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ON-LINEFAILUREDETECTIONANDDAMPINGMEASUREMENTOF

AEROSPACESTRUCTURESBY RANDOMDECREMENTSIGNATURES

By Henry A. Cole, Jr.
Nielsen Engineering & Research, Inc.

SUMMARY

Randomdecrement signatures of structures vibrating in a random
environment are studied through use of computer-generated and experimental
data. Statistical properties obtained indicate that these signatures are
stable in form and scale and hence, should have wide application in on-line
failure detection and damping measurement. On-line procedures are described
and equations for estimating record-length requirements to obtain signatures
of a prescribed precision are given.

INTRODUCTION
i

The risk of total failure of an aerospace structure is usually kept

small by frequent inspections, but the cost is high l and use of the vehicle

is lost 3urin9 the inspection period (ref. i) . This may be particularly

critical during the initial debugging period in which a failure in a

sing{e vehicle may cause grounding of an entire fleet and create bottle-

necking in the inspection process. Much of the problem could be resolved

if aN onboard warning system could be developed which could detect incip-

ient failures and indicate an individual inspection time for each vehicle.

However, for such a system to be effective, it would have to avoid false

warnings which might lead to unnecessary inspections and loss of operational

capability.

The question is "HOW could flaws in the structure be detected when

the vehicle is in service?" Visual inspection is obviously too incomplete

without access to critical structural areas. Monitoring of acoustic

emissions may be a possibility, but ambient noise sources are often so

large that it would be difficult to detect the additional noise emanating

from a small flaw. Another possibility is to analyze the structural

ICost of inspection and repair of fatigue cracks alone in lifetime of a

commercial airliner is of same order of magnitude as initial cost.
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vibrations themselves and to look for Changes in vibration characteristics.

For example; in reference 2 ', the autocorrelation function of random

vibrations was observed to change with the development of a fatigue crack

in the structure,see figure i. Unfortunately, the autocorrelation function

also changes with variations in the random environment and false warnings-

of failure would be a problem under in-service operating conditions. -

Theoretically, the problem of changes of the signature due to changes in

the input environment could be overcome by measuring both the input forces

and the output vibrations and calculating cross-spectra or cross-correlations

as described in references 3 and 4, but this is extrem@ly difficul 9 to do

in practice because the input f0rces occur at so many points that %hey are

almost impossible to measure. The problems with spectral and correlation

methods are further complicated if the structure has nonlinear damping with

amp!itude which is often the case (ref. 2).

From the above it should be apparent that adaptation of methods which _

work under controlled or_"laboratory" conditions to "in-service" conditions

presents the difficult problem of distinguishing between changes caused by

normal environmental effects and those due to flaws. Progress in solving

this problem was reported in reference 2 in iwhich variations in autocor-

relation signatures were reduced by cross-correlation of the output signal

with a stratified output signal. The results led to development of the

random decrement method which is the subject of the present report. In

this method, reference 5, segments of a random time history which start

at a constant amplitude are selected by logic circuits and are averaged

to form a curve which is called a "randomdec signature". To implement the

method, a high-speed digital computer was built at Ames Research Center

(ref. 6), and applied to a wind-tunnel wing model which was tested to

destruction. ResUlts indicated that the random decrement signature

remained relatively invariant until an incipient failure Occurred in the

wing at which time the signature underwent significant changes which

could be used in a failure detection system.

An0ther aspect of the use of randomdec signatures is in the measure-

ment of dampinq whichlhas applications in flight and wind-tunnel flutter. "

tests and in prediction of response of structural modes. Damping is
r

obtained in the same way as from a free vibration decay since the randomdec

signature is representative of the free vibration decay curve which would
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be obtained if the point on the structure were displaced to the selected
amplitude and suddenly let go. For single-degree-of-freedom linear systems
excited by white noise, the randomdec signature is identical in form to the
autocorrelation function, but for multi-degree-of-freedom systems and non-
linear systems, it differs in that the troublesome cross products (i.e.,
off-resonant vibrations mentioned in ref. 7) are absent. This should
greatly simplify the separation of modeswhich occur at nearly the same
natural frequencies and allow use of methods such as reference 8 rather
than the more complicated procedure of reference 7.

Practical application of any signature method requires a knowledge of

the precision of the signature for a given record length. To establish

this for randomdec, a digital computer program was written which generated

random time history responses of a specified mathematical model and then

calculated the randomdec signature including its variance. These results

have been analyzed and presented in the present report to show how the

ranldom decrement method can be applied in practical problems of failure

detection and damping measurement.
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signature with a_ initial displacement and a positive slope

(see fig. 23)

signature with an initial displacement and a negative slope

(see fig. 23)

randomdec signature obtained by averaging AVG and AVH
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filtering (see fig. 20)
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(see fig. 20)

frequency, Hz

due to distortion of input or
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undamped natural frequency of a structural mode, Hz
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value of time history Q time units after Y = Ys with a
negative slope (see fig. 23)

linear regression of H(16) with constant G

number of peaks encountered for a selection level, Ys

number of digital points in a time history

number of individual segments used in randomdec signature (figs. 2

and 3) or number of cycles on signa£ure used to calculate _ On

figure 12

period of oscillation, time units

numbe± of time units after Y = Ys' abscissa °f rand°mdec digital
signatures

autocorrelation signature defined on figure 2

correlation coefficient estimate

sample rate, samples per second

record length, seconds

time, seconds

time for which Y = Ys numbered by Subscript

amplitude of time history at time t

n (fig. 3)

randomdec signature values from digital program

selection level

defined on figures 2 and 3

randomdec signature defined on figure 2

damping ratio

damping ratio estimated from a signature

rms of filtered time history

rms of unfiltered time history

rms of y



or

o6

T

OJ
n

rms of random input

standard deviation of randomdec signature at

2(Q) _+ H k

. K=I

AVT 2 (Q)

Q time units,

time lag, Q/SR

frequency, radians per second

undamped natural frequency, radians per second

frequency of filter half power point, 3 dB point, radians per
second

INTERPRETATION OF THE RANDOMDEC SIGNATURE

In this section the basic concept of the randomdec signature will be

deveioped as well as the intuitive reasoning which distinguishes the

random decrement signature from other signatures. As was mentioned in the

introduction, cross-correlation and cross-spectral methods which require

measurement of the input forces are not considered to be practical under

in-service conditions. Consequentl'y, it will be assumed that the only

measurement available is the output response of a strain gage or acceler-

ometer located at a suitable point on the structure.

