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ABSTRACT 

An efficient method is presented for calculation of RMS von Mises stresses from stress component 
transfer functions and the Fourier representation of random input forces. An efficient 
implementation of the method calculates the RMS stresses directly from the linear stress and 
displacement modes. The key relation presented is one suggested in past literature, but does not 
appear to have been previously exploited in this manner. 
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Nomenclature 

f i ( t )  input force time history at degree of freedom i. 

z frequency-domain representation of f ( t )  

h( t )  impulse response function matrix 

p( t )  von Mises stress time history 

Dj( a) frequency dependence in stress transfer functions 

H transfer function matrix 

M number of modes computed 

N ,  number of frequency points 

N ,  
PSD power spectral density 
RMS root mean square 

SF 

number of input force locations 

input force cross spectral density matrix 

SF input force autospectral density 

o(t) 

vai 
stress vector (6 x 1) 

displacement eigenvector for mode i at d.0.f. a 

b 
Yo, stress vector for mode i , evaluated at node b 

( lT matrix transpose 

( ) timeaverage 

E [  3 expected value operator 

( - complex conjugate 

( )t Hermitian (complex conjugate transpose) 

vii 



Introduction 
The primary purpose of finite element stress analysis is to estimate the reliability of engineering 
designs. In structural applications, the von Mises stress due to a given load is often used as the 
metric for evaluating design margins. For deterministic loads, both static and dynamic, the 
calculation of von Mises stress is straightforward [ 13. For random load environments typically 
defined in terms of power spectral densities, the linear theory normally applied to compute RMS 
acceleration, displacement, or stress tensor responses cannot be applied directly to calculate the 
RMS von Mises stress, a nonlinear function of the linear stress components. Although, what is 
ultimately sought is not the frequency distribution or time history of the von Mises stress but it’s 
RMS value, the probability distribution of von Mises stress is not Gaussian, nor is it centered about 
zero as are the stress components. Therefore, the form of the von Mises probability distribution 
must be determined and the parameters of that distribution must be found. Due to space constraints, 
determination of the von Mises probability distribution will be the subject of a later paper. 

The most direct method of calculating von Mises stress from frequency data requires computation 
of a long time series of linear stress components. The stress invariants can be computed at each 
time step and an RMS value determined through time integration. This process is of order 

NJog N ,  for each output location. This expensive computational procedure makes broad 
surveying for von Mises stress impractical. Computationally simpler methods, such as Miles’ 
relation [2], involve significant approximations that can be nonconservative [3]. 

2 

A new, computationally efficient process for computing the RMS values of von Mises stress is 
introduced. The new method enables the analyst to perform surveys of von Mises stress routinely, 
allowing a thorough investigation into the reliability of an engineering design. This method 
accounts for the full frequency response of the structure. 

The Problem 
In a typical random vibration test, a structure is attached to a single input load source, such as a 
shaker table, and subjected to a vibratory load characterized by a specified power spectral density 
(PSD) of the input acceleration. To illustrate the problem, a finite element model of an aluminum 
cylinder, subjected to transverse random vibration at the base, was created using shell elements. 
Figs. 1 and 2 show the cylinder model and the input acceleration PSD applied at the base, 
respectively. Current standard procedure is to assume single-DOF response of the structure, 
choosing a single mode (typically the one with highest modal effective mass [4] within the 
bandwidth of the input) to compute an “equivalent static g-field” using Miles’ relation. Response 
contributions from other structural modes are ignored. To the extent that single-DOF behavior is 
not realized, this method is inaccurate for ascertaining the global random stress response. A 
method is proposed here that accurately captures the RMS von Mises stress from all excited modes 
throughout the structure, and for all frequencies of interest. 

Page 1 



Figure I :  Cylinder FEM. 

Frequency(Hz) 
Figure 2; lnput transverse PSD at cylinder base. 

Structure And Inputs 
Consider a structure, S, for which a complete linear dynamics analysis has been performed. Input 
to the linear system are histories of an extended force vector 

T where the subscripts denote the degree of freedom, and ( ) denotes the matrix transpose. The: 
complete dynamic analysis asserted above includes generation of deterministic transfer functions 
mapping the imposed forces to stresses at the locations of interest. 

At a location x , the stress, G( t )  , is expressed as a convolution of the imposed force history with 
the stress impulse response function [5 ] ,  
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Computationally, and for the sake of convenience in nomenclature, o is taken to be an algebraic 
vector of length six, [ oxx, oyy, ozz7 oxy, oxz, oyz] consisting of the non-redundant components of 
the stress tensor. Representing the number of rows off as N ,  , the impulse response function h, 
is a 6xNF matrix. 

