correspondingly small. The reverberant field thus dominates over the entire room volume
with the exception of a small region around the source. The power output [] of a source

can thus be calculated from

IT=aP2/4pc (1.6)

where a is the total sound absorption in the room, P, is the effective acoustic pressure

amplitude, and pc is the characteristic impedance of the air. Thus by calibrating a room in

terms of its total sound absorption, the power output of a source can be determined by
measuring the mean square pressure at points away from the source.

The method for measuring the vibrational power input from a device to a structure
developed in this thesis is analogous to the reverberant chamber method for acoustic power
measurement. In place of a reverberant chamber, an aluminum plate is used as a referee
structure. In place of the total sound absorption in the room, the total loss factor of the
plate is required. Whereas the mean square pressure was measured in the reverberation

chamber, the mean square acceleration in the reverberant field of the plate is measured. The



corresponding mean square velocity values are calculated from the acceleration values

according to

2
2 <a >

<V > = )2 (1.7
(jo

The vibrational power input from the device to the plate can then be found from equation
(1.2).

1.4 Current Approach

This thesis attempts to obtain valid results for more general cases than those
presented by previous researchers in this field. Clarkson and others have shown that the
energy method gives loss factors which agree reasonably well with those obtained by the
decay method for bands in which the individual modes each have similar loss factors.
They have also shown cases where the individual loss factors obtained from the half power
bandwidth method were closely scattered about the average value obtained from the energy
method. They have thus made an experimental verification of the reverberant field energy
method for these cases.

Neither the decay method nor the half power bandwith method is completely
reliable for more general cases. The loss factors of individual modes in a structure can vary
significantly within a single frequency band. In such cases the decay is dominated by the
lowest damped mode in the band. The slope of the decay thus yields a loss factor which is
much lower than the average value.

Furthermore, there are a number of cases where the half power bandwith method
and other single-degree-of-freedom (SDOF) techniques are inappropriate. The particular

cases which demand a more elaborate treatment than that afforded by the SDOF concept are



those with closely-spaced modes. Systems with closely-spaced modes are those in which
the natural frequencies are very closely spaced, or which have relatively heavy damping, or
both. In these cases, severe modal overlapping will appear in the frequency response
functions. For systems with extermely light damping, on the other hand, the resolution
limitations of spectrum analyzers might cause the height of the peaks to be displayed on the
low side and thus lead to an overestimate of the damping. For these cases accurate
measurements at resonance are also difficult to obtain by an SDOF technique. A structure
may even have its critical frequency in the frequcncy range of interest. The critical
frequency is the frequency at which the phase speed of the flexural waves in the plate
equals the speed of sound in the air. Near this frequency the damping increases sharply
due to acoustic radiation.

These difficulties can be overcome to some extent by using a multi-degree-of-
freedom (MDOF) method. MDOF methods are multi-mode curve-fitting extensions of
SDOF methods. MDOF methods are also well-suited for measuring lightly damped modes.
Ewins [11] gives a thorough description of these methods in his book.

The MDOF complex exponential method is used in this thesis to determine the loss
factors for two aluminum plates in the 0-4000 Hz frequency range. An electromagnetic
shaker is attached to each plate via an impedance head. The shaker and impedance head
combination is considered to represent an external vibration device. The power flow from
the shaker is measured by the force and acceleration signals from the impedance head. The
spatial average of the mean square acceleration in the reverberant field is then measured.
The corresponding velocity values are calculated from equation (1.7). The power input is
then calculated from the loss factors and the mean square velocities in the reverberant field
according to equation (1.2). The reverberant field results are then compared to the
impedance head results in order to check the agreement and evaluate the validity of the

reverberant field power method. This effort is made in order to demonstrate the validity of



the impedance head method for calibrating referee structures and to further establish the
reverberant field energy method as a reliable method for determining the power input from

an external device into an adjoining structure.



CHAPTER 2
POWER MEASUREMENT THEORY

2.1 Introduction

There are three basic approaches to determining the power input from a device to an
adjoining structure: the impedance head method, the reverberant field method, and the
mechanical impedance method. This chapter presents derivations of the first two methods
and a brief discussion of the third.

The first method is the impedance head method. An impedance head is a transducer
which has one piezoelectric crystal to measure the force input and another to measure the
acceleration at the point where the force is applied. The analog signals from the impedance
head can be fed into an analog-to-digital converter (ADC) and then into a computer which
has the capability of performing Fourier transformations. The power input can then be
obtained from the Fourier transforms of the force and acceleration signals by the method
outlined in section 2.2.

The second method is the reverberant field power method. This method determines
the steady state power lost through the dissipation and radiation of energy from the
reverberant field. The acceleration in the reverberant field can be measured with an
accelerometer and processed by the ADC. The Fourier transform of this signal can then be
integrated according to equation (1.7) in order to determine the mean square velocity in the
reverberant field. The power input can then be determined from the mean square velocity
and the loss factors by equation (1.2). A derivation of this reverberant field method is
given in section 2.3.

The third method is the mechanical impedance method. This method is actually an
equivalent form of the impedance head method. Although the mechanical impedance



method was not used directly in this thesis, it is outlined in section 2.4 in order to show an

important relationship between power input and mechanical impedance.

2.2 Impedance Head Method

The following derivation shows how input power can be determined from the force
and acceleration signals from an impedance head. This derivation is similiar to one made
by Fahy [12,13].

Power is generally expressed as the dot product of force and velocity. For a

random force input the mean power is given by

T
I, = lim__ %J' f(tyv() dt @.1)
0

Assuming that force and velocity are stationary functions of time, their cross-correlation

function is defined as

T
, 1
RFV('c) = hmT e _'ITJ. f(tv(t + 1) dt 2.2)
0
For zero time delay the cross-correlation function is

T
1
R(0) = limT e -Tj f(tyv(t) dt (2.3)
0

Thus, from equations (2.1) and (2.3), the input power is equal to the zero time delay.

cross-correlation of force and velocity



I, = Ry, (0) 2.4)

Now assume that the velocity v(t) can be expressed as a harmonic function
v(t) = v, exp[ -jot] (2.5a)

The acceleration a(t) is thus

a(t) = -jo v, expl -jot] = -jo v(t) (2.5b)

The Fourier transform of the velocity V(w) is thus related to the Fourier transform of the

acceleration A(w) by the relation

V() = -J:-A(O)) (2.5¢)
®

The cross-spectral density function of force and velocity Ggy is thus assumed to be related

to the cross-spectral density function of force and acceleration G, by

Gpy@) = LG, (2.50)
(O]

The cross-correlation function is the inverse Fourier transform of the cross-spectral density

function.

11



Rpy (D) = j Gpy(®) exp(jor) do (2.6)

Substituting equation (2.5d) into (2.6) yields

J'GFA(O)) exp(jwr) o

Rey(®) = j @.7)

- 00 0)
If Gga(®) is written as C + j Q , then
I + Csi
R,y (@) = _J’Qcosan sin (o’t] do
- 00 ’ (o
. ¢ Ccos wt — Qsin ot
+j I do 2.8)
()

The cross-correlation function is a real function. Thus, the second integral in equation

(2.8) is equal to zero. For a zero time delay, equation (2.8) simplifies to

¢ Q
R (0) = —j ~ do (2.9)

Substituting equation (2.9) into (2.4) yields

12



J' 2 4o (2.10)
J
Now let Y(f) be an equivalent one-sided spectral density function such that
Y{)df = 2Q(w)dw (2.11a)
Equation (2.10) may be written as
=L J' -}-{-df (2.11b)
2n 5,

To determine the power input in a particular frequency band (f1,f2), equation (2.11b) may

be modified as

'-hll-<

(2.12)

f,
n, - i Ya
f

Thus, the power input can be obtained from Y, the imaginary component of the one-sided
cross-spectral density of force and acceleration.

For the purpose of this research, a GenRad 2510 Micromodal Analyzer was used to
convert and process the force and acceleration signals. This computer has the capability of
determining the Fourier transforms and the cross-correlation of the two input signals. A
program was written in Time Series Language (TSL) as part of this thesis to utilize these
capabilities to carry out the power calculation according to equation (2.12). A listing of this

program is given in Appendix A

13
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2.3 Reverberant Field Method

The input power of a source can be derived as a function of the loss factor and the
spatial average of the mean square velocity in the reverberant field. This derivation can be
carried out by using an eigenfunction expansion in the bending-wave equation, which is the
governing differential equation of motion. Cremer and Heckl [14] have used this approach
in their textbook. The derivation can also be made by a wave propagation approach. The
following derivation takes the wave propagation approach and is similar to derivations
made by Lyon [4] and Wallace [10].