A typical random response of the transducer is shown on figure 2.

Such responses are typical of in-service conditions of an aerospace

structure in flight or during landing or takeoff on a runway. The random

response curve itself is so complicated and variable that it cannot be

used to detect changes although all of the information is contained within

this time history. Various analyses may be performed on this curve to

condense '•the information into a meaningful signature. One well-known

technique shown on figure 2 is the spectral density which may be obtained

directly from an ensemble average of the absolute amplitude squared of

the Fourier transform of N segments of the time history. The resulting

signature has a peak for each structural mode; and for well-separated

peaks, the damping ratio of the mode may be obtained by measuring the

width of the peak at half the peak value. This so-called bandwidth of

5



• Also the integral of the powerthe half-power point is equal to 2_fn
spectral density is equal to the mean square value• Hence, the spectral
density signature is useful in obtaining a broad picture of the frequencies
of the structural modes, the energy in the modes and the approximate damping

of isolated modes. However, the main problem of its use as a failure

detector is that it is very dependent on the input as shown by the following

equation from reference 4.

Gy(f) = IH(f)12Gx (f)

in which H(f) is the transfer function of the structure and Gx(f) is

the spectral density of the input forces. It may be seen that the ampli-

tude and form of the output spectral density G (f) are dependent on the
Y

amplitude and form of Gx(f) which in our case is unknown. Hence, Gy(f)

is only truly representative of the structure if G (f) is a constant
x

(white noise).

Another dynamic signature shown on figure 2 is the autocorrelation

which has been used extensively in on-line applications described in ref-

erence 2. For isolated modes, the signature has the same form as the free

vibration decay curve of a structure with an initial displacement and may

be interpreted as such to obtain period and damping of the mode. The

autocorrelation is less sensitive than spectral density to variations in

the spectral form of the input. In reference 2 the distortion of the

signature due to the input is shown. The main problems with autocorrelation
m

as a failure detector are that the level, y2, is dependent on the intensity

of the input amplitudes ind the signature will vary with the input if any

nonlinear damping is present. The autocorrelation function may be used

for measuring damping of isolated modes as was shown in reference 2, and

for multi-mode applications in references 7 and 8.

The random decrement signature shown on figure 2 has an appearance

similar to autocorrelation, but it has many properties which make it more

useful as a failure detector. The first is that the signature has a

constant amplitude, Ys' which represents a calibrated displacement of the

structure. This is important because it fixes the level of the signature

and makes it independent of changes in intensity of the input. Also, if

the structure has nonlinear damping with amplitude, the fixing of ampli-

tude stabilizes the form of the signature. Another property is that

6



the signature has the samedimensions as the original time history since
no multiplications are performed. Consequently, in mul£i-mode applications
troublesome cross products of modes are avoided; and in applications where
the input spectral density is not flat, the signature distortion is
considerably less.- Other_more subtle properties will becomeapparent in
later sections of the report.

Although the equation on figure 2 describes the process, a better

feel for the extraction of the signature is obtained by graphically

performing the process as shown on figure 3. First, the selection level,

Ys' is set. Each time the curve passes through Yo(t) = 0, a segment of

the curve is placed in summation. The first two segments are shown on

the figure, one with an initial condition of a plus slope and one with

an initial condition of a minus slope. The average of these two is the

signature 6(T) for N = 2. As more samples are taken, the signature

converges to a form as shown for N = 100. For a single-degree-of-freedom

system the value _ = P would be the period of oscillation. For this

particular value of T, a histogram of the nurnber of points at various

levels is shown. This tends to be normally distributed about 5(P), and

as will be shown in Appendix A the standard deviation,o£, is small and is

almost independent of the damping ratio. In failure detection devices we

can use the standard deviation,a , to set a confidence level a_ccording to

the _ number of false alarms which we are willing to accep[; and in damping

measurements We can use it to specify the record length needed to obtain
, f ......

damping of a specified accuracy. : •"

Another interesting aspect of the random decrement process is shown

on figure 3(b) which shows the distribution of time between the samples

selected. If the time history were a sine wave, the samples would be

taken periodically. For a narrow band process, such as shown here, the

samples are taken with a random distribution in time about the period of

the system. For a white noise time history, one might expect that samples

would be taken completely at random.

Now the question is "How is the signature related to the structure?"

A hypothesis for linear systems is shown on figure 4. This shows the

proces s as the linear superposition of a step, an impulse and random

response for each segment of the time history selected. In other words, _

the step represents the homogeneous solution to an initial displacement,



the impulse represents the homogeneoussolution to an initial velocity,
and the random response represents the particular solution to random
inputs which occur during the sample segment. It may be seen that alY
of the step responses are the same, whereas the impulse responses have
initial slopes with alternate plus and minus values of varying magnitude.
The random responses are of course random. Whena large number of the
segments are averaged, only the step response is left because the impulse
and random responses tend to average to zero. If the inputs do not have

a zero mean, then the signature obtained will still start at Yo = 0 but

will not end at -Ys" In other words, the signature will be for a loaded

structure, and this must be taken into account in the interpretation

(i.e., Ys shoula be selected as the deflection from the equilibrium

position.) Of course, signatures could be obtained by taking only seg-

"ments with an initial slope of a plus value, but then the signature would

vary with intensity of the input amplitude.

For nonlinear systems, the superposition arguments cannot be used

so that an exact interpretation of the relation of the signature to the

structure cannot be made at present. It seems likely though that for

small damping, the signature should be close to the free oscillation

curve for the nonlinear system. For failure detection, the important

thing is that the curve should be repeatable under various ambient

conditions.

It is quite apparent that considerable work needs to be done in

going backward from the signature to the mathematical equations which

define the system. This is not the present purpose. The signatures do

provide a check on the linearity of a system if multiple selection levels

are used. Also with multiple selection levels, the multiple signatures

which are obtained should provide a print which would uniquely identify

the system and provide a standard for failure detection.

ON-LINE FAILURE DETECTION

From the foregoing section it was shown that the randomdec signature

gives a curve which is related to the free vibration decay of the structure

with an initial displacement. The scale and form of this curve is always

the same even when the intensity of the ambient random forces changes in



contrast to spectral density and autocorrelation which vary with changes
in the ambient random forces. In this section, the hypothesis and appli-
cation of the method to failure detection is developed.

