THE STEADY-STATE RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO A HARMONIC BASE EXCITATION

By Tom Irvine

Email: tomirvine@aol.com

January 1, 2004

EQUATION OF MOTION

Consider a single degree-of-freedom system.

Figure 1.

The variables are

m = mass

c = viscous damping coefficient

k = stiffness

x = absolute displacement of the mass

y = base displacement

The double-dot denotes acceleration.

The free-body diagram is

Figure 2.

Summation of forces in the vertical direction,

$$\sum F = m\ddot{x} \tag{1a}$$

$$m\ddot{x} = c(\dot{y} - \dot{x}) + k(y - x) \tag{1b}$$

Define a relative displacement

$$z = x - y \tag{2}$$

Substituting the relative displacement terms into equation (1b) yields

$$m(\ddot{z} + \ddot{y}) = -c\dot{z} - kz \tag{3}$$

$$m\ddot{z} + c\dot{z} + kz = -m\ddot{y} \tag{4}$$

Dividing through by mass yields,

$$\ddot{z} + (c / m)\dot{z} + (k / m)z = -\ddot{y}$$
 (5)

By convention,

$$(c/m) = 2\xi\omega_n \tag{6}$$

$$(k/m) = \omega_n^2 \tag{7}$$

where ω_n is the natural frequency in (radians/sec), and ξ is the damping ratio.

Substituting the convention terms into equation (5) yields

$$\ddot{z} + 2\xi \omega_n \dot{z} + \omega_n^2 z = -\ddot{y} \tag{8}$$

$$\int_{-\infty}^{\infty} \left\{ \ddot{z} + 2\xi \omega_n \dot{z} + \omega_n^2 z \right\} e^{-j\omega t} dt = \int_{-\infty}^{\infty} \left\{ -\ddot{y} \right\} e^{-j\omega t} dt \tag{9}$$

Note that the approach used here is rigorous. Simpler approaches are often used in other references.

Let

$$Z(\omega) = \int_{-\infty}^{\infty} \{z(t)\} e^{-j\omega t} dt$$
 (10)

$$Y(\omega) = \int_{-\infty}^{\infty} \{y(t)\} e^{-j\omega t} dt$$
 (11)

Now take the Fourier transform of the velocity term

$$\int_{-\infty}^{\infty} \left\{ \dot{z}(t) \right\} e^{-j\omega t} dt = \int_{-\infty}^{\infty} \left\{ \frac{dz(t)}{dt} \right\} e^{-j\omega t} dt \tag{12}$$

Integrate by parts

$$\int_{-\infty}^{\infty} \left\{ \dot{z}(t) \right\} e^{-j\omega t} dt = \int_{-\infty}^{\infty} d\left\{ z(t)e^{-j\omega t} \right\} - \int_{-\infty}^{\infty} \left[z(t) \right] (-j\omega)e^{-j\omega t} dt \tag{13}$$

$$\int_{-\infty}^{\infty} \{\dot{z}(t)\} e^{-j\omega t} dt = z(t)e^{-j\omega t} \Big|_{-\infty}^{\infty} + (j\omega) \int_{-\infty}^{\infty} z(t)e^{-j\omega t} dt$$
(14)

$$z(t)e^{-j\omega t}\Big|_{-\infty}^{\infty} = 0$$
 as t approaches the $\pm \infty$ limits. (15)

$$\int_{-\infty}^{\infty} \{\dot{z}(t)\} e^{-j\omega t} dt = (j\omega) \int_{-\infty}^{\infty} z(t) e^{-j\omega t} dt$$
(16)

$$\int_{-\infty}^{\infty} \{\dot{z}(t)\} e^{-j\omega t} dt = (j\omega)X(\omega)$$
(17)

Furthermore

$$\int_{-\infty}^{\infty} \{\ddot{z}(t)\} e^{-j\omega t} dt = \int_{-\infty}^{\infty} \left\{ \frac{d^2 z(t)}{dt^2} \right\} e^{-j\omega t} dt$$
(18)

$$\int_{-\infty}^{\infty} \left\{ \ddot{z}(t) \right\} e^{-j\omega t} dt = \int_{-\infty}^{\infty} d\left\{ \frac{dz(t)}{dt} e^{-j\omega t} \right\} - \int_{-\infty}^{\infty} \left[\frac{dz(t)}{dt} (-j\omega) e^{-j\omega t} dt \right]$$
(19)

$$\int_{-\infty}^{\infty} \left\{ \ddot{z}(t) \right\} e^{-j\omega t} dt = \frac{dz(t)}{dt} e^{-j\omega t} \Big|_{-\infty}^{\infty} + (j\omega) \int_{-\infty}^{\infty} \frac{dz(t)}{dt} e^{-j\omega t} dt$$
(20)

$$\frac{dz(t)}{dt} e^{-j\omega t} \bigg|_{-\infty}^{\infty} = 0 \text{ as t approaches the } \pm \infty \text{ limits.}$$
 (21)

$$\int_{-\infty}^{\infty} \{\ddot{z}(t)\} e^{-j\omega t} dt = (j\omega) \int_{-\infty}^{\infty} \frac{dz(t)}{dt} e^{-j\omega t} dt$$
(22)

$$\int_{-\infty}^{\infty} \{\ddot{z}(t)\} e^{-j\omega t} dt = (j\omega)(j\omega)Z(\omega)$$
(23)

$$\int_{-\infty}^{\infty} \{\ddot{z}(t)\} e^{-j\omega t} dt = -\omega^2 Z(\omega)$$
 (24)