The common use of digitized data and the Fast Fourier Transform (FFT) suggest a restatement of 
the above equations in terms of Fourier series. Further, the linear analysis is conveniently and 
conventionally expressed in terms of transfer functions in the frequency domain. 

Let the force vector be expressed as, 

- 

f ( t )  = R e { f n e i n 5 } ,  (EQ 3) 
n = l  

where < = 2 n t / T ,  T is a period on the order of the time of the experiment, and f n  is the nfh 
frequency component off.  Here it is assumed that the time-averaged value of the imposed force is 
zero. 

The frequency domain representation off is given by, 

In general, f is known only in a statistical sense, and its transform f is known to the same extent. 

When Eq. (EQ 3) is substituted into Eq. (EQ 2) ,  we find, 

N ,  
o(t)  = Re{&neini} ,  

n = l  

where 

and 

*The input is often specified in terms of a cross spectral density matrix given by 

(EQ 5) 
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where E[ ] is the expected value obtained by ensemble averaging [6] and (-) is the complex 
conjugate operator. 

For a single force input, this is the autospectral density, 

RMS von Mises Stress In Frequency Domain 
It is of interest' to calculate the mean value of the square of the von Mises stress over a given time 
period. (In fact, the method presented here can be used to examine any other quadratic functions 
of the linear output variables.) The quadratic functions of the output variables, such as squared van 
Mises stress, must be mapped from the imposed force. 

Consider quadratic functions of stress, written in the following form, 

~ ( t ) ~  = oTAo 

where A is a symmetric, constant, positive semi-definite matrix. In the case of von Mises 
2 2 2 2 2 2 2 stress,p(t) = Q,, + oYy + cZz - ( ( ~ , , o ~ ~  + Q,,Q,~ + Q ~ ~ Q ~ ~ )  + 3 ( o x y  + ~ x z  + Qyz)  

and, 

A =  

3 
3 

Equation (EQ 10) expanded in Fourier terms is 

m = l  n = l  
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and some trigonometric manipulations show the time-averaged value of the square of von Mises 
stress to be 

Nul 
( p 2 )  = 1 [&,A&,] t 

2 (EQ 13) 
n = l  

t where ( ) denotes the Hermitian operator (complex conjugate transpose). 

Equation (EQ 13) is a form of Parseval’s theorem [7]. The root-mean-square value, p R M s ,  of p is 
given by 

PRMS = m. 
To be useful, the above expansions must be expressed in terms of the input forces 

n = l  

(EQ 14) 

With ensemble averaging, Eq. (EQ 15) can be expressed in terms of the input cross spectral density 
matrix of Eq. (EQ 8). 

n = 1 a, a’ 

The one-dimensional version of Eq. (EQ 16) has been used previously in stress analysis [3,8], but 
the equations presented here appear to be the first that accommodate the full stress tensor. 

RMS von Mises Stress Using Modal Superposition 
Modal superposition provides a convenient framework for computation of RMS stress invariants. 
The linear components of the stress (not principal stresses) can be superposed since they are 

derivatives of linear functions. Let Yo, represent the stress components (1 to 6) for mode i , 
evaluated at node b . The “stress modes” are standard output from most FEA modal analysis codes 
(such as the grid point stresses in MSCNASTRAN [9]). 

b 

For a modally damped structure, the transfer function for a stress at location b due to an input force 
at degree of freedom a ,  can be written as [lo] 
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# modes 
y",, i q u i  

E 2 2  ai - con + 2 j y ian  

Here, cp is the displacement eigenvector, and D contains all frequency dependence. The RMS 
stress at node b is computed by combing equations 16 and 17. 

- 
n i, j u ,  u' 

Grouping terms and simplifying, 

# modes 

i, j 

where 

N F  

(EQ 119) 

(EQ 20) 

(EQ :21) 

Here T ,  depends only on the node location for stress output, and Q,  contains all the frequency 
dependence of the problem. For a single shaker input, N ,  = 1 , and equation 21 reduces to, 

n 

To obtain results at every node, Q may be evaluated only once while T and the modal sums must 
be computed at each node. Computation of Q is of order N , N w .  Within a modal survey, the total 

computation is of order M N where M is the number of modes, and N is the number of nodes in 
the survey. Even for a very large model, these computations are easily accomplished on a 
workstation. 

