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Introduction

Consider a beam-column as shown in Figure 1.
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Figure 1.

isthe modulus of elasticity
is the area moment of inertia
isthe cross-sectional area
isthe length
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The product El isthe bending stiffness.
Let u(x) be the longitudina displacement. Let y(x) be the transverse displacement.

Assume a linear problem with small displacements such that there is no coupling or
interaction between the axial and bending effects.

Determine the mass and stiffness matrices of the beam-column. Note that only the upper
triangular components are shown in the following matrices due to symmetry.



Beam Bending

The beam bending matrices are taken from Reference 1. The displacement matrix for
beam bending is

(1)

The stiffness matrix for beam bending is

12 6h -12 6h ]
El 4h? -6h 2h?

Kj = | —=
12  -6h
4h?

)

The mass matrix for beam bending is

(156 22h 54 -13h]
_(hp 4h% 130 -3h?
I (Ej 156 -22h
4h?

3

Column Displacement

The column displacement matrices are taken from Reference 2. The displacement vector is
up
uz

The stiffness matrix for acolumn is

(4)

K| =EF ‘1} 5)



The mass matrix for acolumn is

M= h_m{z 1} (6)
6 2

The beam bending and column matrices can be combined into respective beam-column
matrices using the method in Reference 3.

Beam-Column

The elemental stiffness matrix for the beam-columniis

121 6lh -121 6lh 0 0
41h% -6lh 21h%? 0 0
E 121 -6lh 0 0
KJ = | — 2
h3 41h% 0 0
Ah? —AR?2

()

The elemental mass matrix for the beam-column is

156 22h 54 -13h

0 0
4h% 13h -3n% 0 O

(hp 156 -22h 0 O
j_(@) 42 0 0
140 70

140

(8)



There are three degrees-of-freedom at each node. The elemental displacement vector is

Y1
01
Y2
62
up
U2
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Example 1
Model the cantilever beam in Figure 1 as a single element using the mass and stiffness
matricesin equations (7) and (8). The model consists of one element and two nodes as
shown in Figure 2.
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Figure 2.
Note that h=L.
Assume that the beam is aluminum in the form of a solid cylinder, with a diameter of 6
inch and alength of 120 inch.
E = 1e+07 Ibf/in’
| = e362in’
A = 2827in
L = 120in
p = 2827Ibm/in=0.00732 Ibf sec’/in’
Let
c= |EA (10)
P



The longitudina wave speed for the aluminum beam is

¢ = 196,500 in/sec (11)

The generalized eigenvalue problem prior to the application of the boundary conditionsis

121 6lh -121 6lh 0 0
41h% -6lh 2Ih%2 0 0

0 0

0 0

E 121 -6lh
h3 41h?

(156 22h 54 -13h

O 0 Y1
4h? 13h -3n° 0 0 ||| 6
_“’Z(ﬁj 156 —222h 00 ||]y2|_,
420 4% 0 o0 |[]e,
140 70 ||| uy
I 140| | { us

(12)



121 6lh -121 6lh O 0 ]
41h% -6lh 2Ih? 0O 0
121 -6lh 0O 0
41h% 0 0

Ah? —Ah?

Ah? |

156 22h 54 -13h 0 O071|(wva
4h% 13h -30> 0 0 ||| 6
_wz(ﬂJ 15 -221 0 0 ||]y2|_,
420E 402 0 0 |[[]6,
140 70 ||| uy
i 140 | | up
(13)
121 6lh -121 6lh O 0 |
41h? -6lh 21h> 0 0
121 -6lh 0 0
41h2 0 0
Ah? - Ah?
AhZ |
156 22h 54 -13h 0 0]]( v
4h% 13h -3n2 0 0 |||
w)’(Ah* 15 -22h 0 O |||y |_
_(Ej LEJ 2 0 o |[]ey[ "
140 70 ||| ug
I 140 || uy
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Apply the boundary conditions.

Y1 = 0 (15)
91 =0 (16)
up=0 (17)

Omit the corresponding rows and columns in the eigenval ue problem.