Assuming that the reverberant field is incoherent with the direct field, the total mean

square velocity v2 is the sum of the mean square velocity in the direct field vp2 and the

mean square velocity in the reverberant field vg2,

vZ = vp? + vg2 (2.13)

2.3.1 Direct Fiel
The energy flow for a point source radiates as a circular wave. The intensity

relation yields the power of the waves ] as

() = Q, phe, v 2xr 2.14)

where Qq is the directivity of the power flow, p is the density of the plate, h is the plate
thickness, c, is the wave group velocity, and r is the distance from the source.

If there are no propagation losses, [] is equal to the power input by the source. If

damping is present, the energy decay is given by

@) = IL Q9 exp[-n,or/ cg] (2.15)
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where [];, is the power input by the source and 1, is the propagation loss factor.

Substituting (2.14) into (2.15) and solving for the mean square velocity in the direct field

yields

2 IT Qe exp[-n,cor / cg]

o = (2.16)

2nrphe .

In addition to interior losses, energy losses also occur at the boundaries. The power left in

the reverberant field after a wave has undergone its first reflection is

I = I0,, (1 - ) expl-on,d/ 2c,] 2.17)

where o is the fraction of energy lost during the reflection and d is the mean free path

length. Note that

d=mnAlp (2.18)

where A is the plate area and p is the perimeter.

Reverberan
Now consider the relationship between the energy density and the energy flux
across the boundaries of the plate. In Figure 2.1, let AL be an element of a boundary and
dA an element of area in the plate at a distance r from AL, where r makes an angle 0 with
the normal to AL. The amount of energy that will strike AL by direct transmission is edA

attenuated by 2nr and multiplied by the projection of AL on the circle of radius r centered

on dA,

(edA/2nr)AL cos 6
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AL

Figure 2.1 PLATE BOUNDARY LENGTH

This diagram is used in deriving an expression for the energy received by an
element of boundary AL from an area dA which is at a distance r from AL,
where r is at an angle theta from the normal to AL.



The energy contributed to AL by the entire half ring can be obtained by asuming that the

energy arrives from any direction with equal probability. Integrating the half ring yields

"/2

dE = J’ ﬂcoserdrde
2nr

-n/2

Thus,
dE = eAL dr/ =

Since the wave group velocity is cg,

dr = cgdt

Then, substituting equation (2.21) into (2.20) yields
dE
All = =& =¢ Ach Im

dt

The power per unit boundary length is thus

ar
E—Ecgﬂ

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

Considering the average energy absorption a along the perimeter p, the total boundary

absorption is ap. The rate at which energy is absorbed along the boundary is



ap-i% = ocpecg/ T (2.24)

Energy is also lost through damping in the interior of the plate. The rate of energy lost in

the interior is Aen,m. By conservation of energy, the power introduced into the plate

must be equal to the sum of the power increase inside the plate and the power decrease by

interior and boundary losses. Thus

de
ImI=A Tt [Aon, + ope, /] € (2.25)
Considering the steady state solution and solving for the energy density,

€= !
Aoma+ocpcg/1t_

(2.26)

Substituting equation (2.17) into (2.26) to eliminate ] yields the energy density in the

reverberant field

I, (1~ o) exp [-on,d]

eI'

(2.27)
Aom_ + ocpcg /T

The kinetic energy in the reverberant field is

e, = pAh v (2.28)
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Thus, substituting equation (2.28) into (2.27) and solving for the mean square velocity in

the reverberant field yields

2 II. (1-a)exp(—om d/2c)
Vg = ! z 2 8 (2.29)
pAh Aon, + (xpcg/n

Now define an equivalent loss factor 1 in terms of the average energy absorption along

the perimeter

apc
Pg

TWA

n, = (2.30)

Substituting equation (2.30) into (2.29) to eliminate ¢ and replacing d by ®A/p yields

2 _ IO, [1- (g moA/pe )][exp(-on,mA/2pc]

Ve (2.31)
pAh(n, + M) WA
2.3.3 Sum of Two Fields
Now substituting equations (2.31) and (2.16) into (2.13) gives
2 IT. exp(-om.r/c.)
v = in | % pwnag+l (2.32)

pAh 2mr R

where



1 (1- nmAnL/pcg) exp (-n(u)AnaIchg)

1 233)
R Aoy + 1)

R is called the plate constant.

Now assume very small loss factors, N << 1 and N, << 1. Taking the first two

terms of the Taylor series expansion,

exp[—na)Ana/2pcg] = 1-mwAn, / 2pcg (2.34)

Substituting equation (2.34) into (2.33),

] 1-@oA/pc)m, +n,/2)
R Ao +1)

mn

(2.35)

In reality, ;. and M, cannot be measured separately. Thus, any damping measurement

will determine their sum. Therefore, R can only be found if

(TwA / pcg)(nL +M,/2) <<1

Thus,
R = Aom/ c, (2.36)

where 1 =M+ N, . Substituting equation (2.36) into (2.32) yields

) I, exp (-om_ r/c )
v o= n | % i e, 2.37)

phcg 2nr Aon

20



For a lightly damped plate, the reverberant field dominates over most of the plate except

for a small region around the source. Thus, for the area outside of this region,

exp(—wn. r/c))
! >> 25 (2.38)
Aum 2xnr
Using this assumption in equation (2.37) and solving for input power yields
II. = Mno<v 2> (2.39)

1n

where M is the mass of the plate and < > denotes spatial average. Since the modal
density is not infinite, a better representation of the energy in the reverberant field can be
obtained by taking a spatial average of the velocity. A program was written in TSL in
order to obtain a spatial average of the mean square velocity from the acceleration

measurements. A listing of this program is given in Appendix B.

2.4 Mechanical Impedance Method
Mechanical impedance is defined as the complex ratio of the force acting on a

specified area of a structure to the resulting linear velocity of that area. That is
Z=F/V
Clarkson [15] suggests a method for measuring the average power input by the relation
I = f2(t) Re(1/Z) (2.40)

where Re(1/Z) is the real component of the reciprocal of the impedance and f2(t) is the

average of the mean square force.

21
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Although this method was not used in this thesis, it is important because it shows
the relationship between input power and impedance. The amount of power injected by a
device to a structure is a function of the impedance of the structure itself. This
relationship has an important implication for power nieasurement: the referee structure
must have the same impedance as the actual structure upon which the device is to be
permanently mounted in order to obtain accurate results. Thus, the impedance of the
actual structure must be measured. Then a referee plate with the same impedance
characteristics can be selected for the input power measurements. The measurements can
then be carried out by mounting the device on the referee structure in the same manner
that it is to be permanently mounted on the actual structure.

Formulae for the theoretical impedance of several special structures have been
derived by Cremer and Heckl [14]. For an infinite plate the theoretical impedance is-given
by

2

ihpc
ﬁ L

where c; is the propagation velocity of the longitudinal waves in the plate material.

Z = (2.41)

Equation (2.41) may also be used to approximate the impedance of large finite plates.
Thus, for example, equation (2.41) could be used to determine the thickness h of a
referee plate needed to match the impedance of the actual structure. The impedance of the
referee plates should, nevertheless, be measured in order to verify that they have the
desired impedance.

As part of this thesis, the impedance of the plates was measured. The results are
given in Chapter V. In order to carry out these measurements, a computer progam was

written using TSL. A listing of this program is given in Appendix C.



CHAPTER 3
ENERGY LOSS MECHANISMS

3.1 Introduction

The loss factor 1 is defined as the fraction of energy lost per radian of oscillation.
In order to use the plates as referee structures, they must be calibrated in terms of their loss
factors. The loss factors of individual modes can be averaged arithmetically in order to
obtain an average loss factor for each frequency band of interest.

The energy injected into the plate can be lost through two general mechanisms:
dissipation and radiation. Dissipation mechanisms include internal structural damping and
friction at the boundaries. The plates used in this thesis were suspended vertically by
elastic cords in order to approximate free boundary conditions at all of the edges. Thus the
energy losses at the boundaries were minimized. The radiation mechanism which is of
major concern in this thesis is acoustic radiation. The loss factors measured in this thesis
actually represent the combined effect of all of the energy loss mechanisms. Nevertheless,
a consideration of the individual mechanisms is essential in order to understand the
behavior of the plates. This chapter deals with the mechanisms of structural damping and

acoustic radiation.

ral i
The primary mechanisms responsible for the damping of metals are associated with
dislocations in the crystal lattice and heat conduction between differently strained regions.
For aluminum in bending at room temperature a major contribution is made by transverse
heat flow from the warmed compression fibers to the cooled tension fibers [16].
The energy dissipated per unit volume of the material can be represented by a

hysteresis loop (Figure 3.1). The hatched area represents the energy dissipated. The loop
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Figure 3.1 ENERGY DISSIPATION

The energy dissipated per unit volume of the material is represented by a
hysteresis loop. The hatched area represents the energy dissipated. The loop
is formed by stress-strain curves for increasing and decreasing levels of stress
and strain. The loop represents one cycle of vibration.



is formed by stress-strain curves for increasing and decreasing levels of stress and strain.
The loop thus corresponds to one cycle of vibration. The energy dissipated is
approximately proportional to the square of the strain amplitude.

