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ABSTRACT

A family of transients with the property that the
initial and final acceleration, velocity, and
displacement are all zero is derived. The transients
are based on a relatively arbitrary function
multiplied by window of the form Cosm(x).Several
special cases are discussed which result in odd
acceleration and displacement f@ctions. This is
desirable for shaker reproduction because the
required positive and negative peak accelerations
and displacements will be balanced. Another
special case is discussed which will permit the
development of transients with the fust five (O-4)
temporal moments specified. The transients are
defined with three or four parameters that will
allow sums of components to be found which will
match a wide variety of shock response spectra.
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INTRODUCTION

A couple of decades ago several methods were
developed for matching a shock response spectrum
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(SRS) with sums of oscillatory waveforms. The
oscillatory waveforms were all suitable for
reproduction on electrodynamics or electrohydraulic
shakers. All these waveforms have several
properties in common. All have the property that
the initial and final acceleration, velocity, and
displacement are zero. This is required for accurate
reproduction on a shaker. Most also have the
property that they can be described with a few
parameters. One parameter defines the amplitude, a
second parameter defines the duration, and a third
parameter defines the frequency content. A time
shift parameter is also sometimes included to define
a temporal location. Usually the ti-equency content
is concentrated in a narrow band of frequencies.
One of the most popular of these waveforms are
exponentially decaying sinusoids defined by

a(t) = zfe-<”’ sin(m) t 20

=0
(1)

elsewhere

where a is the acceleration, A is the amplitude, <is
the decay rate which controls the duration and
bandwidth, o is the dominate frequency, and t is
time. This waveform does require a compensating
pulse to enforce the required initial and final values.
A second popular waveform is the WAVSYN
waveform defined by

a(t) = A Cocos .Z<x<z
2 2

=0 elsewhere (2)

x=atln

n = an odd integer

The typical use of these waveforms is to sum a
number of components with different parameters to
match a shock response spectnun [1,2].
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Sums of decaying sinusoids result in waveforms
that resemble many field environments, since many
environments are essentially the impulse response
of a structure with many modes. Properly used the
WAVSYN method can also yield very acceptable
results. A disadvantage of these waveforms is that
the peak positive and peak negative acceleration
and displacement are sometimes significantly
different. For eflicient reproduction on a shaker we
would like the peak positive and the peak negative
values to be similar. Another disadvantage is the
temporal moments [4] are difilcult to control.

Another application motivated the search for an
acceleration waveform that would yield an odd
displacement function with a single maximum and
minimum. This search resulted in a family of
waveforms that share the positive attributes of the
WAVSYN waveform, but also will allow the
generation of acceleration and displacement
waveforms, which are odd fimctions and hence
have the same positive and negative peaks. Another
special case allows the frost four temporal moments
to be controlled.

WAVEFORMS BASED ON THE COSm X

WINDOW

The usual practice is to define the acceleration
waveform and then to derive the velocity and
displacement waveform. I will depart from this
practice and define the displacement waveform
frost. If the displacement has two or more
continuous derivatives (and the derivatives are zero
at the boundaries) the displacement, velocity, and
acceleration waveforms will have the required
boundary zero conditions. Let the displacement be
defined as

d(t) = Ay(t)cosm z(t) –;< z < ;
(3)

= o elsewhere

The range oft will depend on the function z(t). All
the fictions defined in the rest of the paper will be
zero outside the defined range of z. m is usually a
positive integer, but this is not required. The

window, COS” (x), is described by Harris [3]. The
displacement is defined as any function, y(t),

multiplied by a window of the form Cosm (z).y(t)
must be continuous with at least two continuous
derivatives within the range of z. The displacement
is scaled by a factor A. The function z(t) can be

Qsl-11used to distort the time axis to achieve a WI
variety of windows. The velocity and acceleration
can be defined by differentiation of the
displacement

v = d = A[jcosm z –n@sinzcosm-l z1 (4)

a = d = A[(j–myz2)cosm z

– nz(2yz + yz)sin z cos”_l z (5)

+ nz(nz – l)yz2 sin2 z COS”-2z]

As can be seen, that for m >2 and if the functions
y(t) and z(t) and their frost two derivatives are
defined and finite over the defined interval of z the
acceleration, velocity, and displacement will be
zero at both boundaries of the defined interval.

2?iJf
SPECIAL CASE 1: zf=l, z(t) = —

n
In this case n can be interpreted as the number of
half cycles of the waveform at a fiequency,~ The
displacemen~ velocity, and acceleration are given
by

d(t)= J(t)COSm bt –J&t<?
4f 4J- ‘6)

v(t)= j Cosm bt – mby sin bt cos~-l h

a(t) = (j – mb2 y) COS’”bt – 2mjb sin bt cos”-l bt

+ m(m – l)b2ysin2 btcos~-2 bt

where b=2@ln.

If m = 2, The function, y(t), must be zero at

t= *n /(4f) for the initial and final acceleration
to be zero.

The window is an even fimction. If y is also even,
the displacement and acceleration will be even and
the velocity will be odd. If y is odd, the
displacement and acceleration will be odd, and the
velocity will be even. The WAVSYN waveform is

ahnost the special case, nz=l, y(t)= cos(nbt),
except the waveform is defined as the acceleration,
where here the waveform is defined as the
displacement.



