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Introduction 
 
 
Consider a beam-column as shown in Figure 1. 
 
 
 
 
 
 

 
 
 

 
 
 
 
Figure 1. 

 
 

E is the modulus of elasticity 
I is the area moment of inertia 
A is the cross-sectional area 
L is the length 
ρ is mass per length 

 
 
The product EI is the bending stiffness. 
 
Let u(x) be the longitudinal displacement.  Let y(x) be the transverse displacement. 
 
Assume a linear problem with small displacements such that there is no coupling or 
interaction between the axial and bending effects. 
 
Determine the mass and stiffness matrices of the beam-column.  Note that only the upper 
triangular components are shown in the following matrices due to symmetry. 
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Beam Bending 
 
The beam bending matrices are taken from Reference 1.  The displacement matrix for 
beam bending is 
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The stiffness matrix for beam bending is 
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The mass matrix for beam bending is 
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Column Displacement 
 
The column displacement matrices are taken from Reference 2.  The displacement vector is 
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The stiffness matrix for a column is 
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The mass matrix for a column is 

             









=

2
12

6
hmM j

                                                                              (6)                             

 
 
The beam bending and column matrices can be combined into respective beam-column 
matrices using the method in Reference 3. 
 
Beam-Column 
 
The elemental stiffness matrix for the beam-column is 
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The elemental mass matrix for the beam-column is 
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There are three degrees-of-freedom at each node.  The elemental displacement vector is 
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Example 1 
 
Model the cantilever beam in Figure 1 as a single element using the mass and stiffness 
matrices in equations (7) and (8).  The model consists of one element and two nodes as 
shown in Figure 2. 
 
 
 
 
 
 
 

Figure 2. 
 
 
Note that h=L. 
 
Assume that the beam is aluminum in the form of a solid cylinder, with a diameter of 6 
inch and a length of 120 inch. 
 

E = 1e+07 lbf/in2 
I = 63.62 in4 
A = 28.27 in2 
L = 120 in 
ρ = 2.827 lbm/in = 0.00732 lbf sec2/in2 

 
 
Let  

ρ
= EAc                                                                                                 (10) 
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The longitudinal wave speed for the aluminum beam is 
 

c = 196,500 in/sec                                                                                     (11) 
 
 
 

The generalized eigenvalue problem prior to the application of the boundary conditions is 
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Apply the boundary conditions. 
 

1y  = 0                                                                                                          (15) 
 

01 =θ                                                                                                           (16) 
 

1u = 0                                                                                                           (17) 
 
 
Omit the corresponding rows and columns in the eigenvalue problem. 
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The finite element results are compared to the classical results in Table 1. 
 

 
Table 1.  Finite Element Results for Example 1 
 

 
 

Index 
 

 
 

Mode Shape 

Finite Element 
Model 

 
fn (Hz) 

 

Classical 
Solution 

 
fn (Hz) 

 
Error 

1 First Bending 11.5 11.5 0.0% 

2 Second Bending 113.4 71.8 57.9% 

3 First Longitudinal 485.2 409.3 18.5% 
 

 
 
Example 2 
 
Model the cantilever beam in Example 1 with two elements.  Let each element have equal 
length. 
 
The model consists of two elements and three nodes as shown in Figure 3. 
 
 
 
 
 
 
 
 
 

Figure 3. 
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There are several keys to this problem.  One is that h=L/2.  The other is that node N2 
receives mass and stiffness contributions from both elements E1 and E2.  Thus, the 
resulting global matrices have dimension 6 x 6 prior to the application of the boundary 
conditions. 
 
Furthermore, rearrange the displacement vector as 
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The elemental stiffness matrix for the beam-column with the modified displacement vector 
is 
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The elemental mass matrix for the beam-columns with the modified displacement vector is 
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The stiffness matrix for element 1 in example 2 is 
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The stiffness matrix for element 2 in example 2 is the same as the matrix in equation (26). 
 
 
The mass matrix for element 1 in example 2 is 
 
 

























−

−

=

0.1464
015.06
01.380.1631

0732.0000.1464
011.29-0.8157015.06
00.81570.0564701.380.1631

M̂ 1  

 
(27) 

 
The mass matrix for element 2 in example 2 is the same as the matrix in equation (27). 
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The generalized eigenvalue problem after the boundary conditions are applied is 
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The natural frequencies are found via the Jacobi method. 
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Table 2.  Finite Element Results for Example 2 
 

 
 

Index 
 

 
 

Mode Shape 

Finite Element 
Model 

 
fn (Hz) 

 

Classical  
Solution 

 
fn (Hz) 

 
Error 

1 First Bending 11.5 11.5 0.0 % 

2 Second Bending 72.3 71.8 0.7 % 

3 Third Bending 244.8 201.0 21.8 % 

4 First Longitudinal 419.9 409.3 2.6 % 

5 Fourth Bending 709.6 394.5 79.9 % 

6 Second Longitudinal 1467 1228 19.5 % 
 

 
 

The next step would be to solve for the eigenvectors, which represent the mode shapes.  A 
greater number of elements would be required to obtain accurate mode shapes, however. 
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