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Introduction

Cross-correlation is a measure of similarity of two waveforms as a function of a time-lag applied
to one of them.

Autocorrelation is the cross-correlation of a signal with itself. It is a time domain analysis useful
for determining the periodicity or repeating patterns of a signal.

Formulas and Properties

The autocorrelation r (x) for a continuous function x(t) is

lim 1

T/2
R (1) = J'ilex(t)x(t+r)dt (1)

T > o T
where

« Isthe delay
T s the signal period

The autocorrelation at zero delay is
R(O):cs2+p.2 (2)
where

s IS the standard deviation

w is the mean



Note that the autocorrelation function is symmetric about the x=0 line.

R(-7) = R (x) 3)

The autocorrelation for a finite, discrete function is

R, =

X X , n=1,2,3,...,M (4)

m n+m

™M =z

1
M
m=1

where M is the total number of points.

Examples are given in the appendices.
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APPENDIX A

Sine Function

SINE FUNCTION 2 Hz
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Figure A-1.
AUTOCORRELATION SINE FUNCTION 2 Hz
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Figure A-2.

The envelope of the autocorrelation function has a piecewise linear variation because the input
function has a finite duration. The 2 Hz frequency is otherwise apparent in the autocorrelation
function.

The autocorrelation of an infinitely long sine function would itself be a sine function.



APPENDIX B

Broadband Random

BEROADBAND RANDOM VIBERATION STDDEV=1G
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Figure B-1.
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Figure B-2.

A white noise time history was synthesized with a sample rate of 4000 samples/sec. It was then
lowpass filtered at 1000 Hz. Then it was scaled to have a standard deviation of 1 G. The time
history and autocorrelation plots are shown in Figures B-1 and B-2 respectively.

Idealized, continuous white noise would have an autocorrelation function represented by the
Dirac delta function at delay - = 0.



APPENDIX C

Narrowband Random

. m  mass
J ¢ damping coefficient

stiffness
k ,J_. ¢

acceleration of mass
v base acceleration

x:

Figure C-1. Single-degree-of-freedom System
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Figure C-2.

The single-degree-of-freedom in Figure C-1 is subjected to the acceleration base input from
Figure B-1. The system has a natural frequency of 200 Hz and an amplification factor of Q=10.
The response of the system is narrowband random, as shown in Figure C-2.

The autocorrelation function is shown in Figure C-3. A close-up view is shown in Figure C-4.
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Figure C-3.
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Figure C-4.

The standard deviation of the time history is 1.8 G. The mean is zero.
The autocorrelation peak is: R(0)=3.2
Note that 1.8"2 = 3.2.

The first peak after time zero occurs at 0.005 seconds, which is the period of the 200 Hz system.