Since the amplitude of vibration is proportional to the strain amplitude, the energy
W, dissipated per cycle can be written as

W, = yX° (.1)

where 7y is a constant with units of force per displacement, and X is the displacement

amplitude. Using the concept of equivalent viscous damping [17], an equivalent viscous
damping coeffient C,, can be expressed as

nCeqcoX2 = yxz

or
C = vy/no (3.2)

where o is the frequency. Thus, the differential equation of motion for an SDOF system

with structural damping may be written as

2
m3X (y/m)% + kx = F(t) (3.3)

daf?
where m is the mass, x is the displacement, k is the stiffness, and F is the applied force.

For simplicity, an SDOF system is considered here. This concept may also be extended to
a MDOF system.
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If the oscillations are harmonic, equation (3.3) may be written in terms of a

complex stiffness

2
mg—; + k+jy/mx = F, exp jot
dt

34

By factoring out the stiffness k and by defining a loss factor n =Y/ x k, equation (3.4)

becomes

2
mi-i + k(1 +jn)x = F_exp jot
dt’

Letting x = X exp jot , the steady state solution is obtained as

X Fo
(k - mo?) + jnk

The amplitude at resonance is thus

F
[X]| = =
nk

Now the resonant response of a system with viscous damping is

F
1X| = =
28k

(3.5)

(3.6)

3.7

(3.8)
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where ( is the viscous damping ratio. Thus at resonance, M = 2§ . The loss factor is thus
equal to twice the viscous damping ratio. This relation is important because the direct
output of the MDOF complex exponential method is a viscous damping ratio for each
mode.

3.3 Radiation
Energy is also lost by radiation from the plate to the surrounding air. Consider a

thin plate of infinite size, which has no internal damping, driven to carry a flexural wave of

constant amplitude with a phase speed c,. At a certain arbitrary time, the plate will be

deformed as shown in Figure 3.2. A sound wave is radiated outward in the air in such a

direction that A = 7\1, sin 8. The wavenumber kp of the flexural wave is

K o2 _2m (.9)

c = hadid (3.10)

where B is the bending stiffness of the plate and p, is the mass density of the plate. The

sound radiated has a wavenumber

=2n/A = 21c/lpsin9 3.11)
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Figure 3.2 ACOUSTIC RADIATION FROM A FLEXURAL WAVE

Consider a thin plate of infinite size, with no internal damping, driven to carry a flexural
wave of constant amplitude with a phase speed C,. Atacertain arbitrary time, the plate

will be deformed as shown. A sound wave is radiated outward in the air in such a direction
that A = A, sin 0, where A is the wavelength of the sound wave and A, is the wavelength

of the flexural wave. The corresponding wavenumbers form the right triangle relationship
shown at the top of the figure, where ky is the y-component of the sound wavenumber k.
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The sound pressure in air above or below the plate is caused by the transverse velocity of
the plate vibration. Thus the sound field parallel to the plate has the same spatial periodicity

as the plate. The y-component of the acoustic wavenumber forms a vector relationship

such that k = kp + lgy . The magnitude and direction of the the acoustical wavenumber k
is thus defined by the flexural wavenumber k;, and the frequency.

There are three frequency ranges of interest, which are defined with respect to the
critical frequency. The critical frequency is the frequency at which the propagation speed
of the flexural wave in the plate equals the speed of sound in the air.

In the region below the critical frequency, k;, > k for an infinte plate with no internal
damping. The radiation angle 6 is not defined; the sound pressure is 90 degrees out of
phase with the plate velocity, and hence no power is radiated. For a finite plate with
internal damping, however, a relatively small amount of power will be radiated in this
region.

At the critical frequency, k = k,. The radiated sound wave runs parallel to the plate
surface with 0 = 90 degrees. If the plate velocity could be kept constant, the acoustic
pressure and hence the power radiated would approach infinity. In practice, the sound
pressure remains finite due to the finite dimensions of the plate and because the loading of
the radiating surface is very high under these conditions [14]. Nevertheless, a relatively

high amount of power is radiated at this frequency.
In the region above the critical frequency, k, < k. For this case the plate radiates a

plane wave into the air at an angle that is determined by the ratio of the wavenumbers

sin@ = kp/k = k/lp (3.12)

The sound pressure in the immediate vicinity of the plate is in phase with the plate velocity,

and hence power is radiated into the air.



CHAPTER 4
DAMPING MEASUREMENT

4.1 Introduction

In order to use the reverberant field method for power input measurement, the
referee structure must be calibrated in terms of a loss factor for each frequency band of
interest. There are four common methods for determining loss factors: the reverberant
field energy method, the decay method, the half power bandwidth method, the MDOF
complex exponential method.

If an electromagnetic shaker is attached to the plate via an impedance head, the
power input can be determined from equation (2.12). Using this value along with the
mean square velocity in the reverberant field, the loss factor can be obtained from
equation (1.2). The reverberant field energy method thus yields the average value of the
individual loss factors of the modes in the band. This method is a very convenient
method for determining the loss factors. The purpose of this thesis, however, is to verify
that the energy method is a valid method for determining power input. Thus, an
independent method is needed in order to obtain the loss factors. The decay method and

the MDOF complex exponential method are thus considered in this chapter.

4.2 Decay Method
The first independent method considered was the decay method. The decay

method is a method by which the loss factor is obtained from the logarithmic decay of the
unforced vibration of the structure. A loss factor can be obtained from the reverberation
time, which is the time required for the vibrational energy to decay by 60 dB. The

relationship between the reverberation time and the loss factor can be derived from the



homogeneous form of the governing differential equation for the energy density in the

plate. From equations (2.25) and (2.30),

— + ONE = 4.1)

Assume a solution of the form

€ =¢ exp(t/T) “4.2)
Taking the derivative of this solution,

de
E:-e/t 4.3)

Substituting equation (4.3) into (4.1) yields

T=1/an (4.4)

Thus equation (4.2) can be rewritten as
€E=g exp(-omt) 4.5)

The reverberation time Ty, is defined as the time mquﬁed for the energy density to decay

by 60 dB. Thus, using equation (4.5),

10°° = exp(-6nTy) (4.6)



Solving for the loss factor 1,

—in10® @7
n=—- :
coTR
Or
n= TZ% (4.8)

The loss factor can thus be obtained from the reverberation time.

The decay method can be carried out, for example, by striking the plate with a
hammer. The resulting acceleration is then measured with an accelerometer. The
acceleration signal is then filtered into the desired band. The filtered signal is then
recorded on a graphic level recorder. The recorder plots the decay of the logarithm of the
envelope of the signal.

In reality, it is impractical to excite the structure and measure the time taken for a
full 60 dB decay. Instead, the reverberation time is estimated from the slope of the decay
plot. If all of the modes in a particular frequency band have the same amount of damping
and if the damping is linear, the decay plot will be a straight line. In this case the
frequency band loss factor can be accurately estimated.

Generally, the modes in a frequency band will have differing amounts of
damping. In the decay plot, the effect of the higher damped modes is quickly lost while
the effect of the lower damped modes lingers on. The decay plot may thus be curved as
shown in Figure 4.1. A single unambiguous slope value cannot be selected in this case.
The inital slope of the decay should represent the best average damping. But this slope is

generally too short to measure with precision.
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Figure 4.1 TYPICAL DECAY CURVE

The energy decay in the 500 - 1000 Hz frequency band for 1/4 in thick plate is shown.
The plate was excited by a hammer strike. If all the modes in this band had similar loss
factors, then the logarithmic energy decay would be linear. The modes, however, decay at
different rates. The slope of the decay thus varies with time. Slope "A" represents a loss
factor of 0.0011. Slope "B" represents a loss factor of 0.0003. The MDOF complex
exponential method and the reverberant field energy method each yielded a value of 0.0011
for this case.
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In addition, there are several other problems which can occur in making
reyerberation time measurements. There may be acoustic coupling between the room and
the plate. As the plate radiates sound energy into the room, the room may return some of
the energy to the plate at a later time. Furthermore, the writing speed of the graphic level
recorder may be slower than the energy decay. For these reasons, the decay method

appears to be an unreliable method for calibrating plates.