A typical experimental setup is shown on figure 5_ It should be noted
that although the spectral analyzer is not part of the failure detector, it
still serves a purpose in providing a broad view of the location of struc-
tural modes which may be used as an aid to specifying filtering requirements.
Let us consider now what happens to the signature when a fatigue crack

develops in a structure. A fatigue crack introduces additional degrees of

freedom which are excited by the random forces. When the crack is small,

small blips would show up in the hashy, high-modal density region of the

spectral density; in this form detection would be difficult. As the flaw

grows, the frequency of the failure mode would be expect4d to decrease

until it approaches the fundamental modes. By the time a flaw reaches the

low-frequency range it would be so serious that it would either be obvious

or complete failure would be imminent. To detect the failure mode it needs

to-be intercepted at a high enough frequency so that corrective action can

betaken and complete failure avoided. To do this the random signal is

passed through a band-pass filter Which is set at a high frequency. With

th_ _ undamaged structure, standard randomdec signatures are established for

all loading conditions and environments. If a failure develops, it will

have a powerful effect on the signature because it will dynamically couple

width structural modes within the band-pass frequencies of the filter. For

the failure detector, once the standards have been established only parts

of the signature at peaks need to be calculated with warning devices

sensitive to voltage changes in the peak values.

A procedure for failure detection is outlined on figure 6, which

shows only a single peak for illustration. The standard signature region

is first established to a confidence level consistent with percent of false

alarms which could be tolerated. For the 95-percent confidence level

shown, of course, false warnings would occur 5 percent of the time.

Detection would be as shown on the figure. The check on standard deviation,

a c, is to prevent false indications due to extraneous input sources other

than the normal rar_om excitation, i.e., a sinusoidal force or signal in

the electronics. For example, if a sinusoidal force were applied to the

structure, the signature would become an undamped cosine wave and fall

outside the standard region, but the standard deviation would fall to zero.

9



In this case the amber light would go on. in the on-line computer built

at AmesResearch Center this check on ce was not included and may n0t
be necessary unless a high level of reliability of the device is desired.

Experiment with Truss

Somelaboratory experiments were conducted to check the sensitivity
of randomdec signatures. Figure 7(a) shows the experimental setup with a
truss structure with bolted joints. Figure 7(b) shows the spectral density
of the output of the accelerometer. The amplitudes were so small that they
could not be detected visually, but were apparent from the emitted sound
and fingertip feel. From the spectrum several frequency ranges were
selected as "suggested on figure 5. Ranges where a distinct peak followed
by a distinct valley were selected since it was felt that these would
result in signatures with distinct peaks. The aim of the test was to see
if a difference between tight and loose bolts at joint A-B could be
detected. For the filter range 600-800 Hz, the spectral densities for
bolts tight and loose are shown on figure 7(c). The difficulty in dis-
tinguishing between the two curves is obvious. For the samedata set,
the signature obtained from •the randomdec computer is shown on figure 7(d)
and the change in the signature is readily apparent. Similarly, for the
frequency range 1100-1300 Hz (fig. 7(e)), the change in the randomdec

signature is apparent but not as distinct. This experiment was not

extensive, but it points to one of the key problems in failure detection.

That is, a particular frequency range and transducer location may be best

for detection of a particular flaw. Obviously, experience is needed with

different failure mechanisms in order to establish the standard signature

which should be used in the detection device.

• Experiment with Flutter Model

Another example of failure detection with the randomdec computer was

reported in reference 6 for a wind-tunnel model undergoing flutter

Instr_entation of the model consisted Of strain gages at the root as

indicated on figure 8. Randomdec signatures taken at intervals are shown

for a frequency range above the natural frequencies of the first three

modes. For the first 2 minutes and 45 seconds the signatures •fell within

the narrow range indicated by :the "standard." The signature then underwent

10



a sequence of larqe changes until finally the wing failed and the signal
stopped. It is apparent from this sequence that the randomdec signature
was sensitive to an incipient failure in the wing which occurred a con-
siderable time 2 before the wing failed completely. The changes in the
signature are sufficiently large to enable a failure detector utilizing
the voltage of a point on the second peak to anticipate the failure. The
importance of selecting the proper frequency range is emphasized by
figure 8(b) which shows the signatures obtained from the unfiltered time
history. Although changes in the Signature are apparent, the voltage
changes are not sufficiently large to be used in a failure detector.

Figure 9 shews samples of the time history taken at the same times
as the signature. This demonstrates the complexity of the original signal
from which the signatures were obtained.

MEASUREMENTOF DAMPING

Dampingmeasurements are important for prediction of structural
response, definition of flutter boundaries, and detection of malfunctions
of dampers in flight (i.e., stabil£ty augmentation systems, engine shock
mounts, etc.). On-line monitoring of such systems could contribute to

flight safety since there are many cases of accidents involving engine

mount dampers. Also, if present-day proposals for systems to control

flight flutter are implemented, on-line damping monitoring systems will

be needed for flight safety.

On-Line Measurement

In flight and wind-tunnel flutter tests such as described in ref-

erence 2, damping values are needed as soon as possible. As shown in

Appendix A, for a single-degree-of-freedom system the randomdec signature

may be used directly to extract damping ratios. Of course, real systems

always contain many modes and several techniques are followed to reduce

the response to an effective single-degree-of-freedom system. These are

discussed later in the section on experimen£ai procedures. For the

2On a full-scale vehicle, warning time would have been 7-1/2 minutes.
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present we will assumethatthe signal has been effectively reduced to
that of a single-degree-of-freedom system. Whenthis has been done, and
no distortion is present due to filtering or spectral shape of the input,
the damping ratio may be read directly on the oscilloscope by putting a
damping ratio scale on the peak as shown on figure 10(a). Sometimes it
is useful to set the scope sweep faster than the signature sweep as shown
on figure 10(b) so that the beginning part of the signature also appears
at the end of the signature. Small changes in damping and frequency may
easily be detected by viewing this region.

Oftentimes, it is desirable to know if nonlinear effects with ampli-
tude.are present. This can be done on line by superimposing signatures

with different selection levels as shown on figure ii. In the example

shown the selection level of one signature is one half that of the other.

To allow direct comparison of the signatures then, the 0.5v signature

is multiplied by 2 in the display.

As is shown in Appendix A, the signatures are sometimes distorted by

filtering and spectral variations of the input. When this occurs, damping

ratio should be measured as shown on figure 12 which was obtained from the

well-known equation:

in
Y2 _ -2_N_

This process, although not a direct readout method, may be performed

rapidly during a test and compensates for most severe distortion problems.

