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Variables 
 
 

a = radius 

C = speed of sound in air 

BC  = bending wave speed 

LC  = longitudinal wave 
speed 

d = diameter 

D = plate flexure rigidity 

E = elastic modulus 

G = shear modulus 

f = frequency 

cof  = coincidence frequency 

crf  = critical frequency 

rf  = ring frequency 

h = plate thickness or core 
thickness 

N = plate shear rigidity  

n = circumferential mode 
number 

t = total face sheet 
thickness 

θ  = angle of incidence 

ρ  = mass per area 

ω  = frequency (rad/sec) 

ν  = Poisson ratio 

k = acoustic wavenumber 

kb = free structural 
wavenumber in a plate 

kcs = 
free structural 
wavenumber in a 
cylindrical shell 

k̂  = shear correction 
coefficient 

ks = 
circumferential 
wavenumber in a 
cylinder 

kx = wavenumber in the x-
axis of a plate 

kz = 
wavenumber in the 
axial direction of a 
cylinder 
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Figure 1.  Waveform Diagram (from Reference 3) 
 
 
Critical Frequency 
 

The critical frequency is the frequency at which the speed of the free bending wave in a 
structure becomes equal to the speed of the airborne acoustic wave.  The sound radiation 
efficiency is highest at or near the critical frequency.  Furthermore, the vibration response 
of a panel to a reverberant field is highest near the critical frequency. 
 
The critical frequency may be considered as corresponding to “grazing incidence,” with 

o90=θ  per the coordinate system Figure 1. The angle of incidence is not an explicit 
variable in the critical frequency formulas for various structures, however. 
 
Note that the bending wavelengths are smaller than the airborne acoustic wavelength at a 
given frequency below the critical frequency. 
 
Furthermore, the critical frequency is sometimes referred to as the critical coincidence 
frequency. 
 
It is also referred to as the coincidence cut-off frequency.  Below this frequency, 
coincidence cannot be achieved at any angle. 
 
Coincidence Frequency 
 

The coincidence frequency is the frequency at which the forced bending wave speed 
equals the free bending wave speed. 
 
The coincidence frequency depends on the angle of incidence θ.  The coincidence 
frequency can be calculated from the critical frequency by applying the appropriate 
trigonometric term with the angle of incidence as the argument, as shown in Reference 3. 
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The sound transmission through the structure is highest when the acoustic pressure 
frequency is at or near the coincidence frequency for the given angle of incidence.   
 
The relationship between the coincidence frequency and the critical frequency for a thin 
plate is 
 

θ
= 4sin

2crf2cof                                                                          (1) 

 
 
 
Ring Frequency in a Cylinder 
 

The ring frequency corresponds to the mode in which all points move radially outward 
together and then radially inward together. This is the first extension mode. It is 
analogous to a longitudinal mode in a rod. 
 
The ring frequency is the frequency at which the longitudinal wavelength in the structure 
is equal to the circumference. 
 

d
Cf Lr π

=                                                                         (2) 

 
The ring frequency is also referred to as the cutoff frequency.   It is the lowest frequency 
at which an n=0 axisymmetric-mode resonance can occur, per Reference 6. 
 
Breathing modes cannot propagate below the cutoff frequency, although axial and 
tangential n = 0 modes can.  Note that the n value is the circumferential mode number. 
 
 
Dispersion 
 

Note that mechanical bending waves are dispersive.  The wave speed varies with 
frequency. 
 
The following waveforms are essentially non-dispersive: 
 

1. Mechanical longitudinal waves 
2. Mechanical shear and torsional waves 
3. Airborne acoustical waves 
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Plate Stiffness Factor 
 
Note that the plate stiffness factor D is given by 
 

⎟
⎠
⎞⎜

⎝
⎛ ν−

=
2112

3EhD                                                                                         (3) 

 
 
Thin, Homogeneous Plate 
 

Note that the small-amplitude bending and in-plane longitudinal and shear waves are all 
uncoupled and can propagate independently in a thin plate.  
 