121 -6lh 0O 20 a\156 -22h 0 7|(y2
41h? 0 —(Ej AhZ a0 |Ue,l=0
2 C 420
Ah 140 (| | uy
(18)
763.4 -458le+04 0
3.665e+ 06 0
4.704e+05
156 -2640 O
w)2( Ah? Y2 _
N il 5760e+04 0 ({6, =0
C 420
140 u-s
(19)
w? ,[1.8899
5| 420c
wp” | == -|183.54 (20)
w2 | AN 3360
Wy 72.3
Wy |=| 7125 | rad/sec (21)

wg | |3048.6



f,1 [115
fo|=[1134| Hz
fg| |485.2

(22)

The finite element results are compared to the classical resultsin Table 1.

Table 1. Finite Element Results for Example 1
Fi nltl\igézmmt Classical
Solution
Index Error
Mode Shape fn (Hz) fn (H2)
1 First Bending 115 115 0.0%
2 Second Bending 1134 718 57.9%
3 First Longitudinal 485.2 409.3 18.5%
Example 2

Model the cantilever beam in Example 1 with two elements. Let each element have equal
length.

The model consists of two elements and three nodes as shown in Figure 3.
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Figure 3.




There are severa keys to this problem. One is that h=L/2. The other is that node N2
receives mass and stiffness contributions from both elements E1 and E2. Thus, the
resulting global matrices have dimension 6 x 6 prior to the application of the boundary
conditions.

Furthermore, rearrange the displacement vector as

Y1
0,
Uy
Y2
02
Uz

(23)

The elemental stiffness matrix for the beam-column with the modified displacement vector
is

121 6lh 0 -121 6lh 0
41h> 0 -6lh 2Ih? 0

g (EJ AR 0 0 -Ah?
J h3 121 -6lh 0
4% 0

L Ah2 _

(24)

The elemental mass matrix for the beam-columns with the modified displacement vector is

(156 22h 0 54 -13h O |
4% 0 13h -3h% 0
. :( hp j 140 0 O 70
I {420 156 -22h O
% 0
I 140 |

(25)



The stiffness matrix for element 1 in example 2 is

k 1 =
(3.534e+04 1.060e+06 0 —-3.534e+04 1.060e+ 06 0 |
4.241e+07 0 -1.060e+06 2.121e+07 0
4.712e+ 06 0 0 —-4.712e+ 06
3534e+04 —1.060e+ 06 0
4.241e+ 07 0
i 4.712e+06 |
(26)

The stiffness matrix for element 2 in example 2 is the same as the matrix in equation (26).

The mass matrix for element 1 in example 2 is

(01631 138 0 005647 -08157 O
1506 0 08157 -11.29 0
i = 01464 0 0 00732
01631 -138 O
15.06 0
I 0.1464 |

(27)

The mass matrix for element 2 in example 2 is the same as the matrix in equation (27).
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The generalized eigenvalue problem after the boundary conditions are applied is

[ 7.069e + 04

-3.534e+04 1.060e+ 06
-1.060e+06 2.121e+07

0 0
8.483e+ 07 0
9.423e+ 06
(03263 O 0
30.12 0
2 0.2928

0 0
3.534e+04 -1.060e+ 06

4.241e+ 07

0.05647 -0.8157 0
0.8157 -11.29 0

0 0 0.0732
0.1631 -1.38 0
15.06 0
0.1464 |

The natural frequencies are found viathe Jacobi method.

W
w2
w3
Wq
Ws
Wg

[71.789 ]

454.52
1538.4
26385
4458.5
9217.3

rad/sec

11

0
0
- 4.712e+06
0
0
4.712e+06 |

Y2
0
uz
Y3
03
us

(28)

(29)



1] [ 1143 ]
fo 72.3
f3 244.8
= Hz
fa 419.9
fg 709.6
1fe| [1467.0]
(30)
Table 2. Finite Element Results for Example 2
Finite Element Classical
Model Solution Error
Index M ode Shape
fn (H2) fn (H2)
1 First Bending 115 115 0.0%
2 Second Bending 72.3 71.8 0.7%
3 Third Bending 244.8 201.0 21.8%
4 First Longitudina 419.9 409.3 26 %
5 Fourth Bending 709.6 394.5 79.9 %
6 | Second Longitudina 1467 1228 19.5%

The next step would be to solve for the eigenvectors, which represent the mode shapes. A
greater number of elements would be required to obtain accurate mode shapes, however.
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