4 mplex ntial m

The decay method operates on the transient response of the plate. Many of the
problems encountered with making decay measurements are eliminated by using a steady
state approach. There are a number of methods which estimate loss factors based upon
the frequency response functions. The half power bandwidth method is perhaps the most
familiar of these methods. The half power bandwidth method, however, is an SDOF
method which assumes that the total response is dominated by a single mode in the
vicinity of resonance.

For structures with closely-spaced modes, the half power bandwith method is
inappropriate. The plates used in this thesis have a relatively high modal density and
hence display severe modal overlapping in the frequency response functions, particularly
above the critical frequency. Thus, the MDOF complex exponential method was chosen
to measure the loss factors. This method is a multi-mode curve-fitting technique which is
well suited for structures with closely-spaced modes.

A mathematical description of the MDOF complex exponential method is given in
appendix D. A brief overview of the method is given here. The method is carried out by
obtaining a frequency response function over a frequency range of interest either by
means of an impedance head or by means of a force transducer and an accelerometer

where the accelerometer is mounted at a point away from the force input. The modal
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parameters are then solved for by using a series of impulse reponse functions which are
obtained through an inverse Fourier transform of the frequency reponse function. Based
upon the calculated modal parameters, a regenerated frequency response function is then
constructed and superimposed upon the original frequency response function. A number
of roots are also output in numerical form. These roots are in the form of frequencies and
corresponding damping ratios. The number of roots will exceed the number of modes in
the frequency reponse function. The excess roots represent ‘computational' modes which
serve to account for the slight imperfection inevitably present in measured data. These
computational modes often have damping ratios which are ridiculously high or low.
Thus, the user must use judgement in selecting the roots which actually represent the
modes. This is done by graphically observing the agreement between the original and
regenerated frequency response functions and by numerically checking the agreement
between the frequencies of the roots and the frequencies of the peaks in the original
frequency response function.

The number of roots solved for can be varied by the user in order to obtain the
optimium agreement between the original and the regenerated frequency response

function. The MDOF complex exponential method is thus a trial and error procedure.



CHAPTER 5
EXPERIMENTAL RESULTS

A 1/4 inch thick and a 1/2 in thick aluminum plate were used as referee structures.
Each plate had surface dimensions of 4 ft by 6.5 ft. The plates were suspended vertically
by elastic cords which were attached to a frame as shown in Figure 5.1. This was done to
approximate free boundary conditions and to minimize energy losses at the boundaries.
Furthermore, no external damping material was applied to the plates. A diagram of the
complete equipment set-up is given in Figure 5.2. An accompanying listing of the
instrumentation is given is Table 5.1.

The plates were calibrated by measuring the frequency response functions obtained
from the force input by the shaker and from the acceleration measured by accelerometers at
various locations on the plates. The loss factors of individual modes were then obtained by
using the MDOF complex exponential method. The band average loss factors were then
obtained from the arithmetic average of the loss factors of the individual modes. The loss
factors obtained for the 1/4 in and the 1/2 in thick plates are shown in Figures 5.3 and 5.4,
respectively.

Next, the vibrational input power measurements were made. The potential across
the shaker was set at six different levels: 2.0V,2.5V,3.0V,3.5V,40V,and 4.5 V.
This was done in order to test the linearity of the system. The vibrational power input from
the shaker into the plate was then obtained for each of these cases for both plates from the
force and acceleration signals from the impedance head. The power was calculated
according to equation (2.12). The acceleration in the reverberant field was measured by an
accelerometer. The corresponding velocity was calculated according to equation (1.7).
The accelerometer was positioned at ten different locations in order to obtain a spatial

average.
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The power input for each case was then calculated from the reverberant field
velocity by equation (1.2). The results were average over 500 Hz constant bandwidths for
the frequency range 0-4000 Hz. A comparison was then made between the reverberant
field method results and the impedance head results for each of the cases. The power input
comparisons for the six input voltage cases are shown in Figures 5.5 through 5.10 for the
1/4 in thick plate and in Figures 5.11 through 5.16 for the 1/2 in thick plate. The average
error between the two methods is given in Figure 5.17 for the 1/4 in plate and in Figure
5.18 for the 1/2 in plate.

In addition, the impedance head power measurements and the velocity
measurements were used to calculate loss factors by equation (1.2). These loss factors
were compared with the loss factors obtained from the MDOF complex exponential
method. The comparisons for the 1/4 in and the 1/2 in thick plates are given in Figures 5.19
and 5.20, respectively.

Based upon the loss factors and the experimental conditions, the difference between
the direct field and the reverberant field energy densities was calculated according to
equations (1.2) and (1.3). This was done in order to verify that the direct field strength
was sufficiently below the reverberant field strength. The calculated differences for the 1/4
in and 1/2 in plates are given in Figures 5.21 and 5.22, respectively.

Measurements of the point impedance were also made. Spatial averages of the
results for the 1/4 in and the 1/2 in plates are given in Figures 5.23 and 5.24, respectively.
Finally, one side of the 1/4 in plate was completely covered with a layer of viscoelastic
damping material in order to determine how this change in damping would effect the point
impedance. The results are shown in Figure 5.25. Determining the optimum amount of

damping for a referee plate is an area where additional research is needed.



38

*ABpul A0 us||ews ay3 ‘peay 2duepadul ue eLA ajejd ay3 o1
paydoelje si Jayeys ay| -aje[d 3y} 4O 4dIUID BY} 4BBU JBPUL[AD 3BuR| BY] SL JIYRYS D] BWwedy
9yl 03 paydelile aJe YdLym spuaod dL3se|d AqQ A|[edL3udA papuadsns st ajeld 3004 G'9 A9 Q°p ¥

YIAYHS OGNV 3Lv1d 1°G d4nbi4

I . |
| P

™




39

"1°C 91qe) ur udA1g st Jusuodwoo Yors Jo Swreu [apous Ay [, “S[eusIs [e1TIp 01Ul PILISAUOD aIe Ay} 2I0UM JozA[euE

[ePOW 9y} OJUI PJJ AR SI00NPSUEN 3 woyy sjeudis Sopeue om.w "JOJOWIOIN[300. UL Aq PAINSBIW S1 Sjuiod JOUI0 e uoneIafeode ayy, urod
Indut oy 18 UONEIS[S00E Sy SAINSESU YOTA JOWOUE pUe Indul 010§ 9YI SIS YOIYM ISONPSUET) U0 Sey peay souepadurl 3y, pesy
souepadw ue eiA ejd oy Our Jamod [BUONRIQIA SHUISUR) USY) JOYeYS Sy, “Ioxeys oy ojur Jndur si [euSs asiou wopuel payrdwe uy

dN-13S INTFWJINOT 'S am3rg

SYALII'TIANY
IOYVHD YHIANOYA IOV / B
WAZATYNY
TVYAON
JOLVIINTD ATAVHS 1
VAHTTIAY
HSION WEMOd OLLHNDOVIA
INOANVY -QdLOdTH
AVAH ADNVAIJNT | |

HLV'Id



40

Table 5.1 INSTRUMENTATION LIST

Random Noise Generator: GenRad 1390-B

Power Amplifier: Krohn-Hite UF-101
Shaker: Bruel and Kjaer 4810
Impedance Head: PCB Piezotronics 288M04
Plate: Reynolds Aluminum
Accelerometer: PCB Piezotronics 303A03
Charge Amplifiers: PCB Piezotronics 480A

Modal Analyzer: GenRad 2510
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Figure 5.5 POWER INPUT INTO 1/4 IN THICK PLATE, 2.0 V CASE

The vibrational power was measured by the reverberant field energy method
(RF ENERGY) and by the force and acceleration signals from the impedance
head (IMPED. HEAD). The results are given in 500 Hz constant bandwidths.
The vibrational power was input by an electromagnetic shaker attached to the
plate via an impedance head. The potential across the shaker was set at 2.0 V
for this case.
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Figure 5.6 POWER INPUT INTO 1/4 IN THICK PLATE, 2.5 V CASE

This is the same as figure 5.5 with the potential across the shaker set at 2.5 V.
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Figure 5.7 POWER INPUT INTO 1/4 IN THICK PLATE, 3.0 V CASE
This is the same as figure 5.5 with the potential across the shaker set at 3.0 V.
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Figure 5.8 POWER INPUT INTO 1/4 IN THICK PLATE, 3.5 V CASE

This is the same as figure 5.5 with the potential across the shaker set at 3.5 V.
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Figure 5.9 POWER INPUT INTO 1/4 IN THICK PLATE, 4.0 V CASE

This is the same as figure 5.5 with the potential across the shaker set at 4.0 V.



