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Abstract:    Donnell’s thin shell theory and basic equations based on the wave propagation method discussed in detail here, is used 
to investigate the natural frequencies of thin finite length circular cylindrical shells under various boundary conditions. Mode 
shapes are drawn to explain the circumferential mode number n and axial mode number m, and the natural frequencies are cal-
culated numerically and compared with those of FEM (finite element method) to confirm the reliability of the analytical solution. 
The effects of relevant parameters on natural frequencies are discussed thoroughly. It is shown that for long thin shells the method 
is simple, accurate and effective. 
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INTRODUCTION 
 

Vibrations of cylindrical shells are of consider-
able importance as they are extensively used in in-
dustry, flight structures and marine crafts. The natural 
frequencies and mode shapes are important sources of 
information for understanding and controlling the 
vibration of these structures, so many papers on the 
prediction of the natural frequencies of cylindrical 
shells have been published over the past years. 

Many shell theories have been developed and 
various solution methods have been proposed. 
Sharma (1974) investigated the natural frequencies of 
fixed-free circular cylindrical shells, and gave a de-
tailed analysis for the case of the axial mode being 
approximated by characteristic beam functions with 
appropriate end conditions; Soedel (1980) used a 
formula to calculate the natural frequencies and 

modes of circular cylindrical shells in which trans-
verse deflections dominate; Chung (1981) used 
Stokes’ transformation technique to obtain the natural 
frequencies of circular cylindrical shells with differ-
ent boundary conditions; Chakravorty and 
Bandyopadhyay (1995), Bouabdallah and Batoz 
(1996), and Guo et al.(2002) used a finite element 
method (FEM) to obtain the natural frequencies of the 
cylindrical shells; Callahan and Baruh (1999) pre-
sented a systematic procedure using the computa-
tional power of existing commercial software pack-
ages for obtaining the closed-form eigensolution for 
thin circular cylindrical shell vibrations; Zhang et 
al.(2001a) used wave propagation method to evaluate 
the natural frequencies of finite cylindrical shells. 

This paper focuses mainly on Zhang et 
al.(2001a)’s method using an interesting technique 
combining an exact frequency wavenumber charac-
teristics formula with appropriate beam functions in 
the axial direction to give relatively more accurate 
predictions of circular cylindrical shells’ natural fre-
quencies. Although they highlighted the advantage of 
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the method, its applicability is still to be explored. In 
this paper, the effects of relevant parameters on 
natural frequencies are thoroughly discussed. It is 
shown that for the long-thin finite cylindrical shells 
the method is more simple and effective than other 
methods. 
 
 
THEORETICAL ANALYSIS 
 
Equation of cylindrical shells motion 

The shell under consideration is shown in Fig.1. 
 

 
 
 
 
 
 
 
 
 

 
 

For this analysis we will use the equations of 
motion derived by Junger and Feit (1986). The equa-
tions of motion for cylindrical shells can be written 
as: 
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where β2=h2/(12a2); a is the radius of the cylinder; ρ 
is the density of the material; h is the thickness of the 
shells; E is Young’s modulus; and µ is Poisson’s ratio. 
The vibration displacements in the three directions (r, 

θ, z) are not independent of each other. 
 
Applied wave propagation approach in cylindrical 
shells 

In the wave propagation approach, the solution 
of Eq.(1) can be expressed in the form of traveling 
wave form as: 
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where u, v and w are the displacement components in 
the axial, tangential and radial directions, respectively; 
the coefficients Um, Vm and Wm in the equations are 
the displacement amplitudes; α is an arbitrary angle, 
to account for the fact that there is no preferential 
direction of the mode shape in the circumferential 
direction; n is circumferential mode parameter (where 
2n=the number of cross points in the radial dis-
placement shape); m is axial mode parameter (where 
m=the number of cross points in the radial displace-
ment shape along any axial generatrix); the meanings 
of m and n are illustrated in Fig.2; ω is the angular 
natural frequency for (m, n) vibration mode; kz is the 
wavenumber in the axial direction. 

