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Introduction 
 

Sound is transmitted through a panel by the forced vibration of the panel.  The pressure 

variations in the sound waves provide the forcing function. 
 

The transmission loss of a panel depends on the surface mass density, dynamic bending stiffness, 

and internal damping.  The contribution of each of these variables depends on the frequency 

domain. 

 

Forcing Frequency Below Panel Natural Frequencies 
 

Specifically, the panel stiffness governs the transmission loss at low frequencies, below the first 

series of natural frequencies.   At low frequencies, the transmission loss increases about 6 dB per 

doubling of the panel stiffness.  Furthermore, the transmission loss in this domain decreases 6 dB 

per octave as the forcing frequency increases.  Thus, the panel stiffness should be increased as 

much as possible for low forcing frequencies. 

 

Resonant Excitation of Panel Natural Frequencies 
 

At somewhat higher forcing frequencies, a series of plate-like natural frequencies in the panel 

cause wide fluctuations in the transmission loss.  Sound is radiated at these frequencies.  The 

transmission loss is limited by the panel damping at these frequencies. 

 

Forcing Frequency Above Panel Natural Frequencies 
 

The mass density of the panel controls the transmission loss above the first series of natural 

frequencies.  Theoretically, the transmission loss in this domain increases 6 dB per octave as the 

forcing frequency increases.  Furthermore, the mass controlled region is interrupted by the wave 

coincidence effect, as explained later in this report.   

 

Transmission Loss Equations 
 

The transmission loss TL in decibels for a panel is defined as 
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where 

 

s  is the total power incident on the source of the panel 

t  is the total power transmitted through the panel 

 

 

The transmission loss may also be expressed as 
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where   is the transmission coefficient. 

 

Note that transmission loss is function of frequency. 

 
Noise Reduction 
 

The noise reduction NR can be calculated by either of the following formulas. 
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where I1 and I2 are the intensities and L1 and L2 are the sound pressure levels in the source and 

receiver rooms, respectively. 
 

The transmission loss and noise reduction are related by the following formula 
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where  

S is the surface area 

A is the sound absorption of the receiver room 

 

 

Equation (5) is taken from References 1 and 2. 
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Mass Law for Single Panel 
 

Consider a single, homogeneous, nonporous panel.  The transmission loss for random incidence 

per Reference 1 is given by the approximate relationship: 
 

 

33flog20Wlog20TL                                                                         (6)  

 

 

where 
 

W is the surface weight density in pounds per square foot 

f is the forcing frequency in Hertz 

 

 

The transmission loss per equation (6) increases by 6 dB each time either the weight or the 

frequency is doubled.   Equation (6) thus represents the "mass law."  

 

The transmission loss is less than 6 dB in practice, however.  The discrepancy between the mass 

law and actual measurements may be due to:  
 

1. The neglect of stiffness and damping in the mass law equation 
 

2. Panel cracks and porosity 
 

3. Alternate sound transmission paths such as vents 
 

 

An alternate formula which accounts for the angle of incidence   is  
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where  
 

s  surface mass density 
 

  =  frequency (rad/sec) 

 

oco = acoustic impedance of the surrounding medium 

 
The angle of incidence is defined such that normal incidence occurs at   = 0.  See Figure 

1. 

  

Equation (7) is taken from Reference 7, equation (9.93). 
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Critical Frequency 
 

The critical frequency is the frequency at which the airborne acoustic wavelength matches the 

panel bending wavelength.  The critical frequency f c for a homogeneous panel is  
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where 

Ca =  the speed of sound in the surrounding air medium  

CL =  the longitudinal wave velocity 

h =  the panel thickness 
 

 
 

Equation (7) is derived in Appendix A. 
 

For example, a 1/4-inch thick steel or aluminum panel has a critical frequency of 2000 Hz. 

 

 

Wave Coincidence Effect 
 

For all frequencies above the critical frequency, there exists an angle of incidence such that the 

projection of the incident wave coincides with the bending wave. 
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The geometry of the coincidence effect is shown in Figure 1, as taken from Reference 3. 
 

A relatively high amount of acoustic energy transmission occurs when the bending frequencies 

coincide with acoustic frequencies above the critical frequency. 
 

Consider a random acoustic field.  The random character reduces the significance of the 

coincidence effect because only a small fraction of the energy is incident at the correct angle. 

 

Honeycomb Panels 
 

Honeycomb Panels are designed to have a high stiffness to mass ratio.  The transmission loss is 

thus controlled by stiffness.  The result is poor acoustic attenuation properties, as discussed in 

Reference 4. 
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The transmission loss can be improved by filling the core with granular material.  This lowers 

the fundamental frequency and increases the mass density.  These changes force the response 

into the “mass controlled region” of the transfer function magnitude.   

 

Further information is given in Appendix B. 

 

 

Table 1.  Appendix Index 

Appendix Title 

A Mechanical Bending Waves 

B SDOF Model 

C Transmission through Three Media 

D Transmission Loss Curves from Reference 9 
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Figure 1.  Coincidence Effect Geometry
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APPENDIX A 

 

 
Mechanical Bending Waves 
 

Bending waves are also called flexural waves.  They are fundamentally different from all other 

waveforms. 
 