The bending wave speed from Reference 1, chapter 3 is 
 

fhLC8.1BC ≈                                                                           (4) 
 
The critical frequency crf  for a thin, homogeneous plate is  
 
 

E
)21(12

h2

2cfcr
ρν−

π
=                                     (5a) 

 
 

hL8.1

2
f c

c
cr ≈                                                                                    (5b) 

 
 
Also, note that the wavenumber relationship from Reference 6 is 
 

D

22
bk2

yk2
xk ρω

==+                                                                  (6) 

 
Also, 
 
 

D2

2c2k2
bk

ω

ρ
=                                                                              (7) 

 
 



 5

Isotropic Thick Plate  
 
The bending wave speed from Reference 3 is 
 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ω

ρ
+ρ+ρ

=

D2

2N42

N22
BC                                                                   (8) 

 
 
 
The shear rigidity N for a homogenous thick plate is 
 
 

N = k̂  G h                                                                                           (9) 
 
 
Reference 3 assumes that the shear factor is k̂  = 1.  Reference 5 uses 6/5k̂ =  for a 
homogenous plate. 
 
The critical frequency for an isotropic thick plate is 
 

 

       
( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛ ρ−⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡ ρ

π
=

N/2c1

1
D

4c
22

1f 2cr                                                           (10)                              

 
 

Note that the critical frequency does not exist if  ⎟
⎠
⎞⎜

⎝
⎛ ρ N/2c > 1  .    

 
In this case, the free bending wave speed would always be less than airborne wave speed. 
 
 
Honeycomb Sandwich Panel 
 

The shear rigidity N for a honeycomb sandwich panel is 
 

 [ ]2)h/t(1hGk̂N +=                                                                              (11) 
 
 
where t is the total face sheet thickness and h is the core thickness. 
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The bending wave speed for a honeycomb panel is found by entering the shear rigidity 
from equation (11) into equation (8). 
 
Likewise, the critical for a honeycomb panel is found by entering the shear rigidity from 
equation (11) into equation (10). 
 
Cylindrical Shells 
 
The authors of Reference 9 wrote that:  
 

For cylindrical shells (thick or thin), it is impossible to define a “unique critical 
frequency” for describing the acoustic properties as for flat plates. 

 
 
Cylinder, Thin-Walled 
 

The curvature of the walls couples the radial, axial and tangential motions within a 
cylinder. 
 
Note that air, or a non-viscous fluid, can only exchange energy with a shell via the shell’s 
radial motion. 
 
An example is shown in Appendix A which shows that the critical frequency formula in 
equation (3) appears to be still valid for the case of a thin-wall cylinder.  
 

Furthermore, the acoustic radiation of a cylinder depends on two major frequency 
parameters.  The first is cf/f .   
 
The second is 
 

⎥
⎦

⎤
⎢
⎣

⎡
π⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

d
LC

LCh8.1

2c
rf/cf                                                                        (12) 

 
Equation (11) is taken from Reference 6, equation (2.115). 
 
Note that large-diameter, thin-wall shells have a ratio of  1rf/cf > .   The shells are thus 
“acoustically thin.” 
 
The radiation efficiency has a peak at the ring frequency in acoustically thin shell. 
 
In this case, there is a frequency band between rf  and cf  in which shell curvature effects 
on bending wave speed disappear, and the cylinder radiates as a flat plate. 
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A more general observation is that a cylinder tends to behave as a flat plate above its ring 
frequency. 
 
Furthermore, the wavenumbers are related by 
 

2)a/n(2
csk2

sk2
csk2

zk −=−=                                         (13)  
 
 
 
Cylinder, Thick-Walled 
 
The critical frequency for a thick-walled cylinder tends to be less than the ring frequency, 
such that    1rf/cf < .  The shells are thus “acoustically thick.” 
 