If a Gerber variable scale is used, the y2/y_ ratio can be measured

directly without performing the division.

A somewhat siower alternate method isshown on figure 13_ This method

may be used if time is available for plotting points and if an estimate of

the distortion as in reference 2 is desired. The distortion usually occurs

in the first two points so a straight line is faired ignoring these points.

The equation for damping ratio shown on the figure is obtained by assuming

_I - 4 2 to be negligible and solving for _ in the equation above. Thus

In Yl - in Y2

2_N

12
(

.i



TO convert the logarithms to a scalar measurement we multiply by in 10/x
o

in which X is the scalar length of one decade on the logarithm scale
o

used. The equation becomes

2.3026 X

= _ NX
o

in which X is the scalar distance representing the difference in

logarithms as shown in the example.

Several useful rule-of-thumb methods for obtaining damping ratio are:

Yl -- Y2

for small _ and v I = i. Note that if a variable scale is used Yl can

be set to 1 and Yl - Y2 measured directly. And

where C
i/2

1

_- 9.08C
i/2

is the estimate of the number of cycles to half amplitude.

Off-Line Measurement

Usually random time histories are recorded on magnetic tape; and

following a test, accurate values of damping are wanted for use in response

prediction. Several examP!es of damping measurement were worked out on

experimental data obtained by the Aeronautical Structures Branch at Ames

Research Center from vibration of a 0.2286- by 0.3048-meter panel 0.00235-

meter thick in a turbulent boundary layer at Mach numbers from 2.5 to 3.

Figure 14(a) shows the spectral density for an isolated mode obtained

by Fast Fourier transform of 4098 points taken at a sample rate of 8000

samples per second. The difficulty of measuring damping by measuring the

bandwidth of the half-power point is obvious. Figure 14(b) shows the

randomdec signature for the same data set with damping measurements

obtained by the method of fiqure 12. Note the consistent values of _est

for N = i, 2, and 3.
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Using equation (A-8) in Appendix A at a confidence level of 95 per-
cent, the fractional error is

1.96

F_ = = 0.55
(0.51) (4) (0.008) (771)

Values of _ measured on four such signatures were 0.007, 0.006,

0.007; 0.010, 0.011, 0.012; 0.007, 0.007, 0.007; and 0.009, 0.009, 0.009

which fall within the predicted range of 0.0083 ±0.0046. The consistency

of values for N = i, 2, and 3 and the range of values lends confidence

to the record length predictions for ideal single-degree-of-freedom systems

which were obtained in Appendix A.

Figure 15(a) shows the spectral density of two modes which could not

be separated by filtering without excessive distortion of the signature.

The randomdec signature is shown on figure 15(b) and it may be seen that

the values of _est are increasing with N which indicates that a beat

phenomenom is present. Consequently, the damping values shown should not "'_

be used in prediction, but the damping values of the separate modes should _

be extracted from the signature by a method such as described in ref-

erence 8. Note that methods such as reference 7 for autocorrelation do

not apply to randomdec signatures.

From the above examples, we see that when signatures of unknown •

systems are taken and spectral density is not calculated, the randomdec

signature should be obtained for at least four periods of oscillation so

that the consistency and, hence, validity of _est can be determined.

EXPERIMENTAL PROCEDURES

As was shown for the autocorrelation method in reference 2, there

are many pitfalls of analysis which affect dam_ping values obtained from

random data. These problems have been studied for the random decrement

method by analysis of computer-generated data and by experience with the

randomdec on-line computer at Ames Research Center. In this section the

problems are discussed and recommendations are made.

14



Calibration

Accurate measurements in any experiment require calibration of the
equipment. Figure 16 shows the steps to be taken in calibrating a ran-
domdeccomputer. An input test signal of a sine wave generator is needed
which covers the frequency range in which measurements are to be taken.
The figure is self-explanatory so only a few commentswill be made_ The
setup on figure 16 assumes that the calibration of the transducer and
preamplifier is known so that volts can be converted to physical units.
Also the frequency response characteristics of the band-pass filter (i.e.,
fig. 17(a)) should be known so that the effect of filtering can be
estimated. The amplifier should be a calibrated variable-gain amplifier
so that the averager can be operated over its full dynamic range. The
main setting of the randomdec which has to be made is to check the zero
detectors as shown. Once the band-pass filter settings are known, it is
good practice to take a signature of the filter using a calibrated random
input before and after a test. This is a simple way to test the filter
to make sure that it has not changed during the test. Sometypical filter
signatures are shownon figure 17(b).

The effects of the filter on the rms output of a single-degree-of-
freedom system should be known for the type of filter being Used so that
amplifier settings can be estimated w_en filter settings are changed.

This is also needed to convert Ys from volts to physical units. The
effect of R-C filters on the filtered output, _F' is shown on figure 18

for various ratios of filter cutoff frequency to natural frequency of a

single-degree-of-freedom system..

Aliasing

In reference 4 it is shown that sine waves which have frequencies

above and below the Nyquist frequency (sample rate/2) may pass through

the same points if they are taken at equal time intervals. Hence, when

data is digitized the frequency components above the Nyquist frequency

are folded back into components below the Nyquist frequency. To simulate

this effect, a very lightly damped mode was programmed at a frequency

which would fold back on the single-degree-of-freedom system with a damping

ratio of 0.02 as shown on figure 19. It may be seen that a large error

in the measured value of damping could be caused by the folding back of
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the high-frequency mode. This problem is ordinarily avoided by passing
the signal through a low-pass filter prior to digitizing. The figure
serves as a reminder that aliasing is a fundamental problem which affects
randomdec as well as autocorrelation and spectral density.

Input Distortion

In reference 2, it was shown that the autocorrelation signature is
distorted by an input spectrum such as isotropic turbulence, and an
expression for the distortion was given in terms of the 3 dB frequency,

_i" Distortion measurements of randomdec signatures were made on the
digital computer and are shown on figure 20. It may be seen that the
randomdecdistortion is about half the distortion with the autocorrelation

signature. In either case, input distortion may be avoided by measuring
damping as shown on figure 12-

Two-Mode Response

Another problem which may cause trouble in dar_ping measurement is

the occurrence of two modes with frequencies so close together that they

cannot be separated without distortion by filtering. To study this

problem, the time history of a two-degree-of-freedom system with closely

spaced natural frequencies was generated, and the randomdec signature

was computed as shown on figure 21. A check point of the theoretical

free vibration decay curve is shown to fall on the randomdec signature.