The classic harmonic wave equation is a second-order equation with respect to both the spatial 

and time coordinates.   
 

The bending wave equation remains second-order in time, but it is fourth-order in space.  The 

one-dimensional form for the natural response is 
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where   
 

E is a field variable 

B is the flexural stiffness 

m is the mass per unit length 

 

 

The field variable E can represent translation amplitude, rotational amplitude, bending moment, 

or shear force. 
 

Note that equation (A-1) assumes that the bending wavelength is large compared to the 

dimensions of the thickness of the beam or plate.  Otherwise, correction terms are needed.   
 

A proposed traveling-wave solution is again 

 

 E x t A kx t( , ) sin( )                                                                      (A-2) 

 

The solution assumes that the bending-wave is propagating along an infinite length.  For 

practical purposes, this assumption is important only for low-frequency bending-modes. 
 

Substitution into equation (A-3) yields the following constraint 
 

B

m
k4 2                                                                                   (A-3) 

 

The bending wave phase velocity C B is related to the wave number k and the angular frequency 

 by the formula. 
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Substitution of equation (A-4) into (A-3) yields the following phase velocity relationship 
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The consequence of equation (A-5) is that the phase velocity is no longer a constant.  Rather it is 

proportional to the square root of the frequency. 
 

The phase velocity represents the propagation velocity of only one infinite sinusoidal wave.  

Waveforms are typically composed of a number of sinusoids, however.  A distortion or 

dispersion effect occurs because the higher frequency waveforms propagate with a higher phase 

velocity than the lower-frequency components.  
 

The bending wave phase velocity C B is related to the frequency f and wavelength  by the 

familiar formula  

 

CB f                                                                              (A-6) 

 

Again, phase velocity C B  is no longer a constant. 
 

Consider a plate with thickness h and a longitudinal wave velocity of C L.   

 

The longitudinal velocity is a constant for a given material.  The phase velocity is 

 

 

CB CLh f 18.                                                                     (A-7) 

 

By substitution, 

 

f CLh f  18.                                                                     (A-8) 
 

 

Dividing both sides by  f, 

 

 

 f CLh 18.                                                                    (A-9) 
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The bending wavelength is thus 

 

 

f

hC8.1 L
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The acoustic wavelength at is  

 

f

Ca                                                                               (A-11) 

 

where Ca is the speed of sound in the surrounding air. 

 

The critical frequency f c is the frequency at which the bending wavelength equals the acoustic 

wavelength in the surrounding air.  Substitute equation (A-11) into (A-10) and set the frequency 

equal to the critical frequency. 
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The critical frequency is thus 
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APPENDIX B 

 
 

SDOF Model 

 

The following model is an oversimplification.  The purpose is to determine the effects of mass 

and stiffness on the transmission loss. 

 

Idealize a panel as a single-degree-of-freedom system.  Idealize the applied sound pressure as a 

force.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-1. 

 

 

 

Let 

k = the stiffness 

m = the mass 

c = the damping coefficient 

x = the displacement 

F = the applied force 

f = the forcing frequency 

fn = the natural frequency  

 = the damping ratio 

 

 

 

The transfer function is shown in Figure B-1. 
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The “High Tuning” region of the transfer function is stiffness-controlled.   

 

The middle region is damping-controlled.  A greater damping ratio increases the transmission 

loss. 

 

The “Low Tuning” region of the transfer function is mass-controlled.  This is the preferred 

region for most cases because this is the region over which attenuation occurs. 
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White Noise Case, Displacement Model 

 

Now consider that the applied force is “white noise,” which is type of broadband, random 

excitation.  The goal is to achieve as much attenuation as possible.   Consider each of the 

dynamic parameters. 

 

The design problem can be reduced to a Miles equation.  The displacement response RMSx to a 

force power spectral density PSDF is  

 

 

  2/1
PSDF

4/3

k

1
4/1

m

1
2/1

2

1
RMSx 




























                                      (B-1) 

 

 

Equation (B-1) is derived from Reference 5, equation (3-5b). 

 

 

The following statements apply if all other variables remain equal: 

 

The displacement response decreases: 

 

1. By 3 dB as the damping is doubled. 

2. By 1.5 dB as the mass is doubled. 

3. By 4.5 dB as the stiffness is doubled. 

 

 

These statements may be somewhat misleading in terms of transmission loss, however, because 

very small displacements at higher frequencies can generate high intensity noise. 
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White Noise Case, Velocity Model 

 

The velocity RMS can be calculated from the displacement RMS as 
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The Miles equation for velocity is thus 
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The following statements apply if all other variables remain equal: 

 

The velocity response decreases: 

 

1. By 3 dB as the damping is doubled. 

2. By 4.5 dB as the mass is doubled. 

3. By 1.5 dB as the stiffness is doubled. 

 

The velocity model is probably a better method than displacement for calculating transmission 

loss.  Reference 7, section 9.7, states that sound transmission through plates can be characterized 

by the separation impedance Zs 

 

 

 
nv

recPsP
sZ


                                                                                 (B-5) 

 

where 

Ps = sound pressure amplitude on the source-side face 

Prec = sound pressure amplitude on the receiver-side face 

vn = normal velocity of the plate 

 

 

The plate velocity is assumed to be the same on either side. 
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White Noise Case, Transmitted Pressure 

 

The amplitude of sound is typically measured in terms of pressure rather than particle 

displacement or velocity.  Furthermore, the receiver side sound pressure is a variable in equation 

(B-5). 

