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Introduction 
 
The purpose of this tutorial is to derive for a method for analyzing the acoustic pressure 
oscillation in a pipe using the finite element method.  The method is based on Reference 1. 
 
Theory 
 
Consider the pipe in Figure 1, where the length is much greater than the diameter.  The 
cross-section may have an arbitrary shape.  Assume that the pipe is filled with a gas. 
 
 
 
 
 
 
 
 
  L   is the length. 
  c   is the speed of sound in the enclosed gas 
 
 Figure 1. 
 
The acoustic modes of the pipe can be found by classical methods.   
 
The natural frequency equation of either an open-open or a closed-closed pipe is 

                            

                             ...,3,2,1i,
L2

cf i ==                                                                (1) 

 
The natural frequency equation of a closed-open pipe is 

                            

                             ...,5,3,1i,
L4

cf i ==                                                                (2) 

 
The natural frequencies are independent of the cross-section assuming that the length is 
much greater than the diameter. 

L 
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Let p(x,t) represent the pressure of the pipe as a function of space and time.  
 
The free, transverse vibration of the pipe is governed by the equation:  
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Equation (3) is independent of the boundary conditions, which are applied as constraint 
equations. 
 
Assume that the solution of equation (3) is separable in time and space. 
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The partial derivatives change to ordinary derivatives. 
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The left-hand side of equation (8) depends on x only.  The right hand side depends on t 
only.  Both x and t are independent variables.  Thus equation (8) only has a solution if both 
sides are constant.  Let 2ω−   be the constant. 
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Equation (9) yields two independent equations. 
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Equation (10) is a homogeneous, second order, ordinary differential equation. 
 
The weighted residual method is applied to equation (10).  This method is suitable for 
boundary value problems.  An alternative method would be the energy method. 
 
There are numerous techniques for applying the weighted residual method.  Specifically, 
the Galerkin approach is used in this tutorial.   
 
The differential equation (10) is multiplied by a test function )x(φ .  Note that the test 
function )x(φ must satisfy the homogeneous essential boundary conditions.  The essential 
boundary conditions are the prescribed values of p and its first derivative. 
 
The test function is not required to satisfy the differential equation, however.       
 
The product of the test function and the differential equation is integrated over the domain.  
The integral is set equation to zero. 
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The test function )x(φ can be regarded as a virtual pressure.  The differential equation in 
the brackets represents an internal force.  This term is also regarded as the residual.  Thus, 
the integral represents virtual work, which should vanish at the equilibrium condition. 
 
Define the domain over the limits from a to b.  These limits represent the boundary points 
of the entire pipe. 
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Integrate the first integral by parts. 
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Consider a closed-open pipe.  The boundary conditions are 
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Thus, the test functions must satisfy 
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Equations (20) and (21) require 
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Apply the boundary conditions to equation (17).  The result is 
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Note that equation (24) would also be obtained for other simple boundary condition cases. 
 
Now consider that the pipe consists of number of segments, or elements.  The elements are 
arranged geometrically in series form.  Furthermore, the endpoints of each element are 
called nodes. 
 
The following equation must be satisfied for each element. 
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The essence of the Galerkin method is that the test function is chosen as 
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Express the pressure function P(x) in terms of nodal pressures 1jp −  and  jp  . 

 
hjxh)1j(,pLpL)x(P j21j1 <<−+= −                                    (28) 

 
Note that h is the element length.  In addition, each L coefficients is a function of x. 
 

Now introduce a nondimensional natural coordinate ξ . 
 

h/xj−=ξ                                                                                   (29) 
 

xjhh −=ξ                                                                                  (30) 
 

ξ−= hjhx                                                                                  (31) 
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⎠
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x                                                                                    (32) 

 
The derivative is 

 
ξ−= dhdx                                                                                   (33) 
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h
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Note that h is the segment length. 
 
Change the integration variable in equation (27) using equation (33).  Also, apply the 
integration limits. 
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The pressure function becomes. 
 

10,pLpL)(P j21j1 <ξ<+=ξ −                                                    (37) 
 
 
The slope equation is 

 
10,h'Ly'L)('P 1j21j1 <ξ<θ+=ξ −−                                              (38) 

 
 

ξ−= 1L1                                                                                             (39) 
 

1'L1 −=                                                                                               (40) 
 
 

ξ=2L                                                                                                 (41) 
 

1'L2 =                                                                                                  (42) 
 
 
Now Let 
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where 
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The derivative terms are 
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Note that primes indicate derivatives with respect to .ξ    
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For a system of n elements, 
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Note that only the upper triangular components are shown due to symmetry. 
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Examples are given in Appendices A and B.   
 