For comparison, the autocorrelation function was calculated and it

may be seen that it differs considerably from the rand0mdec signature.

(Autocorrelationwasonly calculated for the range shown because of limited

computing time available.) This is probably due to cross products which

occur in the autocorrelation of closely coupled modes as discussed in

reference 7, p. 28. In this reference, the separation of frequency and

damping is accomplished by taking a one-sided Fourier transform of the

autocorrelation function, and then by applying a Kennedy and Pancu analysis

in the complex plane. In all, three Fourier transforms are required in

the method. It appears that the randomdec method offers a much more direct

and rapid means for separating closely Coupled modes. The randomdec

computation itself proceeds faster than a single Fourier transform; and,

slnce the signature is undistorted by cross products, a direct curve
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fitting method such as described in reference 8 may be used. (Note, a
randomdec analysis of 4098 points required l0 seconds of IBM 360 computing
time as compared to 20 seconds for a Fast Fourier transform.)

Sometimes the two-mode problem can besolved by location of the
transducer on the node line of one of the closely spaced modes. If this
is done, then two transducers are needed to measure the damping of the
modes simultaneously. In most applications the structural modes, shapes,
and frequencies are known ahead of time and the transducer location can
be chosen to avoid response time histories with closely spaced modes.
If mode shapes are unknown, then locations must be chosen by trial and
error or by an educated guess.

Selection of Sample Rate

Whena random force excites a structural mode of a given frequency,
the output time history does not contain an infinite number of independent
points, since adjacent points are correlated. (See Appendix A.) A sine
wave time history, for example, may be described by its amplitude and
phase and hence has only two independent measurements. Any curve, then,

whi,ch may be described by a Fourier series may be described by a number

of points equal to two times the number of terms in its Fourier series.

Hence, if we are to extract all of the information from a time history,

we must sample at a rate equal to two times the frequency of the highest

Fourier series Component. If we sample at a higher rate, the measured

points cannot be independent and some sort of averaging means must be

used to obtain the independent values. Oftentimes the sample rate is

set equal to 4 or 5 times the highest frequency of interest, since a

low-pass filter must be used to avoid aliasing and the higher sample rate

is selected to put the flat portion of the filter over the frequency range

of interest. As shown in Appendix A, randomdec signatures are relatively

insensitive to low-pass filtering so that the sample rate requirements

will depend on the degree of resolution desired in the signature. For

failure detection, a sample rate of only 2 times the frequency of the

failure mode is needed. For damping measurement, 16 times the frequency

of the highest mode of interest is desirable to define the signature

adequately. At the 16-times rate, the signature has a definition of 16

points per cycle, which for the 4-cycle signature recommended results in

the modest requirement of storage of a 64-point signature.
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Numberof Segments

Selection of N = 500 seems to be an adequate choice of the number

of functions for an accurate signature. The effect on accuracy of more

or less functions may be estimated from Appendix A. Also, the time

required to obtain this number of functions for planning tests may be

obtained from Appendix A.

Transducer Location

A dynamic time history from a single transducer does not necessarily

contain all of the information needed to describe the system completely.

If the measurement is taken at a node line for example, information on

that mode will be missing. Thus we see that on a structure, the resolution

of the measurement needed to extract information on a particular mode is

very dependent on transducer location. If a single transducer location is

to be used, then a point must be found which has a sufficient amplitude in

all modes of interest (e.g., a wing accelerometer would most likely be

placed near the wing tip and strain gages near the root). In many cases,

the desirable location from a resolution standpoint may not be practical

for other reasons (e.g., accessibility, nearness to noise sources or elec-

trical disturbances, extreme environment such as hot spots, etc.). In

general, we have to select the modes of interest or section of the structure

which we wish to define, and we locate our transducers at points which

emphasize this information and de-emphasize extraneous information.

CONCLUSIONS

Studies of randomdec signatures obtained from data generated by a

digital computer and by experiments with structural models have led to

the following conclusions:

(I) For single and multi-degree-of-freedom linear systems, the

randomdec signature is equivalent to a free vibration decay curve with

an initial value at the selection amplitude.

(2) The randomdec signature provides a curve which is stable fn

form and _cale under a wide .range of ambient vibration condi{ions and as

such has application as a failure detector and as a damping measurement

method.
J
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(3) For narrow-band time histories, the randomdec signature compu-
tation is statistically more efficient for failure detection and damping
measurement than spectral density or autocorrelation, and hence is more
suitable for on-line application to these problems.

(4) Experimental examples of failure detection indicated the feasi-
bility of detecting loose joints and incipient structural failure. However,
considerably more experimental work is needed to define the optimum trans-
ducer locations and frequency range needed to detect a particular flaw to
a given sensitivity.

(5) Experimental examples of damping measurement indicated that
damping of an isolated modecould be measured and that the precision of
the damping measurementcould be specified. F_r modeswhich are close in
frequency, the beat phenomenonwas detected and a means for separating the
damping ratios and frequencies was indicated. Further work is needed to
de_ine the limitations and precision of measurements for the multi-m_de
case.

Nielsen Engineering & Research, Inc.
Mountain View, California

October 25, 1972
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APPENDIXA

STATISTICALPROPERTIESOF RANDOMDECSIGNATURES

The randomdecprocess evolved as a result of experiments in strati-
fication of autocorrelation functions of the response of nonlinear systems
to random inputs. Someof this work has been published in reference 2 and
somewas used just to develop the concept, when it was found that randomdec
gave unique signatures under a wide range of conditions, it was decided
that the primary need in its application was to define its statistical
properties. For this purpose a digital program in Fortran IV was Written
for the AmesResearch Center IBM 360-67 computer. The program had the

capability of generating random inputs and the response of l_near systems

including R-C filtering, and calculating from this time history randomdec

signatures, standard deviation, autocorrelation, and spectral density.

