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TRANSMISSION LOSS THROUGH A HONEYCOMB-SANDWICH CYLINDRICAL SHELL 
 
By Tom Irvine 
Email:  tomirvine@aol.com 
 
February 9, 2008 
 
 
This is an unfinished tutorial…. 
 
Variables 
 

c = speed of sound in the surrounding air medium 

c L = longitudinal wave velocity 

d = diameter 

D = bending stiffness 

E = elastic modulus 

Ef = face sheet elastic modulus 

f = forcing frequency 

f c = critical frequency 

f mn = bending frequency for mode (m, n) 

f r = ring frequency 

h = thickness 

TL = random-incidence transmission loss 

0TL  = normal incidence transmission loss 

TL cyl = transmission loss for the honeycomb-sandwich cylindrical shell  

ρ  = mass per volume of the shell 

ρ  = surface mass density of the cylindrical shell 

cρ  = characteristic impedance of air 

η  = loss factor 

ν   = Poisson ratio 
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  Note that the characteristic impedance of dry air at 20 °C is cρ  = 415 (Pa • sec/m). 
Introduction 
 
Certain payload fairings on rocket vehicles are constructed from honeycomb-sandwich material.  
The overall geometry is typically that of a cylindrical shell with a nosecone.1    
 
The fairing protects the payload from a variety of environments.  The liftoff acoustics and the 
aerodynamic-induced sound pressure are particular concerns in this tutorial.  The acoustic 
energy from these sources can damage the payload and its electronic components.  Solar 
panels, antennas, and other appendages are also at risk. 
 
The fairing’s transmission loss must be determined in order to calculate the resulting sound 
pressure level within the fairing.   The purpose of this tutorial is to develop a calculation method.  
The method is an extension of the Franken method, where the Franken method is calibrated 
using Reference 1. 
 
Mass Law 
 
Reference 1 states: 
 

The potential of the basic sandwich panel as an airborne sound insulator is limited by the 
mass law.  Departure from mass law occurs because of resonance conditions in some 
frequencies, such as the normal resonance frequencies, the coincidence frequencies, 
the dilational resonance frequencies, and the double wall resonance frequency.  The 
effect of resonances can be avoided by adequate design procedures. 

 
Honeycomb-sandwich shells have the potential of yielding greater attenuation than that 
predicted by the mass law at frequencies well below the cylinder’s ring frequency, particularly 
due to the stiffness and damping of the shell. 
 
Further information regarding the mass law is given in Reference 5. 

 
Shear and Bending Waves 
 
The shear and bending wave speeds should be lower than the speed of sound to avoid 
coincidence in the frequency band of interest.  The bending wave coincidence frequency must 
thus be as high as possible.  See Appendix A for further information. 
 
 
Franken Method Assumptions 
 
The Franken method is an empirical method for calculating the vibration response of a 
cylindrical skin to an external acoustic pressure field. 
 
The Franken method assumes 
 

                                                 
1 There are many possible geometrical variations.  As further examples, the nosecone might be 
biconic, or it might be an ogive. 
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1.  All flight vehicles to which the procedure is applied have similar dynamic 
characteristics to the Jupiter and Titan 1 vehicles. 

 
2.  Vibration is primarily due to the acoustic noise during liftoff or other pressure fields 

during flight which can be estimated. 
 

3.  The vibration magnitude is directly proportional to the pressure level of the 
excitation and inversely proportional to the surface weight density of the structure. 

 
4.  Predominant vibration frequencies are inversely proportional of the diameter of the 

vehicle. 
 
5.  Spatial variations in the vibration can be considered as a random variable. 

   
 
 
Steps 
 
Each of the following steps represents a simplifying assumption.   
 
 
Step 1.  Calculate the Transmission Loss at the Ring Frequency 
 
Assume a loss factor.  Note that the loss factor is twice the fraction of critical damping. 
 
Calculate the normal-incidence transmission loss  0TL  at the ring frequency, per Reference 1, 
equation (26).  
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Equation (1) could be used to calculate a transmission loss for each modal frequency and for 
each forcing frequency.  Nevertheless, a single transmission loss value is needed.  Thus, set 
both f and  f mn  equal the ring frequency f r for this calculation.   
 