Recall

$$\int_{-\infty}^{\infty} \left\{ \ddot{z} + 2\xi \omega_n \dot{z} + \omega_n^2 z \right\} e^{-j\omega t} dt = \int_{-\infty}^{\infty} \left\{ -\ddot{y} \right\} e^{-j\omega t} dt$$
 (25)

Let the subscript A denote acceleration. By substitution,

$$-\omega^{2}Z(\omega) + j\omega(2\xi\omega_{n})Z(\omega) + \omega_{n}^{2}Z(\omega) = -Y_{A}(\omega)$$
(26)

$$\left[\left(\omega_{n}^{2} - \omega^{2}\right) + j2\xi \,\omega\omega_{n}\right] Z(\omega) = -Y_{A}(\omega) \tag{27}$$

$$Z(\omega) = \frac{-Y_{A}(\omega)}{[(\omega_{n}^{2} - \omega^{2}) + j2\xi\omega\omega_{n}]}$$
(28)

$$Z_{A}(\omega) = -\omega^{2} Z(\omega) \tag{29}$$

$$Z_{A}(\omega) = \frac{\omega^{2} Y_{A}(\omega)}{\left[(\omega_{n}^{2} - \omega^{2}) + j2\xi\omega\omega_{n}\right]}$$
(30)

The relative acceleration equation can be expressed in terms of Fourier transforms as

$$Z_{A}(\omega) = X_{A}(\omega) - Y_{A}(\omega)$$
(31)

The absolute acceleration is

$$X_{A}(\omega) = Z_{A}(\omega) + Y_{A}(\omega)$$
(32)

$$X_{A}(\omega) = \frac{\omega^{2} Y_{A}(\omega)}{\left[(\omega_{n}^{2} - \omega^{2}) + j2\xi\omega\omega_{n}\right]} + Y_{A}(\omega)$$
(33)

$$X_{A}(\omega) = \frac{[\omega^{2} + (\omega_{n}^{2} - \omega^{2}) + j2\xi\omega\omega_{n}]Y_{A}(\omega)}{[(\omega_{n}^{2} - \omega^{2}) + j2\xi\omega\omega_{n}]}$$
(34)

$$X_{A}(\omega) = \frac{\left[\omega_{n}^{2} + j2\xi\omega\omega_{n}\right]Y_{A}(\omega)}{\left[(\omega_{n}^{2} - \omega^{2}) + j2\xi\omega\omega_{n}\right]}$$
(35)

Define a transfer function $H(\omega)$.

$$X_{A}(\omega) = H(\omega)Y_{A}(\omega)$$
 (36)

$$H(\omega) = \frac{\omega_n^2 + j 2\xi \omega \omega_n}{(\omega_n^2 - \omega^2) + j 2\xi \omega \omega_n}$$
(37)

Divide the numerator and denominator by $\omega_n^{\ 2}$.

$$H(\omega) = \frac{1 + j 2\xi(\omega/\omega_n)}{\left[1 - (\omega/\omega_n)^2\right] + j 2\xi(\omega/\omega_n)}$$
(38)

Let $\rho = \omega/\omega_n$.

$$H(\rho) = \frac{1 + j \, 2\xi\rho}{[1 - \rho^2] + j \, 2\xi\rho} \tag{39}$$

Multiply the numerator and denominator of equation (39) by the complex conjugate of the denominator.

$$H(\rho) = \frac{[1+j \ 2\xi\rho]}{[(1-\rho^2)+j \ 2\xi\rho]} \frac{[(1-\rho^2)-j \ 2\xi\rho]}{[(1-\rho^2)-j \ 2\xi\rho]}$$
(40)

$$H(\rho) = \frac{[1 + (2\xi\rho)^2 - \rho^2]}{[(1 - \rho^2)^2 + (2\xi\rho)^2]} + j \frac{2\xi\rho(1 - \rho^2) - 2\xi\rho}{[(1 - \rho^2)^2 + (2\xi\rho)^2]}$$
(41)

$$H(\rho) = \frac{[1+\rho^2(4\xi^2-1)]}{[(1-\rho^2)^2+(2\xi\rho)^2]} - j\frac{2\xi\rho^3}{[(1-\rho^2)^2+(2\xi\rho)^2]}$$
(42)

The magnitude is

$$|H(\rho)| = \sqrt{\frac{1 + [2\xi\rho]^2}{[1 - \rho^2]^2 + [2\xi\rho]^2}}$$
(43)

The phase angle θ by which the response lags the input is

$$\theta = \arctan\left[\frac{2\xi\rho^3}{1+\rho^2(4\xi^2-1)}\right] \tag{44}$$

The transfer function magnitude is plotted for three damping cases in Figure 3. The phase angle is shown in Figure 4.

TRANSFER FUNCTION MAGNITUDE

Figure 3.

FREQUENCY RATIO (ρ)

Figure 4.