48

POWER (microwatts)
200 -

1607 § S B RF ENERGY
120 % % IMPED. HEAD
I NN N
YN N MY
“ININKRKRKII IS
N INE INEOINEOINE INENE INE N
25 0.75 1.25 1 .75KHZ2.25 2.75 3.25 3.75

Figure 5.10 POWER INPUT INTO 1/4 IN THICK PLATE, 4.5 V CASE

This is the same as figure 5.5 with the potential across the shaker set at 4.5 V.
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Figure 5.11 POWER INPUT INTO 1/2 IN THICK PLATE, 2.0 V CASE

The vibrational power was measured by the reverberant field energy method
(RF ENERGY) and by the force and acceleration signals from the impedance

head (IMPED. HEAD). The results are given in 500 Hz constant bandwidths.

The vibrational power was input by an electromagnetic shaker attached to the
plate via an impedance head. The potential across the shaker was set at 2.0 V
for this case.
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Figure 5.12 POWER INPUT INTO 1/2 IN THICK PLATE, 2.5 V CASE

This is the same as figure 5.11 with the potential across the shaker set at 2.5 V.
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Figure 5.13 POWER INPUT INTO 1/2 IN THICK PLATE, 3.0 V CASE

This is the same as figure 5.11 with the potential across the shaker set at 3.0 V.
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Figure 5.14 POWER INPUT INTO 1/2 IN THICK PLATE, 3.5 V CASE

This is the same as figure 5.11 with the potential across the shaker set at 3.5 V.
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Figure 5.15 POWER INPUT INTO 1/2 IN THICK PLATE, 4.0 V CASE

This is the same as figure 5.11 with the potential across the shaker set at 4.0 V.
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Figure 5.16 POWER INPUT INTO 1/2 IN THICK PLATE, 4.5 V CASE

This is the same as figure 5.11 with the potential across the shaker set at 4.5 V.
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Figure 5.17 AVERAGE ERROR FOR 1/4 IN THICK PLATE

The error in power measured by the reverberant field method with respect to
the impedance head method is shown here. The error is averaged from the six
shaker voltage cases.
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Figure 5.18 AVERAGE ERROR FOR 1/2 IN THICK PLATE

The error in power measured by the reverberant field method with respect to
the impedance head method is shown here. The error is averaged from the six
shaker voltage cases.
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Figure 5.19 AVERAGE LOSS FACTORS FOR 1/4 IN THICK PLATE

The average loss factors obtained for 500 Hz constant bandwidths for the

1/4 in thick plate are shown. The loss factors were obtained by the reverberant
field energy method (RF ENERGY) and by the multi-degree-of-freedom
complex exponential method (MDOF CEM). The theoretical critical frequency

is 2000 Hz. Above this frequency the losses are dominated by acoustic radiation.
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Figure 5.20 AVERAGE LOSS FACTORS FOR 1/2 IN THICK PLATE

The average loss factors obtained for 500 Hz constant bandwidths for the

1/2 in thick plate are shown. The loss factors were obtained by the reverberant
field energy method (RF ENERGY) and by the multi-degree-of-freedom .
complex exponential method (MDOF CEM). The theoretical critical frequency

is 1000 Hz. Above this frequency the losses are dominated by acoustic radiation.
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Figure 5.21 DIFFERENCE IN ENERGY DENSITIES FOR 1/4 THICK PLATE

This graph shows difference between the reverberant field energy density and the

direct field energy density, where the difference = 10 log[ €,/ &4]. The energy
densities were calculated from equations (1.3) and (1.4) using the measured loss
factors. The losses were assume to be entirely due to surface loss for the purpose
of these calculations.
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Figure 5.22 DIFFERENCE IN ENERGY DENSITIES FOR 1/2 THICK PLATE

This graph shows difference between the reverberant field energy density and the

direct field energy density, where the difference = 10 log[ €,/ €4]. The energy
densities were calculated from equations (1.3) and (1.4) using the measured loss
factors. The losses were assume to be entirely due to surface loss for the purpose
of these calculations.
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Figure 5.23 MECHANICAL POINT IMPEDANCE OF 1/4 IN THICK PLATE

The spatial averaged point impedance is shown in terms of its real and imaginary
components. The theoretical real value for an infinite 1/4 in thick aluminum plate
is 1373 N sec/m. The theoretical imaginary value for an infinite plate is zero.
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Figure 5.24 MECHANICAL POINT IMPEDANCE OF 1/2 IN THICK PLATE

The spatial averaged point impedance is shown in terms of its real and imaginary
components. The theoretical real value for an infinite 1/2 in thick aluminum plate
is 5492 N sec/m. The theoretical imaginary value for an infinte plate is zero. For
a finite plate with no damping, however, the point impedance is purely imaginary.
Thus, the imaginary components obtained for this case are due to the finite
dimensions and the relatively low damping of the plate.
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Figure 5.25 MECHANICAL POINT IMPEDANCE OF 1/4 IN THICK PLATE WITH

AN EXTERNAL DAMPING TREATMENT

For this case one side of the 1/4 in thick plate was completely covered with a thin layer of
viscoelastic damping material. The mass of the damping material is negligible with respect
to the mass of the plate. Thus, the theoretical real impedance is still 1373 N sec/m. The
damping material had the effect of raising the experimental impedance below the critical
frequency, 2000 Hz. Above the critical frequency, the impedance values remained
approximately the same as those shown in figure 5.23. The addition of a certain amount of
external damping material may be desirable for the purpose of making vibrational power
measurements. This is an area for future research.



CHAPTER 6
CONCLUSION

6.1 Loss Factors
The critical frequency of a plate is the frequency at which the bending wave speed is

equal to the acoustic wavespeed in the air. Above this frequency the losses are dominated

by acoustic damping. The theoretical expression [14] for calculating the critical frequency

f; of a homogeneous plate is
fo =c2 /(1.8c h) (6.1)

where c is the wavespeed in the air, cy_is the longitudinal wave velocity in the plate
material, and h is the plate thickness. This expression gives a critical frequency of 2000 Hz
for the 1/4 in thick plate and of 1000 Hz for the 1/2 in thick plate. These theoretical values
correspond well with the peaks obtained in figures 5.3 and 5.4.

The theoretical bending modal density for a plate [14] in units of modes per radian

is
n=A/(3.6c h) 6.2)

where A is the surface area of the plate. Based upon this expression, the results in figures
5.3 and 5.4 account for approximately 50% of the bending modes in the 0-4000 Hz
frequency range.

For the 1/4 in plate, the loss factors from the energy method were all within 7.% of
the average value obtained from the MDOF complex exponential method for each 500 Hz
band. For the 1/2 in plate, the loss factors from the energy method were all within 10% of
the average value obtained from the MDOF complex exponential method for most of the

500 Hz bands. The exception occured in the 0-500 Hz band which had a 19% error.
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In addition, an attempt was made early in this research to obtain the loss factors
through the decay method. The records of the logarithmic energy decays, however,
displayed slopes which varied with time. Thus, it was impossible to obtain unambiguous
loss factors from the decays. Still, the decays appeared to be dominated by modes with
lower damping ratios than can be accounted for by the individual measurements from the
complex exponential method. If such modes do exists, it is possible that they were
undetectable in the frequency response functions due to overlapping with more highly
damped modes. The MDOF complex exponential method would thus tend to overestimate
the average loss factor in a band. Nevertheless, the loss factors obtained by the MDOF
complex exponential method agreed very well with those obtained by the energy method as
shown in figures 5.19 and 5.20. |

6.2 Direct and Reverberant Field Considerations
Equation (1.2) is valid provided the velocity is measured in regions of the plate

where the reverberant field energy is much greater than the direct field energy. Equations
(1.3) and (1.4) were used to check the ratio of the direct field energy density to the
reverberant field energy density. These ratios were computed assuming that the boundary
loss factors were negligible compared to the distributed loss factors. The radius for these
calculations was taken as the average radius of the ten accelerometer locations from the
shaker. The ratio for the 1/4 in plate was 0.071 for the 2250 Hz frequency band. This is
the band which had the highest average loss factor. In the other bands, the ratios were
much smaller. According to this ratio, the reverberant field method should yield a power
value 7% higher than the impedance head value for the 2250 Hz band. The reverberant
field values were actually an average of 6% less than the corresponding impedance head
values for this band. The ratio for the 1/2 in plate was 0.051 for the 1250 Hz band. For

this case the reverberant field method yielded power values which were an average of 8%



greater than the corresponding impedance head values. These results indicate that the

experimental conditions were acceptable with respect to the reverberant field assumptions.

