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Variables 
 

 

W(t) is the radial displacement 

)(W   is the radial displacement Fourier transform 

)(AW   is the radial acceleration Fourier transform 

)(APSDW   is the radial acceleration power spectral density 

P(t) is the pressure 

)(P   is the pressure Fourier transform 

)(PSDP   is the pressure power spectral density 

E is the modulus of elasticity 

R is the radius 

  is the mass/volume 

c is the speed of sound in the material 

t is time 

T is the period 

h is the wall thickness 

  is the excitation frequency 

n  is the natural frequency (radian/sec) 

  is the nondimensional excitation frequency 

F is the excitation frequency (Hz) 

  is the viscous damping ratio 
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Derivation 
 
Consider an infinitely-long, thin-walled cylinder that is constrained so that its only mode 
is its ring-mode, which is the in-plane extension mode.  Furthermore, the cylinder is 
subjected to an external pressure field, which is spatially uniform but time-varying. 
 
The governing differential equation is 
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Equation (1) is based on References 1 and 2. 
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The speed of sound in the material is 
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The natural frequency is 
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The equation of motion is thus 
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Note that a damping term was added to equation (6). 
 
Take the Fourier transform of each side of equation (6). 
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The displacement Fourier transform is 
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The velocity Fourier transform is obtained by integration of parts.  The intermediate steps 
are omitted for brevity. 
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The acceleration Fourier transform is obtained by integration of parts. 
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The pressure Fourier transform is 
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Substitute equations (8) though (13) into (7). 
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The acceleration Fourier transform is related to the displacement Fourier transform by 
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Substitute equation (13) into (14). 
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Multiply each side by its complex conjugate. 
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Divided each side of equation (20) by T.  Then take the limit as T approaches infinity.  
Then substitute equations (21) and (22) into the resulting equation. 
 
The acceleration power spectral density is thus 
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Change the frequency, which is the independent variable, to f.  The cylinder’s 
vibroacoustic response is thus  
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Example 
 
Consider an infinitely long cylinder with the following properties: 
 
 

 
 
 

 
 
 

 
The speed of sound in titanium is 194,650 in/sec.  The mass density is 0.16 lbm/in^3. 
 
The ring frequency is  
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Consider a spatially uniform white noise pressure field with an amplitude of 1.0e-06 
psi^2/Hz applied to the external surface of the cylinder. 
 

 
 
 

Diameter 38 inch 

Skin Thickness 0.080 inch 

Skin Material Titanium 

Viscous Damping 5% 
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Figure 1. 
 
 
 
The acceleration response of the cylinder is calculated via equation (24).  The response is 
shown as the SDOF curve in Figure 1.  Again, this method assumes a spatially uniform 
pressure field.   
 
The calculation is repeated using the Franken method, which is an empirical method, 
from Reference 3.  The resulting Franken curve is also shown in Figure 1.  This method 
assumes that the pressure field is spatially random. 
 
The comparison shows that the SDOF curve is 11.5 dB higher than the Franken curve at 
the ring frequency, which is 1651 Hz.   
 
The Franken curve is broader since it accounts for additional cylinder modes. 
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The results tentatively show that a cylinder’s vibroacoustic response can be calculated 
using a uniform pressure assumption.  The resulting acceleration PSD can then be 
decreased by 11.5 dB at the ring frequency to account for a spatially random pressure 
field. 
 
Further development of this approach is needed.  The next step is to derive a multi-
degree-of-freedom analytical model of the cylinder. 
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APPENDIX A 

 
 
Frequency Response Function 
 
Recall 
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Example 1 
 

Consider an aluminum cylinder idealized as a single-degree-of-freedom system. 
 

The cylinder has the following properties for each of two cases: 
 

Diameter 36 inch 

Damping 5% 

Wall Thickness 
0.125 inch  for case 1  
 

0.250 inch  for case 2 

Surface Mass Density 
0.0125 lbm/in^2  for case 1 
 

0.025 lbm/in^2  for case 2 

 
 
The ring frequency is 1792 Hz for each case. 
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Figure A-1. 
 
 
 
Doubling the thickness, and hence the surface mass density, decreases the response by  
6 dB for a fixed natural frequency. 
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Example 2 
 
Consider an aluminum cylinder idealized as a single-degree-of-freedom system. 
 

The cylinder has the following properties for each of two cases: 
 
 

Diameter 
36 inch  for case 1 
 

72 inch  for case 2 

Damping 5% 

Wall Thickness 0.250 inch 

Surface Mass Density 0.025 lbm/in^2  

Ring Frequency 
1792 Hz  for case 1 
 

896 Hz   for case 2 
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Figure A-2. 
 
 
The comparison shows the trade-offs involved by changing the diameter and hence the 
ring frequency.  
 
The following statements apply to a cylinder with a constant wall thickness and constant 
surface mass density: 
 

1. A stiffer cylinder offers better attenuation at frequencies well below the 
ring frequency.   

 
2. A more compliant cylinder provides better attenuation at frequencies well 

above the ring frequency. 
 
 
Furthermore, the above statements assume normal incidence. 


