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EQUATION OF MOTION

Consider a single degree-of-freedom system.

Figure 1.

The variables are

=  mass
=  viscous damping coefficient
stiffness

=  absolute displacement of the mass
=  base displacement
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The double-dot denotes accel eration.



The free-body diagram is

k(y-x) c(y - x)

Figure 2.

Summation of forcesin the vertical direction,
D F= mXx
mX = c(y —X) +k(y —x)
Define arelative displacement
Z=Xx-Yy
Substituting the relative displacement terms into equation (1b) yields
m(z+YVy) = —cz —kz

mz +cz+kz =—-my

Dividing through by mass yields,
zZ+(c/mz+(k/m)z=-y
By convention,

(c/m)=2¢w,

(k/m) = 0,2

where ), isthe natural frequency in (radians/sec), and & is the damping ratio.
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Substituting the convention terms into equation (5) yields
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fw{ 2+ 28wpz + u)nzz} e 1%t = 7 { -3} &1 a
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Note that the approach used here isrigorous. Simpler approaches are often used in other

references.

Let
Z(o) =[" {z(the 1 dt

V() =[" {y(the 1t
Now take the Fourier transform of the velocity term
[ e 0]
Integrate by parts
[7 {aey et = dfzme i) -7 [20)(-jw)e Yot
I_oooo{z(t)} e 1 gt = Z(t)e_j‘*t‘io +(joo)j_°°00 z(t) el Yt

z(t)e It

‘ =0 ast approachesthe + o limits
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[” {2t} e dt = (jo)X (o)

Furthermore
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Ii{ﬂt)} e W gt = j_m{%} omiat gt
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dz(t) it =0 ast approaches the £ oo limits.
dt —o

|7 {2t} et = (j)[ %e_j“dt
[* {zt}e % at = (01092
[7 (20} €1 dt = 02 Z(w)

Recall
jjow{2+22wnz +°°n22} et Gt :j {5} et g
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Let the subscript A denote acceleration. By substitution,

— WPZ(6) + J0(28000)Z(6) + W 2Z() = ~Yp (@) (26)
(602 -67) + 28 63, | 269 = Y 5 (@) (27)
2= [ (0n? —_uYFA) i(;))zawwn] )
Zp (@) = -00°Z(w) (29)
Za@ = OO (30)

(600 ~6P)+] 28w
The relative acceleration equation can be expressed in terms of Fourier transforms as

Za(@) =Xa(w)=Ya(w) (31)
The absolute acceleration is

Xp(w) =Zp(w)+Ya(w (32)

2
Xa(@)=1 Al

1 +Y 33
(%2—002)+J2§(gwn + A(w) ( )

[00? + (002 ~6?) +2Ewwn ] YA (@)

X =
Al [(wn2-a?)+]28e0on]

(34)




[0 +j2Ewen] Ya (@)

A )+ 28 o) )
Define atransfer function H (u) .
X a (@) =H(@) YA () (36)
- A
Divide the numerator and denominator by wnz.
H(w) = 1+] iE (w/wp) (39)
[1-(w/wn)” ]+ 28 (w/ o)
Let p=w/wp.
H(p)= —1312¢P (39)
[1-p=]+]j2¢&p

Multiply the numerator and denominator of equation (39) by the complex conjugate of
the denominator.

. _ 2 .
H(p) = [1+21 2&p] [(1 pz) j 2&p] (40)
[((1-p7)+]2&p] [(1-p7)—]2&p]

2_.,2 2
H(p)= (+(28P7-p71 . 28p(1-p%)- 2&p (41)

T (1-pD)2+(28p)2]  [(1-pD)2 +(28p)Y]




2 2 3
H(p): [1+p=(4&°-1)] - 2&p
[(1-p%)2+(28p)?]  [(1-p%)% +(28p)?]

The magnitudeis

2
‘H(p)‘z\/ 1+[2&p]

[1-p2]2 +[28p] 2

The phase angle 8 by which the response lags the input is

0 = arctan o287 ?
1+p?( 482 -1)

(42)
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The transfer function magnitude is plotted for three damping cases in Figure 3. The

phase angleis shown in Figure 4.
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Figure 3.
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Figure 4.