For infinite length cylindrical shells, all the vi-
bration displacements are symmetric about φ, so the 
wavenumber in the circumferential direction can be 
written as: 

 
kφ=n/a, n∈N 

 
Substituting Eq.(2) into Eq.(1) yields: 
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The items of this matrix can be expressed as: 
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Fig.1  A circular cylindrical shell with relevant parameters 

φ 

L 

w 
u 

v 
z 



Li et al. / J Zhejiang Univ SCI   2005 6A(10):1122-1127 1124 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

23 32 ,KL L k
a φ= =     4 2

33 2 .KL Dk h
a

ρ ω= + −  

where 2 2 ,zk k kφ= +  2 ,
1

EhK
µ

=
−

3

2 .
12(1 )

EhD
µ

=
−

 

 
To obtain the non-trivial solution of Eq.(3), the 

determinant of the characteristic matrix in Eq.(3) 
must be zero: 
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Expanding Eq.(4) yields the following polyno-
mial for the natural frequencies: 
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In this paper, the software ANSYS was used to 

perform the finite element analysis. 
Fig.2 and Fig.3 were calculated by ANSYS. 

Fig.2 presents circumferential nodal pattern and axial 
nodal pattern respectively. The results can be used to 
explain the parameter n and parameter m. Fig.3 shows 
some typical combined mode shapes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the figures, the typical modes can be de-
scribed as follows:  

When n=0, the circumferential nodal pattern is a 
circle, indicating that this mode is an extensional 
mode referred to as breathing type mode. 

The mode is a pure radial mode when m=0. Here, 

Fig.2  Illustration of parameter n and m 
(a) Circumferential nodal pattern; (b) Axial nodal pattern 

 

 
n=0                                            m=0 

 

 

n=1                                            m=1 

n=2                                            m=2 

n=3                                            m=3 

n=4                                            m=4 

(a)                                               (b) 

Fig.3  Some typical combined mode shapes 
(a) n=1, m=1; (b) n=0, m=2; (c) n=1, m=2; (d) n=3, m=1 

(a)                                                (b) 

(c)                                                (d) 



Li et al. / J Zhejiang Univ SCI   2005 6A(10):1122-1127 1125 

the cylinder retains a constant cross-sectional shape 
along its length. 

When m, n are both equal to one, the mode is a 
circumferential mode. When n=1 and m≠1, the mode 
is an axial bending mode and the mode is radial mo-
tion with shearing mode when m=1 and n≠1.  

 
Beam functions 

In this paper, the wave propagation method was 
used in conjunction with beam functions. The natural 
frequencies of finite length cylindrical shell with 
different boundary conditions can be obtained.  

Zhang et al.(2001b)’s wavenumbers for different 
boundary conditions of beams are listed in Table 1. 
Substitution of beam functions into motion Eq.(5), 
yields different approximate mode shapes and natural 
frequencies. 
 
 
 
 
 
 
 
 
 
 
 
 
RESULTS AND DISCUSSION 
 

To check the validity of the present analysis, the 
results were compared with those calculated by FEA. 

The non-dimensional frequency parameter Ω 
was used to make the conclusions more widely ap-
plicable. Here define Ω=ω/ωr, where 
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Relationship between the natural frequencies and 
the circumferential mode number n with different 
radius-thickness ratio a/h 

In the computation of Fig.4, the material used is 
aluminum with mass density ρ of 2700 kg/m3, the 
Poisson ratio µ is equal to 0.33, and Young’s modulus 
E=7.1×1010 N/m3. The boundary condition consid-
ered is clamped-clamped. 

