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Variables 

 
 

m is the mass 

c is the damping coefficient 

k is the stiffness 

x is the displacement 

ξ  is the viscous damping ratio 

f(t) is the applied force 

F is the applied force amplitude 

Ft is the force transmitted through the spring 

P is the applied pressure 

Pt is the pressure transmitted through the spring 

PSDP  Is the pressure power spectral density 

ω is the forcing frequency (rad/sec) 

nω  is the natural frequency (rad/sec) 

f  is the forcing frequency (Hz) 

nf  is the natural frequency (Hz) 

E is the modulus of elasticity 

Q is the amplification factor 

t is time 
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Variables (Continued) 
 
 

 

 
 

 

D is the plate stiffness factor 

ν  is the Poisson ratio 

h is the plate thickness 

a is the plate length 

b is the plate width 

µ  is the mass per area 

Rn Miner�s cumulative fatigue index 

q is the uniform static pressure 

σ is stress 

1σ is one standard deviation 
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Introduction 
 
This tutorial follows the method in Reference 1 but adds some clarification. 
 
The length and width of the panel must be sufficiently small that the panel can be 
regarded as a single-degree-of-freedom system, as shown in Figure 1. 
 
 

 
 
 
 
 

 
 
 

 
 
 
 

 
Figure 1. 

 
 

The force transmitted through the spring to the ground is 
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Equation (1) can be restated for a single-degree-of-freedom panel subjected to an applied 
pressure. 
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Equation (2) has the same form as that for the acceleration response of a mass subjected 
to base excitation.  Thus the transmitted pressure in terms of RMS can be calculated for 
an applied pressure power spectral density via Miles equation. 
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The next step is to calculate the resulting static displacement due to the transmitted force.  
Both the bending and membrane responses must be considered. 
 
The resulting bending and membrane stresses are then calculated.  Miner�s cumulative 
damage equation is used for the fatigue life calculation.  These steps are shown in the 
example in Appendix A. 
 
 
Alternate Method 
 
An alternate method for calculating the stress is given in Appendix B. 
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                                                                     APPENDIX A 
 
Example 1 
 
Consider a panel with dimensions 12 x 8 x 0.040 inches.  The material is aluminum 6061-
T4.  The panel has a fixed boundary condition on all four edges.  It is subjected to the 
sound pressure level in MIL-STD-1540C, as shown in Figure A-1.   The duration, 
however, is undefined in this example. 
 
The amplification factor is assumed as Q=10. 
 
The plate stiffness factor is 
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The mass per area is  
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The fundamental frequency for a plate clamped on all edges is 
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The transmitted pressure is 
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Figure A-1. 
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Figure A-2.                                             
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Figure A-3.  Large Deflection Theory Curve 
 
 
The next step is to calculate the displacement for pure bending.  As a rule-of-thumb, large 
deflection theory must be used when the maximum panel displacement is greater than 
one-third the panel thickness.   
 
The large deflection theory accounts for both membrane and bending stress.  The panel 
will carry some of the load in direct bending and some of the load as membrane tension 
for large deflections.  Large loads can be carried with a relatively small displacement 
when the panel is loaded as a membrane. 
 
Note that the membrane stress is also referred to as the diaphragm stress.   
 
The bending stress can be easily calculated from textbook formulas.1  Membrane stress 
formulas, however, are not readily available except for the special case of a square plate 
with fixed boundary conditions. 
 
As alternative, Reference 2 gives tabular values of dimensionless coefficients for the 
load, deflection, and stresses of a rectangular plate undergoing a large deflection.  These 
values are plotted in Figure A-3 for a panel with fixed edges.   
                                                
1 For example, see Reference 2, chapter 10, table 26. 
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The maximum deflection of the rectangular plate with fixed edges for pure bending is 
 

3hE

4bqY α=                                                                                         (A-15) 

 
Note that α  = 0.024 for a/b = 1.5.  Recall that b = width. 

 
The deflection equation is taken from Roark and Young, chapter 10, table 26. 
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RMSinch0081.0Y =                                                                            (A-17) 
 
 
This displacement is about 20% of the panel thickness.  This is less than the one-third 
threshold.  Nevertheless, the deflection will have 3-sigma peaks of 0.024 inches, which is 
more than one-half the thickness.  Thus, this is a somewhat borderline case.  Large 
deflection theory will be used anyway to solve for the maximum stress. 
 
The curve in Figure A-3 can be approximated as  
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Note that q = Pt . 
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Equation (A-19) is solved by a computer program.  The resulting intermediate values are 
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The maximum combined stress from the computer program is thus 
 
 

Tσ = 1290 psi RMS                                                                           (A-23) 
 
 

Note that the maximum stress occurs at the center of each long edge. 
 
Also note that the maximum stress would have been 949 psi RMS if large deflection 
theory had not been used. 

 
 
Now assume a stress concentration factor K=2, which could be due to a hole for example. 
 