2 
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Results And Verification 
The shell elements used to model the cylinder in Fig. 1 produce no out-of-plane stresses [9].  
Therefore, in element coordinates, the three remaining nonzero stress components are ox ? by 

(normal stress) and T~~ (shear stress). In this context, A reduces to a 3 x 3 matrix, 

A =  

1 1 -- 2 
1 -- 1 2 

(EQ 23) 

The transfer functions for the stress components were computed from Eq. (EQ 17) at each grid 
point in the model. A typical set of transfer functions at one of the grid points is illustrated in Fig. 
3. The stress and displacement eigenvectors, Y and cp, required to compute the transfer functions 
were obtained using MSUNASTRAN, and 1 % modal damping was applied. 

The mean squared von Mises stresses at each grid point were calculated using three methods: (a) 
time realization using Eq. (EQ 10) and an inverse FFT of Eq. (EQ 6);  (b) direct frequency 

. . . . ,  . . . .  

1 0' 1 o3 
Frequency (Hz) 

1 o4 

. . . .  

Frequency (Hz) 

Figure 3: Stress component transfer functions. 

Page 7 



realization of Eq. (EQ 13) using Eq. (EQ 16); and (c) the implementation of Eq. (EQ 13) using thie 
efficient modal superposition procedure of Eq. (EQ 19). The mean squared von Mises stresses at 
each grid point were found to be identical using each of the three methods, thus veriQing the 
procedure. 

Time and frequency realizations of the input acceleration and output stresses at a typical point are 
shown in Figs. 4 and 5 ,  respectively. Time and frequency plots for the mean squared and RMS von 

. . . . .  

1 o3 
Frequency (Hi!) 

. . . . . .  . . . .  

. . . . . . . . . . . .  

1 0" 1 o3 
Frequency (Hz) 

1 0" 

40 

20 
CJ 
5 0  - 2 
-20 

-40 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.0; 
I Time (sec) 

Figure 4: Time and frequency realizations of the lateral input acceleration. 

Mises stresses at the same location are presented in Fig. 6. The RMS von Mises stresses at all grid 
points were computed from Eqs. (EQ 14) and (EQ 19), with contours of this quantity plotted in 
Fig. 7. 

As illustrated in Fig. 5, the shear and one of the normal stress components dominate the stress state 
-at this location. oy is driven by the first bending mode of the cylinder, at 724 Hz. T , ~  is driven by 
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1 000 I . . . . . .  . . . . . .  I 
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- 

I ;  . . . . . .  , , v  . v .  . . . .  ' I 0.001 

10 
1 0' lo3 Frequency (Hz) 1 o4 

n 
v) . . . . . . . . . . . . . . . . . . .  
v a - 5  

c a o  
X - z -5 z 
-10 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.0; 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.0; 
Time (sec) 

. . . . . . .  . . . . . . .  . . .  . . . . . . . . . . . . . . . . . . . . . . .  i , . : . . : . . :  . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . .  . . . . . :  . . . .  :...:...:..;.; . . . .  ::-$---- . . . . . . . .  

. . . . . . . . .  

Figure 5: Time and frequency 
realizations of the output 

. . . . . . . . . . . . .  

. . . . . . . . . . . . .  1 . . . . . . . . . . . .  

. . . . . . . . . . . . .  

. . . . . . . . . . . . .  

both first and second bending modes, the second occurring at 3464 Hz. The relatively low uX stress 
is driven by the first three modes, the third occurring at 7698 Hz. 

We see in Fig. 6 that the frequency content of the squared von Mises stress contains terms at twice 
the excited natural frequencies (e.g., 1448 Hz, 6928 Hz). This observation is attributable to the fact 
that a squared sinusoid is another sinusoid at twice the original frequency (plus a constant). The 
linear stress components respond at the natural frequencies of the structure, while the squared von 
Mises stress responds at twice these frequencies. At this particular location, the oxoy term in the 
expression for von Mises stress is small and the first two modes, drivers for oy and T~~ , also drive 
the von Mises stress. Von Mises stress frequencies also occur at fj - fi, where i,j denote excited 

.modes. For example, Fig. 6 shows von Mises content at f2 - f, = 3464 - 724 = 2740 Hz and at f3 - 
f2 = 7698 - 3464 = 4234 Hz. 
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I I I I I I 1 

0 . 0.002 0.004 0.006 0.008 0.012 0.014 0.016 0.018 0.02 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 
Time (sec) 