The existence of a critical frequency appears to become nebulous or tenuous for a thick-
walled cylinder, as shown by example in Appendix B.   
 
The authors in Reference 9 explain: 
 

1. Currently, for acoustically thick cylindrical shells, the physical significance of 
the critical frequency is unclear because curvature effects would play an 
important role in determining the flexural wave speed and the acoustic 
radiation behavior. 

 
2. Analysis of acoustically thick shells has shown that unlike flat plates, for 

frequencies below the critical frequency, both supersonic and subsonic modes 
can exist.  Consequently, the radiation efficiency is dependent on the 
geometries and boundary conditions and could reach unity at a frequency much 
lower than the critical frequency. The behavior of individual modes is 
important in thick-walled shells.   

 
3. The modal density in thick-walled cylinders is not high enough for statistical 

analysis. 
 

 
Acoustically Fast and Slow Modes 
 
Definitions 
 
Note that supersonic modes are also called acoustically fast (AF) modes.   
 
Subsonic modes are also referred to as acoustically slow (AS) modes. 
 
Modes must be categorized as either AF or AS in order to determine their ability to 
interact with sound waves. 
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Another distinction between these two classes is that an AF mode has a structural 
wavenumber smaller than the acoustic trace.  In other words, the AF mode has a longer 
wavelength than the acoustic wave at the corresponding frequency.  The converse is true 
for AS modes. 
 
 
Flat Plate 
 
All modes above the critical frequency in a flat plate are AF, and all modes below the 
critical frequency are AS. 
 
Cylindrical Shell 
 
Again, both AF and AS modes can exist below the critical frequency of a cylindrical 
shell. 
 
 
Further Notes on Radiation Efficiency 
 
The radiation efficiency for AF modes is 
 
 

2k

)2
nk2

mk(
1rad

+
−=σ      ,      for  2

nk2
mk2k +>                     (14)                               

 
 

1rad ≈σ       for        2
n

2
m

2 kkk +>>                                                  (15) 
 
 

The original source for equation (14) is Reference 11, equation (2.16).  
 
Furthermore, a separate formula is required for the special case where    

2
nk2

mk2k +=   . 
 
The authors of Reference 9 state that radiation efficiency of all AF modes above the 
critical frequency in a shell should be unity.  This statement appears to be true only if the 
condition in equation (15) is satisfied. 
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Improved Definition of the Critical Frequency for a Cylinder 
 
The critical frequency of cylinder should be defined as the lowest frequency above which 
all modes are AF. 
 
The critical frequency cannot be calculated directly from any of the flat plate critical 
frequency formulas given previously in his paper.  
 
A search is in progress to derive this formula, perhaps through empirical numerical 
studies. 
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Thin-Walled Cylinder Example 
 
Consider a cylinder with the following properties: 
 

Table A-1.   
Sample Thin-Walled Cylinder, Simply-Supported at 
Each End 
Diameter 48 inch 

Length 96 inch 

Thickness 0.125 inch 

Material Aluminum 

Mass Density ρ  0.1 lbm/in^3 

Elastic Modulus E 10.0e+06 psi 

Poisson Ratio 0.3 
 
 
The ring frequency is 1303 Hz per equation (2). 
 
The critical frequency using the thin plate equation is 3927 Hz per equation (5a). 
 
The natural frequencies and corresponding wave numbers were calculated per Reference 
7. 
 
The natural frequencies are plotted as a function of wave number in Figure A-1. The 
airborne acoustic relation is also plotted in this figure. 
 
The ring frequency mode is a special case of the n=0 modal family.  The ring mode 
radiates sound as a line monopole.   
 
Note that the axial and tangential n=0 modes can propagate below the ring frequency. 
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Figure A-1. 
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Figure A-2. 
 
