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Theory 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. 
 
 
The governing differential equation for the transverse displacement y(x, t) of a fixed-fixed 
beam subject to an axial load applied at its free end is 
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where 
 

E is the modulus of elasticity 

I is the area moment of inertia 

m is the mass per length 

L is the length 

P  is the axial tension load 
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Equation (1) is taken from Reference 1. 
 
Assume that the load P is constant. 
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The product EI is the bending stiffness. 
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Equation (8) yields two independent equations. 
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Equation (9) is a homogeneous, forth order, ordinary differential equation. 
 
The weighted residual method is applied to equation (9).  This method is suitable for 
boundary value problems.  An alternative method would be the energy method. 
 
There are numerous techniques for applying the weighted residual method.  Specifically, 
the Galerkin approach is used in this tutorial.   
 
The differential equation (9) is multiplied by a test function )x(φ .  Note that the test 
function )x(φ must satisfy the homogeneous essential boundary conditions.  The essential 
boundary conditions are the prescribed values of Y and its first derivative. 
 
The test function is not required to satisfy the differential equation, however.       
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The product of the test function and the differential equation is integrated over the domain.  
The integral equation is set to zero. 
 
Final Assembly of Mass and Stiffness Matrices 
 
The elemental mass and stiffness matrices are taken from References 3 and 4. 
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An example is given in Appendix B. 
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 APPENDIX A 
 
Example 1 
 
Model the fixed-fixed beam in Figure A-1 as two elements using the mass and stiffness 
matrices in equations 36 and 37.  The model consists of two elements and three nodes as 
shown in Figure B-1. 
 
 
 
 
 
 
 
 

Figure A-1. 
 
 
Note that h = L/2. 
 
 
The mass matrix is 
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The stiffness matrix is 
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The buckling load for a fixed-fixed beam is 
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where 
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The boundary conditions are 
 

0y1 =                                                                                                     (A-14a) 
 

1h θ = 0                                                                                                   (A-14b) 
 

0y3 =                                                                                                     (A-15a) 
 

3h θ  = 0                                                                                                  (A-15b) 
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The first and second rows and columns are struck out to meet the first boundary condition.  
The fifth and sixth rows and columns are struck out to meet the second boundary 
condition.  
 
The resulting eigen equation is thus 
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The eigenvalues are found using the method in Reference 2. 
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The finite element results for the natural frequencies are thus 
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The finite element results are compared to the classical results in Table B-1. 
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Table B-1.   
 
P = 0.4 Pcr Case, Natural Frequency Comparison, 2 Elements 
 

 
 

Mode 
 

Finite Element 
Model 

 

EI
Lm 4

ω  

 

Classical  
Solution 

 

EI
Lm 4

ω  

1 26.851 26.466 
 
 

The finite element value is 1.45 % higher than the classical solution.  The classical result is 
taken from Reference 4.   
 
 

Note that      
EI
L4ρω = 22.37     for the case where P = 0, per the classical solution in 

Reference 6. 
 
The analysis is repeated for other model sizes, representing the same beam, in Table B-2. 
 

 
Table B-2.  
 
P = 0.4 Pcr Case, Fundamental Frequency for Various Model Sizes 
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Error 

2 26.851 26.466 1.45 % 

4 26.360 26.466 -0.40 % 

8 26.312 26.466 -0.58 % 

16 26.500 26.466 0.13 % 
 
 
 
 