 

rfmnff ==                                                                                                  (2) 
 
 
The normal-incidence transmission loss at the ring frequency is thus 
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Assume normal incidence for liftoff acoustics.  Otherwise, the random-incidence TL can be 
evaluated from the following approximate expression: 
 
 

dB50TLTL −≈                                                                                                (4) 
 
 
 
Step 2.  Calculate the Uncalibrated Franken Function 
 
Assume that the internal noise results directly from vibration of the shell. 
 
Calculate the PSD (G^2/Hz) function for the given cylinder geometry assuming that the SPL has 
unity dB amplitude in each of the one-third octave bands.   
 
Convert the PSD function to dB format, where the zero dB reference is arbitrary.  
 
 
Step 3.  Normalize the Franken Function 
 
Add a dB margin to the uncalibrated Franken function so that the level at the ring frequency is 
zero dB.   Apply this margin uniformly in each one-third octave band. 
 

 
Step 4.  Calibrate the Normalized Franken Function 
  
Use the ring,0TL value2 to convert the normalized Franken vibroacoustic curve into a 

transmission loss function for the cylindrical shell TL cyl.   The value is added uniformly to each 
one-third octave band.   
 
 
Step 5.  Conservative Limits 
 
Apply limits to the maximum TL cyl  magnitude for conservatism using engineering judgment.  
For example the transmission loss below and above the ring frequency could be limited to a 
certain dB level. 
 
Example 
 
An example of this method is given in Appendix C. 
 
Issues 
 
Modal density and modal damping….unknown… 
 
Field type modeling …. 
                                                 
2 Or the equivalent random-incident value as appropriate. 
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Interior field may be reverberant, but complicated by the geometry of the payload.  See Fill 
factor in Reference 8. 
 
Franken… 
 
Bending and shear wave coincidence with acoustic wavelengths at low frequencies. 
 
Non-linearity due to large deflections.  Membrane and bending stiffness…. 
 
 
Blankets – Reference 6. 
 
Flanking noise 
 
Vent noise 
 
 
 
References 
 

1. H. Wen-chao & Ng Chung-fai, Sound Insulation Improvement using Honeycomb 
Sandwich Panels, Applied Acoustics, Vol. 53, No. 1-3, 1998. 

 
2. L. Cremer and M. Heckl, Structure-Borne Sound, Springer-Verlag, New York, 1988. 

 

3. L. Beranek & I. Ver, Noise and Vibration Control Engineering, Principles and 
Applications, Wiley, New York, 1992.  (See page 297). 

 

4. T. Irvine, Vibration Response of a Cylindrical Skin to Acoustic Pressure via the Franken 
Method, Revision E, Vibrationdata, 2004. 

 
5. T. Irvine, Acoustic Transmission Loss, Rev A, Vibrationdata, 2002. 

 

6. T. Irvine, Payload Acoustic Attenuation via Blankets, Vibrationdata, 2008. 
 

7. T. Irvine, Natural Frequencies of Honeycomb Plates, Rev B, Vibrationdata, 2002. 
 

8. NASA-HBBK-7005, Dynamic Environmental Criteria, 2001. 
 

 



 6

 
APPENDIX A 

 
Bending Wave, Critical Frequency 
 
The critical (or coincident) frequency is the frequency at which the airborne acoustic wavelength 

matches the panel bending wavelength.  The critical frequency f c for a homogeneous panel is  
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Equation (A-3) is taken from Reference 2, chapter 6, equation (56a). 
 
The corresponding equation for a honeycomb-sandwich shell is not immediately available. 
 
A cylinder shell is considered as “acoustically thin” if cr ff <  . 
 
The ring frequency f r is given in Appendix B. 
  
Furthermore, the cylindrical shell tends to vibrate as a flat plate above the ring frequency 
because the shell’s curvature is less important. 
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The bending stiffness from Reference 7 is 
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APPENDIX B 

 
 

The ring frequency f r is the frequency at which the longitudinal wavelength in the skin material 
is equal to the vehicle circumference. 
 

d
LC

f r π
=                                                                                                 (B-1) 

 
where 
 

CL  is the longitudinal wave speed in the skin material 
 

d is the diameter 
 
 
 
 

APPENDIX C 
 