 
The wavenumber difference index LΔ  is defined as 
 
 

2
nk2

mkkL +−=Δ                                                           (A-1) 
 
Note that 
 

0L >Δ    for AF modes 
 

0L <Δ    for AS modes 
 
 
Thus, the intersection point with the ΔL=0 line at 3600 Hz is the critical frequency, as 
obtained by numerical experiment.   This is the frequency above which all modes are AF. 
 
This experimental frequency is 8% lower than the theoretical flat plate equivalent value. 
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APPENDIX B 

 
 
Thick-Walled Cylinder Example 1 
 
Consider a cylinder with the following properties: 
 

Table B-1.    
Sample Thick-Walled Cylinder, Free at Each End 
Outer Diameter 18 inch 

Length 32 inch 

Thickness 1 inch 

Material Aluminum 

Mass Density  0.1 lbm/in^3 =  0.00026 lbf sec^2/in^4 

Elastic Modulus E 10.0e+06 psi 

Shear Modulus G 3.85e+06 psi 

Poisson Ratio 0.3 
 
 
 
The shear rigidity N the thick plate analogy is 
 

N = k̂ G h =   (1)(3.85e+06 psi)( 1 inch) =3.85e+06 lbf/in                              (B-1) 
 
 

The shear coefficient is assumed to be one in equation (B-1). 
 
Now consider the criteria for a thick, rectangular plate. 

Recall that the critical frequency does not exist if  ⎟
⎠
⎞⎜

⎝
⎛ ρ N/2c > 1  .     

For this example,  
 

[ ] [ ][ ] 009.0
lbf/in 063.85e

inch1sec^2/in^4 lbf 0.000259042sec/in11500N/2c ≈
+

=⎟
⎠
⎞⎜

⎝
⎛ ρ                 (B-2) 
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Thus, the critical frequency should exist for the sample, thick-walled cylinder, although 
the flat plate criterion may not be appropriate for a thick-walled cylinder. 
 
The plate stiffness factor D is given by 
 

⎟
⎠
⎞⎜

⎝
⎛ ν−

=
2112

3EhD                                                                                       (B-3) 

 
 

( )
⎟
⎠
⎞⎜

⎝
⎛ −

+
=

23.0112

3)inch1(lbf/in^2 0610.0eD                                                               (B-4) 

 
 

inlbf059.16ED +=                                                                                  (B-5) 
 

 
The critical frequency using a flat, thick plate assumption is 
 
 

( ) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛ ρ−⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡ ρ

π
=

N/2c1

1
D

4c
22

1f 2cr                                                               (B-6)   

 
 
 

( )
( ) ( )( )

⎥⎦
⎤

⎢⎣
⎡
−⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+π
=

009.01
1

inlbf059.16E
in1sec^2/in^4 lbf 0.000264sec/in13500

22

1f 2cr        (B-7)   

   
                              

Hz491fcr =                                                                                                       (B-8)         
 
 
 
The ring frequency is 3474 Hz per equation (2). 
 
The critical frequency using the flat thick plate equation is 491 Hz.   This equation may 
not be appropriate for thick-walled cylinders, however.  (The thin plate equation would 
have yielded a critical frequency of 506 Hz.) 
 



 15

A finite element analysis was performed.  The model name was thick_cylinder_1.nas. 
 
The ring frequency appeared to occur at 2862 Hz, but this mode also had a large axial 
displacement.  This is 18% less than the theoretical value. 
 
There were no bending modes near 491 Hz.  The first axial bending mode appeared at 
1891 Hz, nearly two octaves higher.  This difference would seem to render the critical 
frequency as irrelevant.  
 
 
 
Thick-Walled Cylinder Example 2 
 
Repeat Example 1 except constrain the ends so that no axial motion can occur. 
 
A finite element analysis was performed.  The model name was thick_cylinder_2.nas. 
 
The ring frequency occurs at 3927 Hz, which is 13% higher than the theoretical value.  
The motion was purely radial. 
 
Again, there were no bending modes near 491 Hz. 
 