The total stress including the stress factor is 
 
 

K,Tσ = 2580 psi RMS                                                                           (A-24) 
 

The 3-sigma total stress is 
 

K,Tσ = 7740 psi  3-sigma                                                                    (A-25) 
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Figure A-4. 
 
 
The 3-sigma stress level of 7740 psi is well below the stress limit for 10^8 cycles.  Thus 
the panel will endure at least 100 million 3-sigma stress reversal cycles, based on the 
input sound pressure level in Figure A-1.  No further calculations are necessary. 
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Example 2 
 
The panel is to be subject to the level in Figure A-1 plus 12 dB.  Determine the fatigue 
life.  The overall sound pressure level is now 150 dB.  The duration is 1000 seconds. 
 
The transmitted pressure can be easily scaled from the previous example. 

 
 

RMSpsi21.0tP =                                                                (A-26) 
 
 

The large deflection calculation, however, must be repeated in detail.  Equation (A-19) is 
again solved by a computer program.  The resulting intermediate values are 
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The maximum combined stress from the computer program is thus 
 
 

Tσ =  4144 psi RMS                                                                    (A-30) 
 
 

Note that the maximum stress occurs at the center of each long edge. 
 

 
Now assume a stress concentration factor K=2, which could be due to a hole for example. 
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The total stress including the stress factor is 
 
 

K,Tσ = 8288 psi RMS                                                             (A-31) 

 
 

The 3-sigma total stress is 
 
 

K,Tσ = 24,864 psi  3-sigma                                                      (A-32) 

 
 

The number of stress-reversal cycles required to produce a failure at the 1σ,  2σ and 3σ 
stresses are determined from the S-N fatigue curve for the 6061-T4 aluminum panel. 
 
Miner�s cumulative damage indeed Rn is given by 
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In theory, the panel should fail when 
 

0.1)theory(nR =                                                                                    (A-34) 
 
 
For aerospace structures, however, a more conservative value is used 
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The actual time at each stress level for the example problem is calculated in Table 1 
through 5, for various durations. 
 
Note that  
 

Number of cycles = [ time ratio ] [ natural frequency (Hz) ] [ duration(sec) ] 
 
 
Table A-1.  Stress versus Time, 150 dB input 
 
Duration = 1000 sec 
Natural Frequency = 166.5 Hz 
Material = Aluminum 6061-T4 
 
Stress Level 

(psi) 
Time 
Ratio 

Test Cycles Limit Cycles 
from S-N Curve iN

in  

1σ =   8288 0.6827 n1 = 1.14e+05 N1 > 1.0e+08 - 

2σ = 16,576 0.2718 n2 = 4.53e+04 N2 = 2.9e+07 0.0016 

3σ =  24,864 0.0428 n3 = 7.13e+03 N3 =1.50e+04 0.475 
 
 
Note that the1σ stress level is not a factor since the number of limits cycles is greater 
than 100 million. 
 
 
The results in Table A-1 show that Rn = 0.477 for 1000 seconds.  The value is less than 
the 0.7 threshold.  Thus the panel will survive. 
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Example 3 
 
Repeat example 2 with a duration of 1465 seconds. 
 
 
Table A-2.  Stress versus Time, 150 dB input 
 
Duration = 1465 sec 
Natural Frequency = 166.5 Hz 
Material = Aluminum 6061-T4 
 
Stress Level 

(psi) 
Time 
Ratio 

Test Cycles Limit Cycles 
from S-N Curve iN

in  

1σ =   8288 0.6827 n1 = 1.67E+05 N1 > 1.0e+08 - 

2σ = 16,576 0.2718 n2 = 6.63E+04 N2 = 2.9e+07 0.0023 

3σ =  24,864 0.0428 n3 = 1.04E+04 N3 =1.50e+04 0.696 
 
 
The results in Table A-2 show that Rn = 0.698 for 1465 seconds.  This is very near the 
0.7 limit.  Thus the panel is on the verge of a fatigue failure. 
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                                                       APPENDIX B 
 
 
Alternate Miles Equation for Stress Calculation 
 
The following method is taken from Reference 3, section 7.2.4. 
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where oσ  is the dimensionless stress induced by a uniform unit surface pressure. 
 
Recall Example 1 from Appendix A.  
 
Again, the panel has dimensions 12 x 8 x 0.040 inches.  The material is aluminum 6061-
T4.  The panel has a fixed boundary condition on all four edges.   
 
The following equation is taken from Roark and Young. 
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Reference 2 gives 45.0=β  for  a / b = 1.5 
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Recall that Hz5.166nf =  and Q=10. 
 

The sound pressure level at 166.5 Hz is .Hz/psi06E06.1 2−  
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By substitution, 
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RMSσ =  948 psi RMS                                                                                                (B-5) 
 
 

 
The value shown in equation (B-5) is less than that in (A-23).    
 
The value in (B-5) was calculating without accounting for large deflection theory, 
however.  It thus does not account for membrane stress.                                                                                    