 

The transmitted pressure in terms of RMS can be calculated for an applied pressure power 

spectral density via Miles equation.  This is the pressure transmitted through the mass and then 

through the spring into the ground. 
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Equation (B-6) is taken from Reference 6. 

 

The following statements apply if all other variables remain equal: 

 

The transmitted pressure: 

 

1. Decreases by 3 dB as the damping is doubled. 

2. Decreases by 1.5 dB as the mass is doubled. 

3. Increases by 1.5 dB as the stiffness is doubled. 

 

Note that the “mass law” states that the attenuation should be 6 dB as the mass is doubled.  The 

mass law does not account for damping or stiffness, however. 

 

 

Summary 

 

Again, the models in this section represent an oversimplification.  One reason is that a real panel 

is a multi-degree-of-freedom system. 

 

The intermediate goal should be to reduce both the plate velocity and the transmitted pressure.  

Reducing each of these response parameters will increase the transmission loss. 
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Increasing the mass decreases both the plate velocity and the transmitted pressure. 

 

Increasing the stiffness decreases the plate velocity but increases the transmitted pressure.   

 

Plate velocity and transmitted pressure should not be weighted the same.  But assume that they 

can be as another layer of simplification.   

 

Given this assumption, the net sound power response decreases 

 

1. By 6 dB as the damping is doubled. 

2. By 6 dB as the mass is doubled. 

3. By 0 dB as the stiffness is doubled. 

 

The previous statements apply if all other variables remain equal. 
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APPENDIX C 

 

 

Transmission Through Three Media 

 

The following method is taken from Reference 8.  It is another simplified method.  It ignores 

stiffness and damping.  It also does not account for the critical frequency. 

 

Consider the transmission coefficient of plane acoustics waves through three homogeneous and 

isotropic media. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C-1. 

 

 

The vector functions are velocity components.  

 

For the steady-state condition, two boundary conditions apply at each of the two interfaces: 

 

1.  The acoustics pressures at both sides of the boundary are equal 

2.  The particle velocities normal to the boundary are equal 

 

 

Consider the case where the first and third media are air.   Also the second medium is a dense 

material such as a wall. 
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The transmission coefficient  is 

 

 

)L2k(2sin2)1R/2R()L2k(2cos4

4


                                                   (C-1) 

 

 

The transmission coefficient is the faction of incident sound intensity transmitted through the 

media.  Sound intensity is the acoustic power per unit area in the direction of propagation. 

 

2k  is the wave number in medium 2.   

 

2cf22k                                                                                    (C-2) 

 

 where 

 

2c  is the speed of sound in medium 2 

1R   is the characteristic impedance of air    

 

1c11R                                                                                                                   (C-3) 

 

where   
 

1  is the air mass density 

1c  is the speed of sound in air 

 

 

Typical impedance values for air in equivalent units are: 

 

 

415 Rayls (Pa sec/m) 

415 kg/(m^2 sec) 

0.59 lbm/(in^2 sec) 

85.0 lbm/(ft^2 sec) 

0.01835 slugs/(in^2 sec) 

2.6425 slugs/(ft^2 sec) 

 

2R   is the characteristic impedance of medium 2. 

 

2c22R                                                                                                            (C-4) 
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Figure C-2. 

 

 

As an example, consider the transmission loss through a ¼ inch thick aluminum plate. 

 

Recall that 
 













1
log10TL    , dB                                                                                  (C-5) 

 

 

The resulting transmission loss is given in Figure C-2. 

 

 

The transmission loss of a ¼ inch thick aluminum plate is shown in Figure C-2.  Again, the curve 

was calculated using a simplified method. 

 

A more realistic method for calculating the transmission loss through a partition is given in 

Reference 7, section 9.7. 
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APPENDIX D 

 

Transmission Loss Curves from Reference 9 
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APPENDIX E 

 

 

Mass Law Equation 

 

The transmission loss in decibels from Reference 1 is 

 

 

33flog20Wlog20TL                                                                          (E-1)     

 

where 
 

W is the surface weight density in pounds per square foot 

f is the forcing frequency in Hertz 

 

 

528flog20Wlog20TL                                                                     (E-2)     

 

 

The factor of –5 dB in equation (E-2) is needed to account for random incidence. 
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Note that the denominator in the log argument in equation (E-4) is related to the acoustic 

impedance in air.  
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The impedance in air is 
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where   
 

  is the air mass density 

c  is the speed of sound in air 

 

 

Note that 
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By substitution, 
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