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Figure 1. 

 

 

Coulomb damping is dry friction damping. Consider the free vibration response of a single-

degree-of-freedom system subjected to Coulomb damping. 

 

The damping force F is 

gmF µ=                                                                                                   (1) 

where 

µ  = friction coefficient 

m = mass 

g = acceleration of gravity 

 

Assume that the friction coefficient is constant for simplicity. 
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                      Figure 2.  Coulomb Force vs. Velocity 

 

 

The governing equation of motion for the displacement x is 
 

)x(sgnFxkxm &&& −=+                                                                                               (2) 

 

where k = stiffness 
 

The )x(sgn &  function represents the sign of x& . 

As an alternative, the governing equation can be written as 
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The governing equation is solved in a piecewise-linear manner. 
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Assume that initial displacement x(0) is 
 

    x(0) > F / k                                                                                                         (4) 

 

Also assume that the initial velocity is zero. 

 

Consider the equation of motion for negative velocity. 

 

      Fxkxm =+&&         for      0x <&                                                                                  (5) 
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The natural frequency nω  is  
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The equation is solved using Laplace transforms. 
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Take the inverse Laplace transform. 
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The velocity equals zero at 

n/t ωπ=                                                                               (20) 
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The displacement at this time is 
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Consider the equation of motion for positive velocity.   

 

      Fxkxm −=+&&         for      0x >&                                                                    (23) 

 

The initial displacement term must be reset to the last displacement for negative velocity. 

Furthermore, a phase angle must be added to the argument in the cosine term. 
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The first negative displacement peak thus has an amplitude that is 2 F/k less than the initial 

displacement in terms of absolute values. This reduction factor can also be derived from the 

work-energy relationship in Appendix A. 

 

The pattern continues such that the envelope has a linear decay. 
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The velocity returns to zero for 

 

n/t ωπ=                                                                                                          (27) 
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Each consecutive positive peak is thus 4 F/k lower than the previous positive peak. 

 

The process is then repeated. 

 

Example 

 

A single-degree-of-freedom system has 

 

mass = 1 kg 

 

stiffness = 20,000 N/m 

 

friction coefficient = 0.4 

 

initial displacement = 5 mm 

 

 

The resulting displacement is shown in Figure 3. 

 

The displacement converges to F / k ,  where gmF µ= . 

 

Depending on the initial displacement, the displacement may also converge to  k/F− . 
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                    Figure 3. 
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APPENDIX A 

 

Energy Method 

 

The potential energy is set equal to the work done by friction for one cycle. 
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where  1x  and 2x  are consecutive positive peaks.      

Note that the kinetic energy is zero at the instantaneous time that each peak occurs. 

 

The work-energy relationship is satisfied if 
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APPENDIX B 

 

Matlab Script 

 
 
disp(' '); 

disp(' dry.m ver 1.0 June 25, 2005 '); 

disp(' by Tom Irvine Email: tomirvine@aol.com '); 

disp(' '); 

disp(' This program calculates the response of a '); 

disp(' single-degree-of-freedom system subjected to dry damping 

'); 

disp(' '); 

% 

clear all; 

disp(' Enter mass (kg) ') 

m=input(' '); 

disp(' Enter stiffness (N/m) ') 

k=input(' '); 

disp(' Enter coefficient of friction ') 

mu=input(' '); 

disp(' Enter initial displacement (mm) ') 

xo=input(' '); 

xo=xo/1000.; 

% 

F=mu*m*(9.81); 

fk=F/k; 

% 

omegan=sqrt(k/m); 

fn=omegan/(2.*pi); 

% 

out1=sprintf('\n fn = %8.4g Hz\n',fn); 

disp(out1); 

% 

out1=sprintf(' F/k = %8.4g mm\n',(F/k)*1000.); 

disp(out1); 

% 

if( F/k > xo ) 

disp(' '); 

disp(' No oscillation. '); 

disp(' F/k > xo '); 

end 

% 

T=1/fn; 

% 

dt = T/100.; 

delta=2.*pi/100; 

% 

num=12.*T/dt; 

% 

j=1; 
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tdelay=0.; 

arg=0.; 

for(i=1:(num+1)) 

t(i)=(i-1)*dt; 

% 

arg=arg+delta; 

if(arg>2.*pi) 

arg=arg-2.*pi; 

end 

% 

if(arg>=0 && arg<=pi) 

if( (xo-fk) <=0) 

x(i)=xo; 

else 

x(i)= fk +( xo - fk )*cos(arg); 

end 

x1=x(i); 

else 

if( abs(x1) < fk ) 

x(i)=x1; 

else 

x(i)= -fk +( x1 + fk )*cos(arg+pi); 

end 

xo=x(i); 

end 

% 

end 

x=x*1000.; 

plot(t,x); 

xlabel(' Time(sec) '); 

ylabel(' Displacement(mm) '); 

out1=sprintf(' SDOF Response Dry Friction fn=%8.4g Hz ',fn); 

title(out1); 

grid on; 