Input Power Resul

The power input measured by the reverberant field method agreed very well with
the measurements obtained from the force and acceleration signals from the impedance
head. The results obtained for the 1/4 in plate were generally better than those obtained for
the 1/2 in plate. This may be due to the fact that the 1/4 in plate has a modal density which
is twice that of the 1/2 in plate. The 1/4 in plate thus has twice as many modes to carry the
reverberant energy in each 500 Hz band. Furthermore, the results obtained for each change
in the shaker potential verified the linearity of the system over the range tested.

These results have thus provided experimental verification of the reverberant field
method and have demonstrated the application of the MDOF complex exponential method
to referee structures which have relatively high modal densities. In addition, these results
have demonstrated the validity of using the impedance head method to calibrate referee

structures in terms of their loss factors.

6.4 Point Impedance
In order to make the reverberant field energy method more practical, though, the

plate selected as a referee structure must have the same point impedance characteristics as
the structure upon which the vibration source is to be permanently mounted. Thus, an
accurate prediction of the point impedance of a referee plate is desirable. Theoretical
expressions for the point impedance of infinite plates and other special structures have been
derived by Cremer [14].

For an infinite plate, the theoretical point impedance is purely real. For a finite plate
with relatively high damping, the theoretical point impedance approaches that of an infinite

plate. On the other extreme, a finite plate with no damping has a theoretical point
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impedance which is purely imaginary since no steady state power can be injected into the
plate. Furthermore, the point impedance of finite plates is affected by the presence of
reflected waves. Depending on the coherency of the reverberant and direct fields, the
reflected waves might cause the velocity at the injection point to be out of phase with the
force input.

Above the critical frequency, the point impedance of the 1/4 in thick plate compared
very well with the theoretical value for an infinite plate. Below the critical frequency,
however, the point impedance measurements were much lower than the theoretical value.
When a layer of external damping material was applied to fully cover one side of the 1/4 in
thick plate, the point impedance measurements below the critical frequency improved
dramatically; the measurements above the critical frequency remained approximately the
same. Thus the addition of external damping material had the effect of reducing the
reverberant field strength below the critical frequency.

The 1/2 in thick plate was tested without any external damping material. The real
point impedance measurements were well below the theoretical value for an infinite plate.
Furthermore, the imaginary point impedance measurements were very high, particularly
above the critical frequency. The imaginary components resulted from the relatively low
damping and the finite dimensions of the 1/2 in thick plate. Both of these factors resulted
in a relatively high reverberant to direct field strength.

The 1/4 in thick plate thus had point impedance values resembling those of an
infinite plate. The 1/2 in thick plate had point impedance values which rest somewhere in

between the two extreme theoretical cases described above.
R ndation
An area in which additional research is needed is the optimum amount of external

damping. Adding damping material should have the effect of making the point impedance



of the plates more predictable. Since the damping material would increase the ratio of the
distributed loss factor to the boundary loss factor, the effect of minor variations in the
boundary conditions would be reduced. But the added damping would also reduce the
reverberant to direct field energy density ratio and thus threaten the assumptions made in
deriving the reverberant field energy method, equation (1.2). Furthermore, additional
damping would cause the modal overlapping to be more severe. The loss factors would
thus be more difficult to obtain even with the MDOF complex exponential method. Thus,
the trade-offs encountered in adding external damping material need to be explored more
fully.

Another area which needs further attention is the mounting of the vibration source
to the referee plate. Of course, the device must be mounted to the referee plate in the same
fashion that it is to be mounted to the permanent structure. But how sensitive is the power
injection to minor differences in mounting?

Furthermore, when a structure undergoes high levels of rotation or transverse
response at the device attachment point, the device becomes an active portion of the
structure itself. How would this affect the power flow? Would geometrical differences
between the referee plate and the permanent structure be an important consideration in this
case?

The most difficult part of carrying out the reverberant field energy method is
obtaining accurate loss factors. Above the critical frequency, the losses are clearly
dominated by acoustic radiation. How would changes in the room air affect this radiation?
Acoustic radiation is a function of the characteristic impedance, which varies with
temperature. Thus, the change in radiation could be calculated with respect to the change in
temperature provided all of the other effects remained the same. But how would changes in

humidity affect the radiation?
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How doesthe plate couple with the room space? Doestheroom feed back energy into the
plate? Does the proximity of tables and equipment interfere with theradiation?

In addition, the rever berant field energy method, as considered in thisthesis, assumesthat
the output of the deviceisin theform of broadband vibrational power. How could this
method be applied to the case wherethe output isin the form of a puretone? Would it be
possible to measurethisoutput if there were modesto carry the energy at the frequency of the
tone?

Although thisthesis has provided experimental validation of the reverberant field energy
method, many questionsremain to be answered befor e this method can be used with

confidencein practical situations.
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APPENDIX A
IMPEDANCE HEAD POWER PROGRAM

The following program was written in Time Series Language (TSL). TSLis a
high-level programming language that is specifically designed for signal processing and
time series analysis applications. TSL is similar to the BASIC language but is oriented
toward the processing of real and complex data arrays, with a large set of "block
arithmetic" instructions; including a Fourier transform algorithm and related spectral
averaging functions for spectral analysis. The block arithmetic instructions provide for
programming of array operations in a single statement, without the complexity of
subscripted variables and repetitive loops. TSL also includes commands which set the
analog-to-digital converter (ADC) prior to data aquisition.

Program PIH determines the power injection from the force and acceleration signals
output by an impedance head according to equation (2.12). This program assumes that the
acceleration signal is connected to channel A and the force signal to channel B of the ADC.
Comments are included in the following listing for the sake of clarity. Due to memory

considerations, however, these comments were not included in the original code.

PROGRAM PIH

C The following lines turn the trigger off, undefine the storage blocks, set the frame size
C to 512, and set the channel code to AB.

10 LET 112,0
20 BLKCLR
30LET 115,512
40 LET 114,3

C The program asks the user to input the number of averages.

50 PRINT INPUT NO. OF AVERAGES'
60 INPUT I5



C The following lines set the buffer code to double, the average removal to 0, the zero
C insertion to O, the error traps to disable, and the Hanning window to off.

70 LET I13,1
80LET I8,0
90 LET 17,0
100 LET 16,0
110 LET 14,0

C The maximum voltage input for channels A and B is set at 5 volts.

120 LET R13,5
130LET R12,5

140 BLKDEF B13,26,0
150 ZERO B13

160 BLKDEF B14,30,0
170 ZERO B14

180 LET R2,0

190 FOR 12,0,24

200 SUM B13,12,B13,I12,R2
210 SUM R2,R2,500
220 NEXT 12

C The bandwidth is set to the range 0 - 12800 Hz.
230 LET R15,12800
C The subsequent operations are performed within subroutines.

240 GOSUB 280
250 GOSUB 750
260 GOSUB 870
270 RETURN

C The following subroutine controls the analog-to-digital input subsystem by setting
C the sampling frequency, the filter settings, input coupling, etc.

280 BLKCLR B0,B1,B5,B6,B8
290 BLKCLR B11,B9,B8

300 STACK GIO0,GI1,GI2

310 HLET I0,I14,’XXA B AB'
320 STACK 25000,R15,MIN,PRO
330 ADSET 'SU',B0,I115,10,R0,R13,'VB',R12
340 HLET 10,19,'ACDC'

350 HLET I1,18,'DDED'

360 HLET 12,17, DZEZ'

370 ADSET 'CL',10,11,I12

380 HLET 10,16, ETDT'

390 HLET 11,113,'SBDB'

400 ADSET 10,11

410 STACK PI2,PI1,PIO
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C The following loop begins the actual data aquisition.

420 FOR 10,1,I5

430 PROD R7,R15,2
440 ADSET 'SF',R7
450 ADSET FA'R15
460 ADSET 'FB',R15
470 ADSET 'SA'

C DFT is a TSL command which obtains the Fourier transforms of the force and
C acceleration signals.

480 DFT BO,14
490 DFT B1,14

C CSPEC is a TSL command which accumulates the cross conjugate products of
C the force and acceleration signals, the cross-spectrum.

500 CSPEC B1,B0,B7
510 NEXT IO

C The data aquisiton has now ended. CPHASE is a TSL subroutine which compensates
C phase for sequential sampling of the signals.