An alternate derivation based on virtual work is given in Appendix C.   
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APPENDIX A 
 

 
Example 1:  Closed-Closed Pipe, FE Model, Two Elements 
 
The finite element model of the pipe is shown in Figure A-1.  It consists of two elements 
and three nodes.  The pipe has length L.  Each element has an equal length. 

 
 
 

 
 
 
 
 
 
  Figure A-1. 
 
 
 
The boundary conditions are 
 

0
dx
dP

0x
=

=
                                                                 (A-1) 

 

0
dx
dP

Lx
=

=
                                                                (A-2) 

 
 
The generalized eigenvalue problem is 
 

n,...,2,1j,0MK jj ==λ−                                           (A-3) 
 

 
The elemental mass matrix is 
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⎦

⎤
⎢
⎣

⎡
=

2
12

6
1M j

                                                               (A-4) 

 
The elemental stiffness matrix is 
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E1 E2 
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The generalized eigenvalue problem with global mass and stiffness matrices is 
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⎠
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⎥
⎥
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Note that 
2

c
h

⎟
⎠
⎞

⎜
⎝
⎛ ω

=λ                                                                               (A-6) 

 
 

h = L / 2                                                                      (A-8) 
 

 
The eigenvalue problem is solved using the methods in References 2 and 3.   The results 
can also be obtained via Matlab as follows. 
 
 
k = 
 
     1    -1     0 
    -1     2    -1 
     0    -1     1 
 
m = 
 
    0.3333    0.1667         0 
    0.1667    0.6667    0.1667 
         0    0.1667    0.3333 
 
>> [ModeShapes,Eigenvalues]=eig(k,m); 
>> Eigenvalues 
 
Eigenvalues = 
 
   -0.0000         0         0 
         0    3.0000         0 
         0         0   12.0000 
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The resulting natural frequencies and mode shapes are shown in Table A-1 and A-2, 
respectively.  The mode shapes for the second and third modes are plotted in Figures A-2 
and A-3, respectively. 
 

 
Table A-1.  Closed-Closed Pipe, Natural Frequencies 
 

i 
 

FEM 
iλ  

FEM 
iω  (rad/sec) 

FEM 
if  (Hz) 

Classical Solution 
if  (Hz) 

1 0 0 0 0 

2 3.0 3.464 c / L   0.551   c / L 0.5   c / L 

3 12.0 6.928   c / L    1.103   c / L 1.0   c / L 
 

 
 

Table A-2.  Closed-Closed Pipe,  
Pressure Eigenvectors with Arbitrary Scale 
 

x / L Mode 1 Mode 2 Mode 3 
0 0.577 0.707 0.577 

0.5 0.577 0.000 -0.577 
1.0 0.577 -0.707 0.577 
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Figure A-2. 
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Figure A-3. 
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APPENDIX B 
 

 
Example 1:  Closed-Open Pipe, FE Model, Four Elements 
 
The finite element model of the pipe is shown in Figure B-1.  It consists of four elements 
and five nodes.  The pipe has length L.  Each element has an equal length. 

 
 
 

 
 
 
 
 
 
  Figure B-1. 
 
 
 
The boundary conditions are 
 
 

0
dx
dP

0x
=

=
                  (closed end)                                          (B-1) 

 
 

P(L) = 0                        (open end)                                            (B-2) 
 
 
 
The generalized eigenvalue problem with global mass and stiffness matrices is assemble in 
the same manner as the example in Appendix A.  The open boundary condition must be 
considered, however. 
 
Application of the   P(L) = 0   boundary condition causes each entry in the last column and 
last row of each matrix to equal zero.  The last column and last row are thus removed from 
the problem.  The resulting eigenvalue problem is                        
 
 

     0

4100
1410
0141
0012

6
2100
1210

0121
0011

det =

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ λ−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−

                                     (B-4) 

 

N1 N2 N3 

E1 E2 

N4 

E3 

N5 

E4 
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Recall 
 

2

c
h

⎟
⎠
⎞

⎜
⎝
⎛ ω

=λ                                                                               (B-5) 

 
 

h = L / 4                                                                      (B-6) 
 
 
 
The eigenvalues can be obtained via Matlab as follows. 
 
k = 
 
     1    -1     0     0 
    -1     2    -1     0 
     0    -1     2    -1 
     0     0    -1     2 
 
 
m = 
 
    0.3333    0.1667         0         0 
    0.1667    0.6667    0.1667         0 
         0    0.1667    0.6667    0.1667 
         0         0    0.1667    0.6667 
 
>> [ModeShapes,Eigenvalues]=eig(k,m); 
>> Eigenvalues 
 
Eigenvalues = 
 
    0.1562         0         0         0 
         0    1.5545         0         0 
         0         0    5.1295         0 
         0         0         0   10.7268 
 