Figure 22 shows a typical narrow-band time history generated by the progra{n

and one measured on a model in a wind tunnel. The time histories generated

by the computer program appeared to be realistic simulations of the time -_,

histories which were encountered in practice. The advantage of computer- _.

generated data was that the exact properties of the system were known and

could be compared with values obtained from signatures of the random output

time history. _

Most of the work was conducted on a linear single-degree-of-freedom

system which admittedly is an idealized problem, but it does form the

foundation for development of the concept. Figure 23(a) shows part of a

time history which was generated for a single-degree-of-freedom system

with a damping ratio of 0.02 and a period of 16 time units. Two randomdec

samples are shown for illustration. The first one G(16), is measured 16

time units after y crosses Ys with a positive slope. The second one,

H(16) is measured 16 time units after y crosses Ys with a negative

slope. Figure 23(b) shows the average of all such samples over a record

length of 4098 points for sample lags, Q, from 1 to 24. This is called

the "randomdec signature" The point for Q = 16, AVT(i6), is used to

check the signature measured damping against the exact value. For a

damping ratio of 0.02, AVT(16)/y s should be 0.88. Average of plus-slope

values (AVG) and minus-slope values (AVH) is also shown.
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Appendix A

Before the above comparison can be made with significance, the
distribution and independence of the samples must be established.
Figure 24 shows the cumulative distribution of a typical set of samples
of the G(16) and H(16) values plotted on normal probability paper. (See
reference 9, p. 56.) The closeness to the straight line indicates that
the distribution is approximately normal. The figure aiso shows that

the meanvalue is approximately equal to 0.88 of Ys' which is the value
expected for _ = 0.02. Also the standard deviation (_e) of the measured

values is seen to be 2.8 by the intersection of the la (84 percent)

value.

Since a certain amount of overlap occurs in the randomdec sampling

process (i.e., when Ys is near a peak, G and H values are nearly

the same), the degree of independence was checked as shown on figure 25Ca)

for Ys = 0; 25(b) for Ys = ay, and 25(c) for Ys = 2_ . Linear regres-Y

sion lines, HG and _H' were calculated as shown (ref. 9, pp. 191-204).

T_ '_square root of the product of the slopes gives a correlation coeffi-

cient estimate of r = -0.38, 0.15, and 0.71 for the three selection

le:Qels. Hence, when the selection level Ys is near the rms level of

the signal, the measurements taken following a plus slope and then a minus _

sibpe on the same peak are nearly independent ismall r). For low and high

levels of Ys' the measurements on the same peak tend to become more

dependent.

....• Figure 26 shows the reason for the increase in correlation at the

high and low selection levels. At the 2_ level the plus- and minus-
Y

slope samples tend to be taken near peaks most of the time, which tends

to make the time difference between G(16) and H(16) samples small; and

since the physical system cannot move very far, the values tend to be

correlated. At the zero level, the samples tend to be separated in time

by one half a period, and because the process is narrow band, the G(16)

and H(16) values tend to be of opposite sigh and of similar value which

results in the negative correlation of figure 25(a).

In an on-line computer, the time overlap in the sampled segments of

the time history leads to some complication. If the speed of obtaining

the signature is not critical, segments may be taken without overlap. For

example, on figure 3, instead of taking the segments shown, one Would

take the plus-slope segment starting at t l, then the minus-slope segment
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Appendix A

starting at t 4 and so on. Figure 27 shows the correlations of samples
taken in this way and it may be seen that the correlation estimate is
quite small (r = 0.08).

With the distribution and dependence of samples established, a
hypothesis test of randomdec was conducted using 25 independent cases of
4098 points each of random inputs with a normal distribution and a stan-
dard deviation of i. The confidence boundary is given by

ca c = 2.05 (96% confidence)
0.88 ± c (A-l)

Ys _ (2 - r)K c = 2.88 (99.6% confidence)

where _£ is the standard deviation 0f the randomdecprocess, r is the
correlation estimate, and K is the number of peaks encountered at the
selection level. Note that (2 - r)K is an estimate of the number of
independent samples and that in this case r is an average of values
which range from 0 to 1 depending on whether the selection level was near
or far from the peak. The linear weighting was selected as a first-order
approximation. As shown on figure 28, about 8 points occurred at the
96-percent confidence level compared to 10 expected and 1 point at the
99.6-percent level compared to 1 expected. Hence, in the 250 cases cal-
culated no significant evidence has been found to justify rejection of the
hypothesis.

During the hypothesis test, it was noted that when AVT(16)/y s was
above 0.88, the rms of the output (ay) tended to be high and vice versa.
To show this effect a different symbol was used depending on whether ay
of the case was above or below the average of the 25 cases (_v) . The
predominance of the circles above 0.88 and squares below is apparent.
This trend indicates that when the rms of the output is higher than usual,
the signature will tend to give a value of damping ratio which is too
small and vice versa. This effect is a result of the accidental time
sequence of the amplitudes of the random inputs in finite time.

From the above it appears that the signature of a single-degree-of-
freedom linear system excited by wide-band random noise is equivalent to
the free vibration decay curve with an initial displacement. In practice
we often encounter systems excited by band-limited noise; or in order to
obtain an effective single degree of freedom, the time history has to be
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Appendix A

filtered. The question is "What effect does filtering have on the signa-

ture?" In order to evaluate this, a particular case of 4098 random inputs

to the single-degree-of-freedom system with a damping ratio of 0.02 was

selected for the filter studies. The program was capable of filtering the

time history in any combination of high- and low-pass R-C filters cascaded

and with varying cutoff frequencies (e I is defined as the half-power or

3 dB point frequency of the filter). Figure 29 shows a typical distortion

effect of a low-pass filter. Distortion_is judged by the change from the

unfiltered signature at the 1/2, I, and 1-1/2 perio d points (Q = 8, 16,

24, respectively).

Figure 30(a) shows the effect of a low-pass, single-pole filter and

it may be seen that little or no distortion occurs for filter frequencies

as low as two times the natural frequency of the system. A similar effect

on the signature would occur if instead of filtering the output, the input

to the system were isotropic turbulence with a half-power point at _i"

In'judging the distortion, it should be noted that a very sensitive scale

has been used on the figure and that even at _i/_n = i, the distortion is

actually only 1 percent of the selected level (ys) .

Similar results are shown in figure 30(b) for a cascaded low-pass

fi_ter which gives somewhat greater distortion. However, it must be

remembered that these are the basic distortions of the filter on the

system and that in actual practice the off-resonant effects of other modes

can also distort the signature. The distortion caused by the filter must

be weighed against the distortions of extraneous modes which it eliminates.

This is beyond the scope of the present repor£ and is only men£i0ned here

to put the results in the proper perspective.

Figure 30(c) shows the results which were obtained with a high-pass,

double-pole filter. Some distortion is evident at Q = 16, but this is

small, being only a little greater than 1 percent of the selection level.