520 CPHASE B7,1
C NORM is a TSL subroutine which normalizes averages to frame count.

530 NORM
540 BLKCLR B0,B1
550 MLCONR 1000,B7

C The cross-spectrum is divided by 2.
560 MLCONR .1592,B7

C The cross-spectrum is multiplied by the transducer calibration factors. This factor
C must be changed adjusted to the sensitivities of the impedance head transducers.

570 MLCONR 4988,B7
580 MLCONR 1000,B7
590 MLCONR 2.,B7
600 BIBSET B7,5,10

C The next lines transform the cross-spectrum into a cross-spectral density.

610 QUOT R3,R15,I10
620 PROD R7,R3,.5
630 LET R2,1.

640 BLKDEF B11,10,0



650 ZERO B11

660 FOR 12,0,10

670 PROD R1,R3,12
680 IF 12,3,690,690,700
690 LET R1,100.

700 LET B11,I12,R1

710 NEXT I2

720 DIV B11,B7

C The imaginary component of the cross-spectral density is taken.

730 IMAG B7,B9
740 RETURN
750 REMARK

C The following subroutine finds the total power for each 500 Hz constant bandwidth.

760 FOR 12,0,21
770 LET R9,0.

780 PROD 13,12,10
790 FOR 14,1,10
800 SUM I3,13,1
810 LET R10,B9,13
820 SUM R9,R9,R10
830 NEXT 14

840 LET B14,I12,R9
850 NEXT I2

860 RETURN

C The final subroutine prints the power results for each band in units of microwatts.

870 FOR 12,0,21
880 LET R1,B14,12
890 PRINT 12, ',R1
900 NEXT I2

910 RETURN

END
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APPENDIX B
MEAN SQUARE VELOCITY PROGRAM

The following program VLXS5 was written in the TSL language. This program
determines the mean square velocity averaged from a number of locations which the user

inputs. The mean square acceleration is measured by an accelerometer. The acceleration

auto-spectrum is divided by ®? in order to obtain the velocity auto-spectrum. Comments

are included in the following listing for the sake of clarity. Due to memory considerations,

however, these comments were not included in the original code.

PROGRAM VLX5

C The following lines turn the trigger off, undefine the storage blocks, set the frame size
C to 512, and set the channel code to AB.

10LET 112,0
20 BLKCLR
30LET I15,512
40 LET 114,3

C The program asks the user to input the number of averages per accelerometer location.
50 PRINT 'INPUT NO. OF AVERAGES'

C The following lines set the buffer code to double, the average removal to 0, the zero
C insertion to 0, the error traps to disable, and the Hanning window to off.

60 INPUT I5
70 LET I13,1
80 LET 18,0
90LET 17,0
100 LET I6,1
110 LET I4,0

C The maximum voltage input for channels A and B is set at 5 volts.

120 LET R13,5
130 LET R12,5
140 BLKDEF B13,26,0
150 ZERO B13
160 BLKDEF B14,30,0
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170 ZERO B14

180 LET R2,0

190 FOR 12,0,24

200 SUM B13,12,B13,12,R2
210 SUM R2,R2,500.

220 NEXT I2

C The bandwidth is set to the range 0 - 12800 Hz.
230 LET R15,12800.
C The subsequent operations are performed within subroutines.

240 GOSUB 370

250 FOR I11,0,24
260 LET R11,B13,111
270 GOSUB 950

280 NEXT I11

290 FOR 12,0,23

300 GOSUB 340

310 NEXT I2

320 GOSUB 1040
330 RETURN

340 SUM 13,12,1

350 DIF B14,12,B14,13,B14,12
360 RETURN

C The following subroutine controls the analog-to-digital input subsystem by setting the
C sampling frequency, the filter settings, input coupling, etc.

370 BLKCLR B0,B1,B5,B6,B8
380 BLKCLR B11,B9,B8

390 STACK GIO0,GI1,GI2

400 HLET 10,I14,XXA B AB'
410 STACK 25000.,R15,MIN,PRO
420 ADSET 'SU',B0,I15,I0,R0,R13,'VB',R12
430 HLET 10,19,/ ACDC'

440 HLET 11,18, DDED'

450 HLET 12,17, DZEZ'

460 ADSET 'CL',I0,I1,I2

470 HLET 10,16, ETDT'

480 HLET I1,113,'SBDB'

490 ADSET 10,11

500 STACK PI2,PI1,PI0

C The user inputs the number of accelerometer locations to be used.

510 PRINT 'INPUT NO. OF LOCATIONS'
520 INPUT I1

C The next two loops begin the actual data acquisition.
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530 FOR I11,1,11
540 FOR 10,1,I5

550 PROD R7,R15,2.
560 ADSET 'SF',R7
570 ADSET FA'R15
580 ADSET 'FB',R15
590 ADSET 'SA'

C DFT is a TSL command which obtains the Fourier transform of the acceleration signal.
600 DFT B0,14

C ASPEC is a TSL command which obtains the auto-spectrum of the Fourier transform
C of the acceleration.

610 ASPEC B0,B7
620 NEXT I0
630 IF 111,11,640,660,660

C The user is instructed to move the accelerometer. The user may press any number key
C to continue the averaging.

640 PRINT MOVE ACCELEROMETER'
650 INPUT R2

660 LET R2,0.

670 NEXT 111

680 PROD I5,15,11

C The data acquistion has now ended. NORM is a TSL subroutine which normalizes the
C averages to the frame count.

690 NORM
700 BLKCLR BO,B1
710 MLCONR 1000.,B7

C The next two lines divide the auto-spectrum by 472.

720 MLCONR .1592,B7
730 MLCONR .1592,B7

C The accelerometer calibration factor is supplied in the next two lines.

740 ML.CONR 1080.,B7
750 MLCONR 1080.,B7
770 MLCONR 1000.,B7
775 MLCONR 2.,B7

C The following group of lines divide the auto-spectrum by the frequency squared.



780 BIBSET B7,5,10
790 QUOT R3,R15,10
800 PROD R7,R3,.5
810 LET R2,1.

820 BLKDEF B11,10,0
830 ZERO B11

840 FOR 12,0,10

850 PROD R1,R3,12
860 IF 12,1,870,880,880
870 LET R1,1000.

880 PROD R1,R1,R1
890 LET B11,I2,R1
900 NEXT I2

910 DIV B11,B7

920 MOVE B7,B9

930 INTG B9

940 RETURN

950 REMARK

C The following subroutine finds the total mean square velocity for each 500 Hz
C constant bandwidth.

960 FOR 12,0,I0

970 PROD R1,R3,12

980 IF R1,R11,1020,990,990
990 LET B14,111,B9,12

1000 SUM I3,111,1

1010 LET 12,10000.

1020 NEXT 12

1030 RETURN

C The final subroutine prints the mean square velocity for each band in units of
C 106* (m/sec)?.

1040 FOR 12,0,21

1050 LET R1,B14,12
1060 PRINT 12, "R1
1070 NEXT 12

1080 RETURN

END
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APPENDIX C
POINT IMPEDANCE PROGRAM

The following program TMM was written in the TSL language. This program
determines the point impedance from the force and acceleration signals output by the
impedance head transducer. The program assumes that the acceleration signal is connected
to channel A and the force signal to channel B of the ADC. Comments are included in the
following listing for the sake of clarity. Due to memory considerations, however, these

comments were not included in the original code.

PROGRAM TMM

C The following lines turn the trigger off, undefine the storage blocks, set the frame size
C to 1024, and set the channel code to AB.

10LET112,0
20 BLKCLR
30 LET I15,1024
40 LET 114,3

C The program asks the user to input the number of averages.

50 PRINT 'INPUT NO. OF AVERAGES'
55 INPUT I5

C The following lines set the buffer code to double, the average removal to 0, the zero
C insertion to 0, the error traps to disable, and the Hanning window to off.

60 LET I13,1
70 LET 18,0
80 LET I7,0
90 LET 16,1
100 LET 14,0

C The maximum voltage input for channels A and B is set at 5 volts.

110 LET R13,5
120 LET R12,5
130 BLKDEF B13,26,0
140 ZERO B13
150 BLKDEF B14,30,2
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160 ZERO B14

170 LET R2,0

180 FOR 12,0,8

190 SUM B13,12,B13,12,R2
200 SUM R2,R2,500.

210 NEXT I2

C The bandwidth is set to the range 0 - 12800 Hz.
220 LET R15,12800.
C The subsequent operations are performed within subroutines.