 
The resulting natural frequencies are given in Table B-1.  The first and second mode 
shapes are plotted in Figures B-2 and B-3, respectively.  Each mode shape has an arbitrary 
scale factor. 
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Table B-1.  Closed-Open Pipe, Natural Frequencies 
 

i 
 

FEM 
iλ  

FEM 
iω  (rad/sec) 

FEM 
if  (Hz) 

Classical Solution 
if  (Hz) 

1 0.1562 1.581 c / L 0.25  c / L 0.25   c / L 

2 1.5545 4.987 c / L 0.79  c / L 0.75   c / L 

3 5.1295 9.060  c / L 1.44  c / L 1.25  c / L 

4 10.7268 13.101  c / L 2.09  c / L 1.75  c / L 
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Figure B-2. 
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Figure B-3. 
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APPENDIX C 
 
 

Virtual Work Principle for a One-Dimensional Acoustic Element 
 
If a general structure in dynamic equilibrium is subjected to a system of small virtual 
displacements within a compatible sate of deformation, the virtual work of external actions 
is equal to the virtual strain energy of internal stresses. 
 
 

ee WU δ=δ                                                                                    (C-1) 
 
where 
 

eUδ is the virtual strain energy of internal stresses 
 

eWδ    is the virtual work of external actions on the element 
 
 

Assume a vector of small virtual displacements 
 
 

{ } n...,,2,1i,qq i =δ=δ                                                                        (C-2) 
 
The resulting virtual generic displacement becomes 
 
 

qLu δ=δ                                                                                              (C-3) 
 

where  
L  is a matrix of shape functions 
 
 

The time varying strain )t(ε is 
 

)t(u
dx
d)t( =ε                                                                                        (C-4) 

 
The displacement function is 

 
qL)t(u =                                                                                             (C-5) 
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By substitution 
 

qL
dx
d)t( =ε                                                                                          (C-6) 

 

  qL
dx
d)t( δ=εδ                                                                                     (C-7) 

 
Thus 
 

qL)t( ′=ε                                                                                             (C-8) 
 

qL)t( δ′=εδ                                                                                      (C-9) 
 
The internal virtual strain energy is 
 

∫ σεδ=δ
b
ae dxU                                                                                (C-10) 

 
The integration is performed over the length of the element. 
 
 
Now let 
 

p(t) = applied nodal pressure 
 

ρ  = mass density 
 

 
The external virtual work is 
 

∫ ρδ−δ=δ
b
a

T
e dxuu)t(pqW &&                                                  (C-11) 

 
 

Equate the internal virtual strain energy with external virtual work. 
 
 

∫∫ ρδ−δ=σεδ
b
a

Tb
a

dxuu)t(pqdx &&                                                (C-12) 

 
ε=σ E                                                                                                    (C-13) 
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∫∫ ρδ−δ=εεδ
b
a

Tb
a

dxuu)t(pqdxE &&                                                (C-14) 

 
 
 

qL)t( δ′=εδ                                                                                          (C-15) 
 

qL)t( ′=ε                                                                                                (C-16) 
 
 

dxuu)t(pqdxqLEqL
b
a

Tb
a

&&ρδ−δ=′δ′ ∫∫                                       (C-17) 

 
 

 dxuu)t(pqqdxLELq
b
a

TTb
a

T &&ρδ−δ=
⎭
⎬
⎫

⎩
⎨
⎧ ′δ ∫∫                          (C-18) 

 
 

qL)t(u =                                                                                               (C-19) 
 

qLu δ=δ                                                                                              (C-20) 
 
 

qdxLLq)t(pqqdxLELq
b
a

TTTTb
a

T &&
⎭
⎬
⎫

⎩
⎨
⎧ ρδ−δ=

⎭
⎬
⎫

⎩
⎨
⎧ ′′δ ∫∫        (C-21) 

 

qdxLL)t(pqdxLEL Tb
a

Tb
a

&&
⎭
⎬
⎫

⎩
⎨
⎧ ρ−=

⎭
⎬
⎫

⎩
⎨
⎧ ′′ ∫∫                          (C-22) 

 

)t(pqdxLELqdxLL Tb
a

b
a

T =
⎭
⎬
⎫

⎩
⎨
⎧ ′′+

⎭
⎬
⎫

⎩
⎨
⎧ ρ ∫∫ &&                          (C-23) 

 
 

E and ρ  are constant for air 
 
 

    )t(pqdxLLEqdxLL
b
a

Tb
a

T =
⎭
⎬
⎫

⎩
⎨
⎧ ′′+

⎭
⎬
⎫

⎩
⎨
⎧ ρ ∫∫ &&           (C-24) 

 
 

)t(pqKEqM =+ρ &&                                                         (C-25) 
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The mass matrix is 
 

∫=
b
a

T dxLLM                                                          (C-26) 

 
 

The stiffness matrix is 
 

∫ ′′=
b
a

T dxLLK                                                                (C-27) 

 


