

Physical Causes of Damping in Buildings							
	Energy l	Dissipatio	n Inside	Energy I	Energy Dissipation Outside		
	Solid	Liquid	Gas	S–S	S–L	S–G	
Friction	Internal Friction Damping	_		External Friction Damping	_		
Viscosity	-	Internal Dam	Viscous ping	-	External Viscous Damping		
Radiation		_		Radiation Damping –			
Interaction	_			-	Hydro- dynamic Damping	Aero- dynamic Damping	
Plasticity	Hysteretic Damping	-	-		-		

Plasticity Damping

Energy dissipation due to plasticity of solids

Hysteresis due to Plasticity

Change in microscopic structure of materials Hysteretic characteristics / Plasticity Rate

Significantly greater than the energy dissipation due to internal material friction

Radiation Damping

Energy transfer between Solid – Solid, or Solid – Liquid

Propagation and loss of a system's energy to outside

- Necessary work for exciting a body contacting the system

- Penetration of wave energy through boundary **ex.**

- Radiation damping due to soil-structure interaction
- Damping due to wave generation for a floating body

Reflection of ground motions from building surface: Input loss

Fluid-Dynamic Damping (Aerodynamic Damping)

Fluid-body interaction

Effects of relative velocity

Effects of additional unsteady flow induced by body motion (Feedback system)

Ex.

Along-wind Vibrations (Buffeting) due to turbulence: Positive Damping Across-wind Vibrations (Galloping, Vortex-resonance etc.): Negative Damping

Currently Used Damping Values (Steel Buildings)					
Country	Actions/Stress L	evels	Joints/Structures	Damping ratios ζ_1 (%)	
Australia (AS1170.2)	Serviceability Ultimate & Per	missible	Frame Bolted Frame Welded	0.5 - 1.0 5 2	
Austria	(ÖNORM B4014	1)			
China	(GB50191-93)		Steel (TV) Tower	2	
France			Standard Bolt High Resistance Bol Wolded	0.8 lt 0.5	
	Earthquake		Bolt Welded	4	
Germany	Wind	(DIN 1055)	Welded	~	
Italy	Wind Earthquake	(EUROCO	DE 1)	5	
Japan	Habitability Earthquake			1 2	
Singapore	-			1	
Sweden	(Swedish Code o	f Practice)		0.9	
United King	dom Wind	(ESDU)			
USA (Penzie	en, US Atomic Ener	rgy Commissi	on)		

Currently Used Damping Values (RC Buildings)						
Country	Actions/Stress 1	Levels	Structures	Damping ratios ζ_1 (%)		
Australia (AS1170.2)	Serviceability Ultimate & Pe	rmissible	RC or Prestressed C RC or Prestressed C	0.5 – 1.0 5		
Austria	(ÖNORM B401	4)				
China	(GB50191-93)		RC Structures RC (TV) Towers Prestressed RC Towe	5 5 er 3		
France	Earthquake		Standard Reinforced Standard Reinforced	1.6 0.65 3 - 4 2		
Germany	Wind	(DIN 105	5)	-		
Italy	Wind Earthquake	(EUROC	ODE 1)	5		
Japan	Habitability Earthquake			1 3		
Singapore				2		
Sweden	(Swedish Code	of Practice)		1.4		
United King	dom Wind	(ESDU)			
USA	(US Atomic Er	ergy Commi	ssion)			

DIN 1055 Teil 4, The German Pre-Standard					
Wind (Actual Wind Load Code)					
Structures	Conditions D	amping ratios ζ_1 (%)			
- Steel	Bolted Welded	0.5 – 0.8 0.3			
- Reinforced C	Without crack With cracks	ks 0.6 1.6			
- Prestressed C		0.6			

Stanoturos	Damping Ratio (
Structures	OBE or ½ SSE	SSE		
Welded Steel Bolted Steel	2	4		
Prestressed C Reinforced C	2	57		