Figure 6: von Mises and squared von Mises stresses 

Comparison With Miles’ Relation 
Evaluations of RMS von Mises stress using the new procedure and the traditional Miles’ relation 
were compared. A new input acceleration PSD was generated, as shown in Fig. 8. Three cases were 
examined in which the input PSD frequency range was selected to excite (a) only the first mode, 
(b) only the second mode and (c) both first and second modes. To excite the first mode only, the 
input PSD followed the definition of Fig. 8 up to 1000 Hz, and was set to zero beyond this 
frequency. For second mode response, the input PSD was set to zero below 1000 Hz and followled 
the Fig. 8 definition between 1000 and 10,000 Hz. Excitation of both modes resulted by applying 
the full PSD from zero to 10,000 Hz. 
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Figure 7: RMS von Mises 
stress contours 

Miles’ method assumes single-DOF behavior of a structure. An additional constraint on the 
application of Miles’ relation to elastic structures is that the shape of the single excited mode must 
approximate the profile of the structure under a static g-field. For example, the first mode of a 
cantilever beam assumes the approximate shape of the beam under a transverse g-field. 

Miles’ relation is given by, 

where g,, is the approximate RMS acceleration response, commonly used as an “equivalent static- 
g field”, f m  is the single natural frequency chosen for application of Miles’ relation, P S D ( f m )  is 
the value of the input acceleration PSD at frequency f m ,  and Q is the quality factor, defined as 
1/(25). For the input PSD shown in Fig. 8, g,, from Eq. (EQ 24) is 10.7 g for the first mode at 
724 Hz, and 90.3 g for the second mode at 3464 Hz. 

Page 11 



Because the von Mises stress in a static g-field scales with the magnitude of the field, the static 
response of the cantilevered cylinder to a 1 -g field may be used to scale the Miles' approximations 
for each mode. The displacement and von Mises stress responses to a transverse 1-g field are 
presented in Figure 9. The profile of the static response is similar to the first mode of a cantilever 
beam. The maximum von Mises stress corresponding to the 1-g static field is 12.6 psi, and occurs 
at the base top and bottom-most fibers. Thus, the maximum von Mises stresses corresponding tcb 
the Miles' equivalents for the first and second modes are 134.4 and 1138.3 psi, respectively. 

The true RMS von Mises stresses were computed using the new method presented above. The 
stress contours which result from the application of the input PSD below 1000 Hz are 
superimposed upon the deformed shape for the first mode in Fig. 10. The stress contours and shape 
profile closely resemble those of the static-g response. The maximum RMS von Mises stress for 
this case is 117.4 psi, showing the Mile's method to be slightly conservative. 

When the second mode alone is excited by applying the input PSD above 1000 Hz, an entirely 
different result is obtained. The von Mises stress contours for this case are superimposed upon th.e 
deformed shape for the second mode in Fig. 1 1. The stress contours and shape profile do not 
resemble those of the static-g response. The maximum RMS von Mises stress for this case is 106.3 
psi, showing the Mile's method to be conservative by an order of magnitude. 
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Finally, the entire PSD of Fig. 8 was applied to the cylinder, and the resulting von Mises stress 
contours are superimposed upon the first and second mode shapes in Figs. 12 and 13. The contours 
are observed to be a blend of the two nanow-band responses, with the maximum RMS von Mises 
stress at 158.4 psi. The first-mode Miles’ approximation is slightly non-conservative, whereas the 
second-mode approximation is much too conservative. 

Summary And Conclusions 
A computationally efficient method has been developed for calculating the RMS von Mises stress 
in a random vibration environment. The method retains the full accuracy of the FEM model and 
modal analysis. Surveys of the RMS stress for the entire structure can be computed efficiently. The 

number of operations per node output is of order M , where M is the number of modes computed. 
Results exactly match a full time history development. 

2 

Figure 9: von Mises stress contours and 
displacements for a transverse 1-g field 
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Figure IO: von Mises stress contours for 
fpsd < 1000 Hz superimposed upon mode 
shape I 

Conditions under which Miles’ relation produces good estimates of von Mises stress contours were 
examined, as well as conditions resulting in poor estimates. Miles’ relation is adequate when the 
system response is dominated by a single mode, and when the excited mode shape approximates 
the response to a static g-field. Otherwise, both conservative and non-conservative estimates may 
result from the application of Miles’ relation. 

Work underway will further quantify the statistical properties of the von Mises stress. These 
properties will determine the probability of the von Mises stress exceeding a given value for 
infinite time and finite time force histories. 
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Figure 1 I: von Mises stress contours for fpsd > 1000 Hz 
superimposed upon mode shape 2 
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Figure 12: von 
0 < fpsd 
mode shape 1 

s contours for 
10 KHz superimposed upon 
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Figure 13: won Mises stress contours for 
0 < fpsd c 10 KHz superimposed upon 
mode shape 2 
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