230 GOSUB 370

240 FOR 111,0,24
250 LET R11,B13,111
260 GOSUB 830

270 NEXT I11

280 FOR 12,0,8

290 GOSUB 330

300 NEXT 12

310 GOSUB 940

320 RETURN

330 SUM 13,12,1

340 DIF B14,12,B14,13,B14,12
350 LET C14,B14,12
360 RETURN

C The following subroutine controls the analog-to-digital input subsystem by setting the
C sampling frequency, the filter settings, input coupling, etc.

370 BLKCLR B0,B1,B5,B6,B8
380 BLKCLR B11

390 STACK GI0,GI1,GI2

400 HLET 10,114,’XXA B AB'
410 STACK 25000.,R15,MIN,PRO
420 ADSET 'SU'B0,I15,10,R0,R13,'VB',R12
430 HLET 10,19, ACDC'

440 HLET I1,18, DDED'

450 HLET 12,17, DZEZ'

460 ADSET 'CL',10,11,12

470 HLET 10,16, ETDT'

480 HLET I1,113,'SBDB'

490 ADSET 10,11

500 STACK PI2,PI1,PI0

C The following loop begins the actual data acquisition.
510 FOR 10,1,I5

520 PROD R7,R15,2.
530 ADSET 'SF',R7
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540 ADSET FA'R15
550 ADSET FB',R15
560 ADSET 'SA'

C DFT s a TSL command which obtains the Fourier transform of the force and
C acceleraton signals.

570 DFT B0,I4
580 DFT B1,14

C CSPEC is a TSL command which accumulates the cross-conjugate products of
C the force and acceleration signals, the cross-spectrum.

590 CSPEC B0,B1,B8
C ASPEC is a TSL command which accumulates the auto-spectrum of the acceleration.

600 ASPEC B0,B5
610 NEXT I0
620 BLKCLR B0O,B1

C The data acquisition is now complete. CPHASE is a TSL subroutine which
C compensates phase for sequential sampling of the signals.

630 CPHASE BS§,1
640 BIBSET B8,5,10

C The cross-spectrum is multiplied by the transducer calibration factor.

650 MLCONR .4355,B8

C The cross-spectrum is multiplied by 2.

660 MLCONR 6.283,B8

C The cross-spectrum is multiplied by j.

670 MLCONC (0.,1),B8

C The following group of lines multiply the cross-spectrum by the frequency.

680 QUOT R3,R15,10

690 PROD R7,R3,.5

700 LET R2,1

710 BLKDEF B11,10,0

720 ZERO B11

730 LET R9,5.

740 FOR 12,0,10

750 PROD R1,R3,12

760 SUM B11,12,B11,12,R1
770 NEXT 12



780 MUL B11,B8

C The cross-spectrum is divided by the auto-spectrum in order to obtain the point
C impedance.

790 DIV B5,B8

800 INTG B8

810 MLCONR R3,B8
820 RETURN

C The following subroutine determines the point impedance for each 500 Hz constan
C Bandwidth. '

830 LET C2,B8,28

840 LET C3,B8,20

850 FOR 12,0,10

860 PROD R1,R3,I2

870 IF R1,R11,920,880,880
880 SUM B14,111,B14,111,B8,12
890 LET C13,B14,111

900 SUM I3,111,1

910 LET 12,10000.

920 NEXT I2

930 RETURN

C The final subroutine prints the real and imaginary components of the point impedance
C for each band in units of N sec/m.

940 MLCONR .002,B14
950 FOR 12,0,7

960 LET C1,B14,12

970 PRINT 12, Cl1
980 NEXT I2

981 LET B14,22,C8

990 RETURN

END
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APPENDIX D
DERIVATION OF THE MDOF COMPLEX EXPONENTIAL METHOD

The mathematics of the MDOF complex exponential method are given in this
appendix. The starting point is the expression for the receptance frequency response
function for a general MDOF system with viscous damping. For a force applied at
point k and a displacement at point i, this transfer function is approximated using N

modes as

X, SA A,
Hy®) = =) = D, ~—+ — D.1)

where
s = <5r+jcor,d = -C,O) +jo f 1-8

T

and * denotes complex conjugate. Now let

Ar+1 = Ar*
Sr+1 = Sr*
r = 1,3,5,7...
The transfer function (D.1) can thus be written as
2N
X A
H(s) = "'I::(S) = Z S s (D.2)



where the subscripts i and k have been omitted for convenience. Thus, 2N is the
number of degrees of freedom of the system's model, constituting N conjugate pairs of
modes. The corresponding unit impulse response function can be obtained by taking

the inverse Fourier transform of the transfer function

2N
X(@) = Z A exp[st] D.3)
r=1

If the original frequency response function is obtained in digital form and is thus
desrobed at each of a number of equally-spaced frequencies, the resulting inverse
response function will be similarly described at a corresponding number of equally-
spaced time intervals. Thus let the time interval from t; to tyy be divided into 2N equal

subintervals. The value of X(t) for the Kth subinterval is

2N
X(t) = D, A exp[ sKT] D.4)

r=1

where
K = 0,1,2,.2N

T = value of the time subinterval

Now let U, = exp[ s,T ]. Equation (D.4) can thus be written as

2
X6 = 3 A" ©.5)

r=1

The full set of K samples is thus
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X(to) = A1 + A2 + A3 F rrreerrreserneerenrerenes + A2N
X(tl) = AIUI + A2U2 F reerrrrnereeeernnunnnees + A2NU2N
2 2 2
X(t) = AU + AU, + e, + AUpn (D.6)
X(ty, ) = AU+ AURT o + AUt
X(,,) = AlUfn + AzUin F eeerrreernnreennnens + AZNU2213

If the number of data points n is equal to the number of modes N, there will be 2n+1
rows for equation (D.6). Now taking equation (D.6), multiply row 1 by a,,, row 2 by

ay5.1, and so on, row 2n by a;, and finally row 2n+1 by a5. Equation (D.6) becomes

a2nX(t0) = 8, (A} + Ay + + A,)
a, 1X(tl) = a2n-1(A1U1 + A2U2+ .............. + A2“U2n) (D.7)
n-1 2n-1 2n-1
a X, ) =aA U+ AU LA U
n 2n 2n
a3, X(t,) = 2, (A U + AU + v + A, UD)

Adding these equations gives
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2n 2n n 2n
Da (X = e ZArUf] - iAr Yo U] @8
K=0 K=0 r=1 r=1 [K=0

The coefficients aj, a,, ... ap, are taken to be the coefficients in the equation

2 2n-1 2n-1
U™+ aU" " + 2, U™ + ..+, U+a, =0 (D.9)

1 2
for which the roots are Uy, U,, ... U,,. Also note that ay = 1. The coefficients are

sought in order to determine the roots of equation (D.9) and hence the system natural

frequencies. Equation (D.9) can be written as

2n K
zazn-KUr =0 (D.10)
K=0

since U, is a root of the polynomial.

Substituting (D.10) into (D.8) yields

2n

D Xt = 0 @11)
K=0

An additional 2n - 1 equations can be obtained by performing the same operation
starting with the second row of equation (D.6) and so on. An additional row must be
added to equation (D.6) at the start of each repitition. The significance of these

operations is to increase ty and ty, by T and thus make the final sum invarient. The

result is thus



Xty ) Xy ) . Xt J[a] [ %t ]
Xt,) X, ) .. X(t,) a, Xty . 1)

= — . (D.12)
X(tyn.o)  Xlty, 3) o Xty D] ]34 X(ty,. 1)

Recall that X(t,,) represents the impluse response function at time t;,. Thus, the data

points in each succesive row in equation (D.12) overlaps all but one of the data points

in the previous row. Equation (D.12) can be solved for a;, a,, ... a,. These

coefficients can then be substitutued into equation (D.9) in order to determine the roots,
Uj, Uy, ... Uy,. The natural frequency o, and the damping ratio ; of mode r can then

be found as follows,

U, = exp[sT] = exp[(0, + j(or’d )T] = exp[ 6T ] expl jmr’ My (D.13)

In terms of amplitude and phase angle,

|U,| = exp[o,T] (D.14)
and
AUr = (or’dT (D.15)

Thus,
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lnlUr!
=— =0, = Crmr (D.16)
and
£ZU 2
=0, =0 1-§ (D.17)

The solution may now be completed by deriving the corresponding modal constants,
Ay, Ay, ... Ay, from equation (D.6). This may be written as

1 1 1 1 ] 1 7T 1

A, X(t,)

U U, U, U, A, Xt

2 2 2
U U, U U 14 X(t)
(D.18)
2n-1 2n-1 2n - 2n-1

U, U, Up | 2] X200
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