Japanese Damping Database

Research Committee on Damping Data organized by Architectural Institute of Japan (1993-2000)

- Original data from Members of the Research Committee
- Research Committee Report on Evaluation of Damping of Buildings, Building Center of Japan, 1993
- Summary Papers presented at the Annual Meeting of Architectural Institute of Japan (AIJ) 1970 -
- Journal of Structural and Construction Engineering (Transactions of AIJ), 1970 -
- Proc. Annual Meeting of Kanto Branch of Architectural Institute of Japan, 1970 -
- Proceedings of Annual Meeting of Kinki Branch of Architectural Institute of Japan, 1970-
- Proc. National Symposium on Wind Engineering, 1970 -
- Proc. National Symposium on Earthquake Engineering, 1970 -
- Proc. International Conference on Earthquake Engineering, 1974 -
- Vibration Tests of Buildings, Architectural Institute of Japan, 1978
- Technical Reports published by Research Institute of Construction Companies, 1974 -

information were collected.

	Japanese Damping Database (Damping in buildings, AIJ, 2000)								
	Number of Buildings and Structures								
		2	85						
	Steel Buildings (<mark>Steel</mark>)	SteelReinforcedEncasedReinforcedReinforcedConcreteConcreteBuildingsBuildings(RC)		Tower-Like Non-Building Structures					
	137	43	25	80					
-	$H_{Ave.} = 101 \mathrm{m}$	$H_{Ave.}=$	- 60m	$H_{Ave.} = 124$ m					
	15.5m ~ 282.3m	11.6m ~ 167.4m 10.8m ~ 129.8		9.1m ~ 226.0m					
· ·	Office: 99	Apartment	: 35	Chimney: 26					
	Hotel : 25	Office : 20		Lattice : 24					
	Others: 13	School	: 4	Tower : 23					
		Others	: 9	Others: 6					

Japanese	Damping D	atabase (JDD) Damping in buildings, AIJ, 2000)
	Contained Inform	ation
Building Information	Location Time of Completion Building Usage Shape Height Dimensions Number of Stories	Structural TypeCladding TypeFoundation TypeEmbedment DepthLength of Foundation PilesSoil ConditionsReference
Dynamic Properties	Damping Ratio (up to the 6th mode) Natural Frequency (up to the 6th mode) Time of Measurement	Excitation Type Experimental & Measurement Method Evaluation Technique Amplitude etc.

L

A	(JDD) AIJ 2000 (RC Buildings) (Damping in buildings, AIJ, 2000)							
	Ha	oitabili	ty		Safety			
Height H (m)	Natural Frequency	Damping Ratio ζ_1 (%)		Natural Frequency	Damping Ratio ζ_l (%)			
	f_1 (HZ)	Rec.	Standard	$f_1(\text{Hz})$	Rec.	Standard		
30	2.2	2.5	3	1.9	3	3.5		
40	1.7	1.5	2	1.4	2	2.5		
50	1.3	1.2	1.5	1.1	2	2.5		
60	1.1	1.2	1.5	0.93	1.5	2		
70	0.95	0.8	1	0.79	1.5	2		
80	0.83	0.8	1	0.69	1.2	1.5		
90	0.74	0.8	1	0.62	1.2	1.5		
100	0.67	0.8	1	0.56	1.2	1.5		
• "Rec. • $f_1 = 1$ • Safety	• "Rec." : "Recommended" values. • $f_I = 1 \neq 0.015H$ (Habitability), $f_I = 1 \neq 0.018H$ (Safety) • Safety : Elastic Range							