2@t SPECIAL CASE 4: A=l, m =2, and
SPECIAL CASE 2: /4=1, Y(t)= 1, z(f) = —

n y(t) = sin(nbt), where n is an even integer

For this case the . acceleration, velocity, and The acceleration, velocity and acceleration are
displacement are given by given by

a(t) = –mb2 Cosmbt

+ nz(nz– l)b2 sin2 btcosm-2 bt

v(t) = –nzbsinbt cosm-l bt (7)

d(t) = COSmbt

The acceleration, velocity, and displacement
waveforms for ,4=1, m=3, and b=l are plotted as
Figure 1. Since b is set to one the range of t is

L7r/2.

y(t)+, A=l, b+, m=3
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Figure 2 Acceleration, velocity, and displacement
for the case of m=3, y(t)=t

Figure 1 Acceleration, velocity, and displacement
for the case of m=3, y(x)=l

The number of half cycles in the acceleration,
velocity and displacement will be n+2, n+l, and n
respectively.

SPECIAL CASE 3: /4=1, y(t)= t,Z(t)=t

For this case the acceleration, velocity, and
displacement are given by

a(t) = –mt Cosmt

– 2m sint cosm-’ t

+ m(m – l)t sin2 t cosm-2 t (8)

v(t) = cos~ t – mt sint cos~-’ t

d(t)= tcosm t

The acceleration, velocity, and displacement for
A=l, m=3, and b=l are plotted as Figure 2.

For the special cases 2-4 we need the same
parameters as for a WAVSYN waveform: the
amplitude, A, to scale the acceleration, the
frequency, J the number of half cycles, n, and a
shift parameter to define the temporal location of
the waveform.

Example Special Case 3

The acceleration, velocity, and displacement
waveforms for the special case 3, with a frequency
of 100 Hz, n =2, and normalized for an amplitude of
one is shown as Figure 3. Comparing Figures 2 and
3 we see that this waveform has characteristics very
similar to special case 2. Note that the peak positive
and peak negative acceleration and displacement
are the same, a desirable characteristic for shaker
reproduction.
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The acceleration, velocity, and displacement
waveforms for a frequency of 100 Hz, n=50, and
normalized for an amplitude of one is shown as
Figure 4.
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Figure 3 Waveform with four half cycles
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Figure 4 Waveform where acceleration has 52 half
cycles
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Figure 5 SRS for waveform with several values of n

The SRS for several values
amplitudes are normalized to
Figure 5.

GENERALIZED WAVSYN

A ~eneraIized WAVSYN

of n, where all
one is shown in

waveform with
normalized amplitude can be defined, where n is
the number of half cycles

a(t) = –3b2 COS3bt + 6b2 sin2 btcosbt

~=()

a(t) = –3b2t COS3bt – 6b sint cos2 bt

+ 6b2 sin2 btcosbt – COS3bt (lo)

n=l

a(t) = –b2 (1+ n2)sinnbtcos2 bt

–4nb2 cosnbtsinbtcosbt

+ 2b2 sinnbtsin2 bt

n = even integer> O

a(t) = cos(nbt)cos(bt) n = odd integer> 1

For consistency we would normalize the amplitudes
in each case to unity.

a(t) = a(t)/ max Ia(t)

SPECIAL CASE 5

Consider the case where m=3,

2nf t
y(t) = sin— Ostsl

T

and

[[) ]

‘1
Z(t)=z ; –; ()<t<l

This gives

277-tj=*cos—
T

(11)

(12)
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()2Zf 2 27fljj=— _ sin —
T T

(13)

z= nptp-llTp

z = V(J? – l)tp-2/Tp

I’ll call this the COS3Wwaveform since it is based on
a COS3window for which the time axis is ~arped.
The acceleration, velocity, and displacement are
found by substituting the relations for

Y, ~)j, Z,Z,andz ~to Equations3-5. If ~ equals
1 the waveform is symmetric and the skewness [4]
is zero. The skewness is a measure of the shape of
the waveform. A positive skewness indicates a fast
rise and a slow decay of the waveform. If you
reverse a time history, the skewness changes sign.
Ifp is not one, the time axis is warped distorting the
waveform envelope. p less than one gives positive
skewness and p greater than one gives negative
skewness. Thus the waveform skewness is
controlled by p. Figure 6 shows how the skewness
varies as a function ofp.

The duration of the waveform is controlled by T
and the energy is concentrated at the Ilequency, $
The energy or the peak amplitude can be scaled
with an amplitude parameter. A time shift will
control the centroid. We can develop waveforms
with a specified tlequency content, amplitude,
centroid, duration, and skewness. The energy can
be adjusted to match the SRS. By summing several
of these waveforms we will be able to match an
SRS in the same manner as is done for decaying
sinusoids and WAVSYN. With the additional
advantage of having control over several of the
temporal moments (centroid, rms duration, and
skewness). An example is given in Figure 7.

A COSm window with m>3 will make the
acceleration smoother near the origin,

CONCLUSIONS

A family of waveforms suitable for reproduction on
shakers is given. A special case yields waveforms
very similar to the popular WAVSYN waveform,
with one slight improvement, the positive and
negative acceleration and displacement peaks are
about the same, yielding balanced waveforms for
shaker reproduction. Other special cases lead to a
definition of a generalized WAVSYN waveform
defined for all positive integers. Another case is
developed which will allow the control of some
temporal properties as well as the spectral content.

This waveform can also be used to synthesize
waveforms that will match an SRS.
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Figure 6 Skewness varies withp
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Figure 7 An example of a cos3d waveform
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