DAMPING VALUES IN AEROSPACE STRUCTURES AND COMPONENTS Revision D

By Tom Irvine Email: tomirvine@aol.com

July 3, 2012

Table 1. Typical Q values for Structures and Components				
System	fn (Hz)	Damping Ratio	Q	Appendix
Pegasus XL Launch Vehicle Body-Bending during Drop Transient	9.9	1.0%	50	А
Fairing Ring Frequency	897	3.7%	13.5	В
Battery Cells inside Foam-lined Box	80	15.2%	3.3	С
Avionics Circuit Boards, Hardmounted Boxes	220 to 650	1.7% to 5.6%	9 to 29	D
Component Mounting Brackets	70 to 2000	2% to 50%	1 to 25	E
Avionics Boxes Mounted via Lord Isolators	27 to 31	8.3%	6	F
Flexible Confined Detonating Cord (FCDC)	8 to 107	6%	8.3	G
Space Integrated GPS/INS (SIGI) Inertial Sensor Assembly (ISA) Isolators	55	13.5%	3.7	Н

Table 1. Typical Q values for Structures and Components (continued)					
System	fn (Hz)	Damping Ratio	Q	Appendix	
Circular Bulkhead, Homogeneous	57	6.5%	7.7	Ι	
Circular Bulkhead, Honeycomb Sandwich	40	5.9%	8.5	J	

Excerpt from NASA SP-8050, Structural Vibration Prediction.

Type of Structure	Percent of Critical Viscous Damping	Remarks
Homogeneous-element configurations (machined brackets, solid beams, welded construction)	1 to 2	Damping factor depends on stress levels induced during vibration
Riveted or bolted structures	3 to 10	Damping cause by friction at joints significantly reduces the vibration amplification
Laminated plastics	4 to 10	Phenolic laminate
Honeycomb-core panels	3 to 6	Damping factor depends on method of fabrication (brazed versus adhesive bond) and on acoustic radiation
Vibration-isolated components	10 to 20	Damping factor depends on the isolator design
	0.5	Frequency < 5 Hz
Nonviscous fluids	1.0	$5 \text{ Hz} \le \text{Frequency} \le 15 \text{ Hz}$
	1.5	Frequency > 15 Hz

Excerpt from NASA SP-8079, Structural Interaction with Control Systems

Vehicle	Vibration Mode	Frequency (Hz)	Damping Ratio
Saturn V/Apollo	First	1.0	0.005
	Second	1.7	0.007
	Third	2.3	0.006
	Fourth	3.0	0.010

The damping values were measured during a modal test.

APPENDIX A

Pegasus Launch Vehicle Body-Bending during Drop Transient

Figure A-1.

APPENDIX B

Fairing Ring Frequency

The source device was a frangible joint rail. The data was measured during a ground test.

The fairing consists of graphite-epoxy skins over an aluminum honeycomb core.

Note that the data is bandpass filtered from 20 to 2000 Hz.

The fairing's ring frequency is

$$fn = \frac{C_L}{\pi d}$$
(B-1)

ſ	CL	=	257,976 in/sec	Longitudinal wave speed in the composite skin material
	d	Ш	92 in	Diameter

$$fn = \frac{257,976 \text{ in/sec}}{\pi (92 \text{ in})} = 893 \text{ Hz}$$

The synthesis consists of ten components. The first three are given in Table 2.

Table B-1. Synthesis Results					
N	Amp (G)	Freq (Hz)	Phase (rad)	Damping	Delay (sec)
1	186.2	1888.895	1.682	0.017	0.000
2	172.7	897.063	3.609	0.037	0.000
3	112.6	1573.298	1.648	0.026	0.001

The second component represents the ring frequency.

APPENDIX C

Battery Cells inside Foam-lined Box

Figure 19: X Axis Transmissibility to Cells

Figure C-1.

The X-axis is vertical.

Y Axis Transmissibility

Figure 23: Y Axis Transmissibilities

Figure C-2.

The Y-axis is a lateral axis.

Z Axis Transmissibility

Figure 27: Z Axis Transmissibilities

Figure C-3.

The Z-axis is a lateral axis.

Reference:

ME File:T042-040, Random and Sine Vibe Test, 2nd ACME Evaluation Battery, 2008.

APPENDIX D

Avionics Circuit Board

The 3 dB Bandwidth method is used to determine the Q value for the following avionics boxes.

CIRCUIT BOARD FUNDAMENTAL FREQUENCY Q vs fn

Figure D-1.

Table D-1. Q at Fundamental Frequency				
n	fn (Hz)	-3 dB Bandwidth (Hz)	Q	
1	380	20	19	
2	220	15	15	
3	395	45	9	
4	550	30	18	
5	600	25	24	
6	570	20	29	
7	350	22	16	
8	650	45	14	

The range is 9 to 29. The average is 18.1 with a standard deviation of 6.2.

Transmissibility Data wrt the AVG CNTRL for All Boards, IBUSs, and I/Fs

Transmissibility wrt AVG CNTRL

Figure D-1. Avionics Box 1

Figure D-2. Avionics Box 2

Figure D-5. Avionics Box 5

Figure D-6. Avionics Box 6

ait MACHBDX ACCEPT

AIT MACH9 ENGEVAL Z 11JUL98 MACH9 ENG EVAL DR#20483 PII STP 005 Z AXIS

g^2/Hz b/c 06660 on board ic mounted z axis

Figure D-7. Avionics Box 7

Transmissibility wrt AVG CNTRL GPS RCVR PWA: July 1, 2004

Figure D-8. Avionics Box 8

APPENDIX E

Component Mounting Brackets

Q = 10 $Q = 11.53 * \log_{10}(fn) - 9.588$ Q = 25fn <= 100Hz
fn <= 100Hz
fn >= 1000Hz
fn >= 1000Hz
fn >= 1000Hz

Figure E-1.

Reference

ME File: 030-356, Bracket Transmissibility Data Review, 2008.

APPENDIX F

Avionics Boxes Mounted via Lord Isolators

Figure F-1.

Figure F-2.

Reference:

ME File: 030-227A, Lord Isolator (156APLQ-8) General Random Vibration Transmissibility, 2002.

APPENDIX G

Flexible Confined Detonating Cord (FCDC)

Figure G-1.

FCDC RESPONSE TEST 1 MODE 1 20 Hz LP FILTERED

Figure G-2.

This was a test case for a particular configuration.

Other configurations were analyzed via FEA models in:

ME File: MISC 030-259, FCDC Vibration Frequency Analysis, 2003.

APPENDIX H

Figure H-1.

Figure H-2.

References:

ME File: 070-211A ME File: 043-063

APPENDIX I

Figure I-1. HAVE Jeep VII F & G Talos-Sergeant-Hydac Vehicle

Figure I-2.

The bulkhead was circular, made from aluminum, homogeneous, with an 18 inch diameter. The data is from a flight in 1991.

The natural frequency and damping ratio were determined using a damped sine curve-fit.

APPENDIX J

Figure J-1. Avionics Module with ALAS Bulkhead

Figure J-2.

The bulkhead was circular, made from aluminum skins with a honeycomb core, and with a 38 inch diameter. It was mounted in a cylindrical avionics module. The module was then mounted to a shaker table. The shock pulse was applied in the axis normal to the bulkhead plane.

The data is from a shaker table shock test in 1992. The time segment shown represents the natural response immediately after the end of the input pulse. It is due to out-of-plane bending.

The natural frequency and damping ratio were determined using a damped sine curve-fit. The natural frequency is 40.0 Hz with 5.9% damping.