The basic distortions of the high-and low-pass filters (fig. 30) serve as

a guide to filter selections in specific applications. It appears that

distortion is not a serious problem except in the extreme cases _i/_n =

0.5 for the low-pass, sing!e-pole filter and _i/Wn = 1 for the low- _

pass, double-pole filter.
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The objective of this study was to develop expressions for record
length needed to obtain signatures of a given precision relative to the

selection level. The latter part of this statement has been underlined

to emphasize the difference between the approach used here, and the usual

approach in spectral density and autocorrelation. The expressions in

reference 4 give the standard deviation of the individual points on the

signature rather than the standard deviation of the individual points

relative to a reference level as given here. This distinction is very

important in precision measurements of damping ratio and is particularly

critical to the uniqueness of the signature of a system with nonlinear

damping under variable input conditions.

Solution of the record length problem requires knowledge of the

effects of filtering and damping ratio on the standard deviation of the

signature. Figure 31 shows these for the filters discussed in the previous

section and for the unfiltered case with various damping ratios. As may

be seen, the standard deviation is insensitive to these variables to a

±10-percent level with the exception of the extreme filter settings which

may be excluded because of their high distortion. These characteristics

of randomdec greatly simplify the solution to the record length problem.

Another variable which has to be considered is the selection level,

Ys" Figure 28 shows the effect of this variable. The ordinate is

AVT(16)/y s so the dispersion seen is in fractions of the selection level.

Fo£ low selection levels, the scat£er increases because the standard

deviation, although nearly constant, becomes a larger fraction as selection

level becomes lower. As selection level increases, the fractional error

decreases, but the number of peaks encountered becomes fewer until finally

the dispersion increases again.

F may be expresse d as
s

The fractional accuracy of the signature

Ca
F = £ (A-2)

S YS _/ (2 - r)K

where C is the level of confidence factor, a is the standard deviation
E

of the signature point (Q = 16), Ys is the selection level, r is the

correlation coefficient, and K is the number of peaks encountered.

24



Appendix A

Figure 32 shows a relation for the number of peaks expected in a
given time for filtered and unfiltered cases. It may be seen that the
measured number of peaks from the computer runs agrees reasonably well
with a predicted curve based on a Rayleigh distribution of peak values.

The number of peaks encountered is:

2

Ys

K = f Te 2aQ
n

Substituting (A-3) in (A-2) gives:

2

Ca e

F =

": s Ys _ (2 - r)fnT

Frbm figure 31 we see that allowing deviations of ±10 percent that:

Yl_= o.02
,-!

= 0.47

Sihce on figure 3!(b) it is seen that

_, we may write

_£ is only weakly dependent on

F
S

Ys _ (2 - r)fnT

and using the relations for a from reference 2,
y

_vl_=0.0_2 = _0_--_
ay

(A-3)

(A-4)

(A-5)
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and substituting in (A-5)

Fs

in which

• v
(A-6)

2

e

Ys
= L

This factor which is a function of ys/Oy only varies by 25 percent

for ys/dy values from 0.7 to 2. This means that, for a fixed Ys' the

random input, o r, could vary by a factor of 3 without having much effect

on the accuracy at constant record length. Note that r was also a

function of ys/Oy as was shown on figure 25.

Solving for record lenqth, we have:

,
fn

in which L is the function of ys/ay given below:

(A-7)

ys/Oy .2 .4 .6 .8 I. 0 i. 2 i. 4

L 20 4.9 2.4 1.5 I.i 1.0 1.0

C = 2.06 (96% confidence level)

1.96 (95% confidence level)

1 (68% confidence level)

When measuring damping ratio, the reference length for fractional

accuracy is 2z_y s rather than Ys" Record length then becomes:

(A-8)
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in which

F_ = fractional accuracy in damping ratio

NOTE: If no overlap is used, above equations should be multiplied by 2.

In using this equation for planning damping measurements, we must

select the lowest damping ratio (_) which we wish to measure, the con-

fidence level, and the accuracy desired. To minimize testing time, a

selection level of 1.2 to 1.4 should be used so that L will be at its

minimum value of i. If the system has nonlinear damping, L must be

selected to cover the range of amplitudes desired. In tests which are

extremely costly or dangerous, the damping ratio should be monitored

on-line and record length determined on-line from the equation. Such a

procedure could result in a considerable cost saving and reduction in

risk in wind-tunnel and flight flutter-buffet tests.

The above equations give the basic time needed to obtain signatures

of Specified accuracy for a single'degree-of-freedom system excited by

band-limited Gaussian noise. In practice, additional variance may be

introduced by added noise and inaccuracies in starting times at the

selection level. Also, when more than one degree of freedom is present,

the signatures contain contributions from all of the modes. This does

not cause serious problems in failure detection, but it may require

further processing of signatures When damping of individual modes is

needed.

Y

It is interesting to compare the above result with the equation for

autocorrelation derived from reference 4, page 195

R' (0) + R 2(r 2)
T

4_£2_f n

(A-9)

As _ approaches zero, we note that the time required for a ran-

domdec signature, equation (A-7), approaches zero as compared to time

required for autocorrelation, equation (A-9), which approaches infinity.

The reason for this difference is that randomdec has a fixed amplitude

reference so that as _ approaches zero and the time history becomes

essentially a sine wave in a finite record, only a very short record is

needed to define the signature. The autocorrelation on the other hand
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has a variable amplitude reference which increases with the inverse of
the damping ratio and thus an infinite record is needed to define the

signature.

Using equation (A-7), we may obtain a rule-of-thumb number of segments

needed for 5-percent accuracy at 95-percent confidence level, Ys set at

a and _ < 0.025.
Y

ri.9612

Tf n = (I0)(0.025)(l.l)[o.--_j = 422

using equation (A-3) for the number of peaks and noting that there are two

segments per peak, we obtain

N = 2K = (2) (422) ~ 500
1.65

which is the number of segments which was found experimentally to give

signatures with small variance in reference 6.
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APPENDIXB

COMPARISONOF RANDOMDECANDAUTOCORRELATIONSIGNATURES

In Appendix A it has been shown that to a 99.6-percent confidence
level that the randomdec signature has the same form as the free vibration
curve of a linear single-degree-of-freedom system with an initial dis-
placement. Reference 2 shows that the autocorrelation function gives this
form too in the limit as record length approaches infinity. It appears,
then that randomdec and autocorrelation signatures are identical in form
but not in scale for linear single-degree-of-freedom systems excited by
white noise. The question is "Are autocorrelation and randomdec signatures
the sameor are there significant differences?"