Fig.4 shows non-dimensional frequency parame- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
ter Ω versus circumferential wave number n with 
different radius-thickness ratio a/h. The solid curves 

Table 1  Wavenumbers for different boundary conditions 
 

Boundary conditions Wave numbers 
Clamped-free kL=(2m−1)π/2 
Free-simply supported kL=(4m+1)π/4 
Simply supported-simply supported kL=mπ 
Clamped-simply supported kL=(4m+1)π/4 
Clamped-clamped kL=(2m+1)π/2 
Sliding-simply supported kL=(2m−1)π/2 
Free-free kL=(2m+1)π/2 

 

(a) 

(b) 

(d) 

(c) 

Fig.4  Variation of the non-dimensional frequencies with 
the parameter n for different parameter m 

(a) a/h=10; (b) a/h=20; (c) a/h=25; (d) a/h=30 
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correspond to the results obtained by using the present 
method and curves marked “∆”, “□” and “○” corre-
spond to those from FEM.  

These shells all have the same thickness h=0.01 
and the same length L=1.  

From these plots, the following observations can 
be made:  

1. We can find that, for the same thickness h, the 
smaller the shell radius-to-thickness ratio a/h is, the 
larger is the difference between the results from FEM 
and those from the present method. Figs.4a, 4b and 4c 
show the results from FEM are lower than those from 
the present method. This can be attributed to the fact 
that the effects of shear deflection and rotary inertia of 
the shell (which would reduce the natural frequencies) 
should not be neglected for small a/h (Soedel, 1982). 
As the above effects are not taken into account by 
Eq.(5), it may be expected that Eq.(5) can be applied 
to thin finite cylindrical shells.   

2. The relative error decreases with decreasing 
axial mode number m. It means that the results are 
more exact when the shells are longer. This indicates 
that, for the long-thin shell, the effect of the boundary 
conditions are small, the wave propagation in the 
cylindrical shell trends to the form of an approaching 
wave. 

3. When the ratio a/h=30, the results from the 
method are more accurate than the results when ratio 
a/h<30. And we also can find that higher order modes 
led to more accurate results. All these phenomena 
indicate that although the coupling of the vibration 
between the axial and circumferential direction was 
neglected in this method, the effects of such coupling 
were less important for long-thin shells and higher 
order modes.  

4. The lowest frequency does not occur at the 
lowest values of n, and for different values of m, the 
lowest frequency occurs at different mode. For ex-
ample, at a/h=30 and m=1, the lowest frequency oc-
curs at the mode when n=3, this phenomenon can be 
explained by considering the strain energy of the 
middle surface under both bending and stretching 

(Kraus, 1967). 
5. For the larger circumferential mode number n, 

the curves change dramatically, in other words, the 
natural frequency is sensitive to the geometric sizes 
when the ratio a/h is small. It indicates that the 
method is more effective for thin cylindrical shells. 

From this section, we know that the present 
method can be used to evaluate the natural frequen-
cies of thin cylindrical shells.  
 
Relationship between the natural frequencies and 
the axial mode number m with different 
length-thickness ratio L/a 

The results are plotted in Fig.5 to study the effect 
of the axial length on the modes of the radius. 

 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It was found that, when L/a becomes larger, the 
natural frequencies of shells become smaller for the 
same m, because larger L/a ratio leads to smaller shell 
rigidity. The curves’ variations level off with in-
creasing L/a ratio, that is to say, the natural frequency 
is more sensitive to the geometric sizes when the 
cylindrical shell is short. It indicates that the method 
is more effective for long cylindrical shells. 
 
 
CONCLUSION 
 

Donnell’s shell theory and wave propagation 
method were applied to analyze the free vibration 
characteristics of long-thin finite circle cylindrical 
shells. The curves of the relation between the pa-
rameter n and the shell radius-to-thickness ratio a/h, 
as well as between the parameter m and the shell 
length-to-radius ratio L/a are numerically presented 
and some important conclusions can be obtained from 
them.  

The results from the present paper compared 
with the solutions obtained from FEM showed that 

Ω
 

m 
 

Fig.5  Variation of the non-dimensional frequencies with 
the parameter m for different length-thickness ratio L/a 
while n=2 
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the method is effective for long thin cylindrical shells. 
As far as the applications are concerned, the results 
obtained can commendably satisfy the criterion of 
precision. The method can be extended to long thin 
ring-stiffened cylindrical shells and some long-thin 
shell structures with complicated boundary condi-
tions.  
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