AIJ 2000 (Steel Buildings)							
				(Damping in	buildin	gs, AIJ, 20	
	Ha	bitabili	ty		Safety		
Height	Natural	Dam	oing Ratio	Natural	Dam	oing Ratio	
$H(\mathbf{m})$	Frequency	ζ	(%)	Frequency	ζ	(%)	
	f_{l} (Hz)	Rec.	Standard	f_{l} (Hz)	Rec.	Standard	
30	1.7	1.8	2.5	1.4	2	3	
40	1.3	1.5	2	1.0	1.8	2.5	
50	1.0	1	1.5	0.83	1.5	2	
60	0.83	1	1.5	0.69	1.5	2	
70	0.71	0.7	1	0.60	1.5	2	
80	0.63	0.7	1	0.52	1	1.5	
90	0.56	0.7	1	0.46	1	1.5	
100	0.50	0.7	1	0.42	1	1.5	
150	0.33	0.7	1	0.28	1	1.5	
200	0.25	0.7	1	0.21	1	1.5	
$f_{I} = 1$	200 0.25 0.7 1 0.21 1 1.5 "Rec." : "Recommended" values. $f_I = 1 / 0.020H$ (Habitability), $f_I = 1 / 0.024H$ (Safety) Safety : Electic Parage						

Damping Ratio for Ultimate Limit State

Damage to Secondary Members
Development of Micro Cracks

∠Larger Damping Values

Almost No Quantitative Evidence

Effects of Hysteretic Response of Frames

Evaluation of Damping Ratio from Randomly Excited Motion

Output Information

- **Spectral Methods**
- Hal-Power Method
- Auto-Correlation Method Stationarity is strictly required.
 Random Decrement Technique Stationarity is not necessarily required. Appropriate for amplitude dependent
 - Appropriate

separated.

- phenomena Each mode should be clearly separated.
- Frequency Domain Decomposition Each mode does not have to be well

35-03

Estimated Dynamic Characteristics of a 230m-high Chimney by 2DOF RD technique and FDD					
N/ - J - #	Natural Fre	equency (Hz)	Damping Ratio (%)		
Niode #	RD	FDD	RD	FDD	
1	0.40	0.40	0.18	0.24	
2	0.41	0.41	0.30	0.39	
3	1.47	1.47	0.83	0.30	
4	1.53	1.52	0.85	0.91	
5	2.17	2.17	0.55	0.65	
6	2.38	2.38	0.42	0.39	
7	_	2.87	_	_	
8	_	3.10	_	0.77 40-02	

Natı	Natural Frequencies of 15-Story CFT Building <u>Field Data</u>					
Mode	FEM (Hz)	AMB (Hz)	Error (%)			
1	. 0.76	0.76	0			
2	0.87	0.86	2.22			
3 Adjust	ed litional 1.15	1.11	3.51			
4 Stiffne	^{ss} 2.14	2.23	-3.99			
5	2.53	2.47	2.59			
6	3.02	2.94	2.82			
7	3.85	3.85	0			
8	4.26	4.26	0			
9	4.67	4.47	4.29 45-02			

Estimated Damping Ratios and FFT Data Points						
-Data Points	256	512	1024	2048	4096	8192
1st	3.05	1.60	0.95	0.65	0.54	0.51
2nd	2.81	1.58	0.99	0.74	0.67	0.58
3rd	2.06	1.29	0.98	0.84	0.80	0.87
4th	1.52	1.24	1.11	1.10	1.08	1.06
5th	1.91	1.64	1.65	1.56	1.62	1.29
6th	1.90	1.73	1.66	1.67	1.72	1.68
7th	2.37	2.23	2.18	2.15	2.11	1.63
8th	1.57	1.60	1.38	0.85	0.78	n/a
9th	1.91	1.92	1.62	1.25	0.86	n/a 45

Damping Ratios Obtained by SVD of PSD Matrix					
Mode	ζ (%)	Mode	ζ (%)	Mode	ζ (%)
1	0.69	9	0.91	17	0.73
2	0.59	10	1.44	18	0.75
3	0.56	11	0.66	19	0.50
4	0.21	12	0.98	20	0.51
5	2.17	13	1.01	21	1.04
6	1.38	14	0.83	22	0.72
7	1.47	15	0.85	23	0.50
8	0.27	16	0.61	-	-