Figure 33 shows a comparison of values at the iP point for auto-
correlation and randomdec signatures of e single-degree-of-freedom system.
The circled symbols represent the white noise input, and it may be seen
that although agreement is fairly good that there are significant differ-
ences between signatures when record length is finite. Also shown on this
figure are the effects of change in damping ratio and the filters used

in figure 30. Again general agreement is good, but referring back to

figure 20, it may be seen that distortion due to filtering is generally

less for randomdec than for autocor_elation signatures. This might be

significant in some applications, but generally speaking, there does not

seem to be a significant difference between the two for the linear single-

degree-of-freedom case.

Computationwise there is a very significant difference between the

two signatures. For a record length of 4098 points, the randomdec calcu-

lation required 315 operations per point as compared to 16,321 for direct

autocorrelation. The computational advantage, of randomdec is not so

great if autocorrelation is calculated by the Fast Fourier Transform. In

this case, randomdec is about four times faster.

The computational advantage of randomdec becomes more and more

significant as damping ratio decreases as shown on figure 33. This is

a plot of the standard deviation of the IP point on the signature with

a fixed set of 4098 random inputs. As damping rhtio varies, it may be

seen that the standard deviation of the randomdec remains approximately

constant while the standard deviation of the autocorrelation signature

approaches very large values.
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Perhaps the most significant difference between the two signatures
is shown on figure 21, which shows a dramatic difference for the two-

degree-of-freedom case. This result definitely establishes randomdec

as a distinctly different signature from autocorrelation. From unpub-

lished work with nonlinear systems, it is known that significant

differences occur for systems with nonlinear damping, but this is beyond

the scope of the present work.
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Before local structural failure

After local structural failure

Figure 1.- Autocorrelation signature of strain

gage output observed on an Apollo wind

tunnel model during test.
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Figure 2.- Typical charac£eristic structural slgnatures

obtained from a random response.
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Random Structure
Forces

G

HI Spectrum TransducerAnalyzer

| . [

Randomdec & IAverager

6(T)
Standard

-Ys _

/

Failure mode effect

T

Hypothesis:

(i) Flaw introduces additional degree of freedom.

(2) Frequency of flaw mode decreases as flaw size grows.

(3) Flaw mode causes change in signature by:

(a) Dynamic coupling with modes _n filter

bandwidth.

(b) Nonlinear coupling at subharmonic frequencies.

(c) Friction damping.

Figure 5.- Hypothesis on the sensitivity of

random decrement signatures to flaws.
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Figure 6.- On-line failure detection at a

single point on the signature.
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(a) Schematic experimental setup.
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(b) Spectral density of accelerometer output.

Figure 7.- Experiment with truss

(angle steel with bolted joints).
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Bolts loose

(c) Spectral density with band 3ass

filter 600-800 Hz.

Figure 7.- Continued.
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(d) Randomdec with band pass
filter 600-800 Hz.

r _

(e) Randomdec with band pass
filter ii00-1300 Hz.

Figure 7.- Concluded.
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3:09-3:15

3: 15-3:22

3:22-3:30

3:30-3:40

3: 40-3:50

3 : 50-End

(Wing failed)

(a) Filter band-pass 200-1500 Hz.

Figure 8.- Evolution of the random decrement signature
of a wing model approaching complete failure.
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Figure 8.- Concluded.
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Figure 9.- Samples of time history of strain gage

output at times when signatures of figure 8

were taken (filter band-pass 200-1500 Hz).
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(a) DamPing ratio scale on scope.

(b) Scope sweep set faster

than signature sweep.

Figure i0.- On-line damping measurement

display (no distortion).

45



-Ys

0

onlinear spring

Nonlinear damping
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structure .......... .....]Ys = 0.5V X2
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__Randomdec Ys = Iv _
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Figure Ii.- On-line detection of nonlinear

effects with amplitude.
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(a) Fair envelope.

(b) Measure y2/y _.

(c) Read _ for N
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Damping ratio,
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Figure 12.- Measurement of damping ratio from signature

of a single-degree-of-freedom system.
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N 3

Damping Ratio Estimate':

x = (0.367) (106) = 0.051

= 0.367 Nx--_ (3) (254) "

Alternate Calculation of _

i. Draw parallel line through origin.

2. Read value at N = 1 (+ symbol).

3. _Read _ on figure 12

Distortion Estimate:

1 - -0.74ffi -035
c_/c2 0.74 "

2

Number of cycles, N

Figure 13.- Alternate method for estimation of

damping ratio including distortion estimate.
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(a) Spectral density.

Figure 14.- Example of damping measurement
of an isolated mode.
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(a) Spectral density.

Figure 15.- Example of damping measurement of two modes

with nearly the same natural frequency.
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(b) Randomdec signatures.

Figure 17.- R-C filter characteristics.
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Figure 18.- Effect of filtering on RMS of output.
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Figure 19.- Effect of aliasing on andomdec signature

for y_ - Oy, M I 4098, _ - 0.02.
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Figure 20.- Comparison of distortion effect of isotropic

turbulence input spectrum on autocorrelation

and Randomdec signatures
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Figure 23.- Plot of computer program output

(_ - 0.02, unfiltered, M - 4098).
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Figure 24.- Cumulative distribution of G(16) and H(i6) values

for Ys = Oy plotted on normal-probability paper (K - 96).
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Figur e 25.- Continued.
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Figure 26.- Effect of selection level near a peak and

at zero for a lag of oneperiod (_ = 0.02).
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Figure 27.- Correl@tion of randomdec at IP with starting

points of a plus and a minus slope on 'adjacent

peaks (Ys " 2_y).
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Figure 28.- Hypothesis that randomdecrement in the limit

gives exactly the free vibration decay value at a lag of
one period (P - Q = 16, r = 0.02, M - 4098).
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Figure 29.- Effect of 10w-pass R-C filter on randomdec

signature for Ys " _y (_ _ 0.02, M - 4098).
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Figure 30.- Dis£ortion of signature at i/2, i, and 1 i/2-period

points due to R-C filters (M _ 4098, _ - 0.02).
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Figure 30 Continued.
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Figure 31.- Variation of standard deviation of Randomdec

with filtering and damping ratio.
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Figure 32.- Measured and predicted time factors.
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Figure 34.- Standard deviation of randomdec and
autocorrelation for Various damping ratios.
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